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§ 1 Background

Flat affine manifolds. A flat affine manifold is a differentiable manifold M
equipped with an affine connection whose torsion and curvature tensors vanish
everywhere. If we further assume that M is geodesically complete, then it turns
out that M can be written as a quotient manifold Rn=� , where � � Aff.Rn/ is a
group of affine transformations of Rn that acts freely and properly discontinously
on Rn (see Thurston’s book [16] for the definitions and a detailed discussion of
these properties). In particular, � is the fundamental group of M . Of particular
interest is the special case where M is compact. In this case we say that � acts
cocompactly on Rn. There are two very readable surveys on this topic, one by
Abels [1] from 2001, and one by Goldman [10] from 2014. Therefore, we shall
not go into the details of the theory any further.

The Milnor conjecture. Milnor studied the fundamental groups of flat affine
manifolds in his seminal 1977 paper [14]. He observed that a discrete subgroup
of a Lie group with finitely many connected components is either virtually poly-
cyclic or contains a free subgroup with two generators. This follows directly from
a result by Tits [17]. Milnor’s main result is [14, Theorem 1.2] stating that a
torsion-free virtually polycyclic group can be realized as the fundamental group
of some complete flat affine manifold. It seemed natural to conjecture the con-
verse, that in fact the fundamental group of every complete flat affine manifold
is virtually polycyclic. However this conjecture turned out to be false, as Mar-
gulis’s counterexample in [13] shows. However, this counterexample is a free
group � acting non-cocompactly by affine Lorentz transformations on R31, the
three-dimensional affine space equipped with a Lorentzian scalar product. This
allows the more restricted conjecture that the fundamental group group of every
compact complete flat affine manifold is virtually polycyclic. This has somewhat
generously become known as Auslander’s conjecture.



Auslander’s claim. More than a decade before Milnor’s paper, Auslander pub-
lished a paper [6] in 1964 that stated Milnor’s original conjecture as a theorem,
namely that the fundamental group of every complete flat affine manifold is vir-
tually polycyclic, without the assumption of compactness. In light of Margulis’s
counterexample, the statement is false in this generality, so there is a mistake in the
proof of the theorem or one of the lemmas leading up to it. This will be discussed
in § 2 below. When Milnor wrote his article, he was well aware of Auslander’s
work, as the bibliography in [14] shows, but did not cite Auslander’s paper [6]. So
it seems reasonable to assume that Milnor noticed a flaw in Auslander’s argument
or found its proof too confusing to be credible, but did not address this issue in his
own text.

A counterexample by Margulis. Margulis constructed a counterexample to
Milnor’s conjecture in the non-compact case in 1984 [13]. The construction is
rather intricate, and its details are not of much interest to us right now. A sketch
is given in Abels’s survey [1, Section 8]. The counterexample is a free group in
two generators � � Aff.R31/ whose linear part is contained in the Lorentz group
SO2;1. The group � acts properly discontinuously onR31. It worth noting for later
that if L W Aff.R31/ ! SO2;1 denotes the projection to the linear part of an affine
transformation, then L.� / Š � , since the kernel of L is the abelian group R31 and
thus � \ R31 D 1. In addition, L.� / is discrete in SO2;1. In fact, a theorem of
Wang [19, Appendix] implies that the identity component .L.� //ı of the closure
of the linear part is solvable since � ı is trivial, and since L.� / is a free group,
.L.� //ı is necessarily trivial.

State of the conjecture. At the time of this writing (September 12, 2017), the
Auslander conjecture has been confirmed in several special cases. In dimensions
up to three, it follows from the classification of affine crytallographic groups due
to Fried and Goldman [8] from 1983. In 2016 Tomanov [18] published a proof for
Auslander conjecture up to dimension five. Abels, Margulis and Soifer announced
that the conjecture holds at least up to dimension seven, but their paper containing
the proof was withdrawn from arXiv.org. It is also known that the Auslander
conjecture holds if the flat affine structure comes from a flat Lorentzian metric
or a flat metric of signature .n � 2; 2/. The first fact was proved by Goldman
and Kamishima [9], see also the classification results by Grunewald and Margulis
[11], and the second one was proved by Abels, Margulis and Soifer [2].



§ 2 Auslander’s original claim

For easier reference, we reproduce the critical parts of Auslander’s original paper
verbatim, fixing only obvious typos. These are Lemma 1, Lemma 2 and the proof
of Theorem 1 in §1 of Auslander’s 1964 paper.

Note that references in the numbered lines below refer to Auslander’s original
article and not to the references in this text. To avoid confusion of Auslander’s
references with our own, we replace the references [n] in Auslander’s original
text by [An].

First, we recall some of Auslander’s notation. A semidirect product of two groups
S and H is written G D S �H , where S is the normal subgroup. If �S denotes
the projection map to S , then Auslander writes A.g/.s/ D �S.gs/ for the action
of an element g 2 G by an automorphism of S .

The maximal solvable normal subgroup (not necessarily connected) of a given Lie
group G is called the radical of G by Auslander and denoted by r.� /.

Lemma 1 LetG �H , whereN is a simply connected nilpotent analytic group and1

H is a subgroup of the group of continuous automorphisms of N . Let � � G be2

such that A.� / operates properly discontinuously on N . Let �1 D � \N and let3

N1 � N be the analytic subgroup ofN which is uniquely determined by the prop-4

erties that N1 � �1 and N1=�1 is compact. Assume further that �=�1 contains5

no elements of finite order. Then A.� =�1/ operates properly discontinuously on6

N=N1.7

PROOF: It is trivial to verify that under A.� / the cosets N1n0, n0 2 N , are8

permuted amongst themselves. It is also easily verified that the image of each9

coset of N1 in N=A.� / is homeomorphic to N1=�1 and hence compact. The10

image of a coset N1n0 in N=A.� / will be called a sheet. Our problem is to prove11

that this sheeting of N=A.� / actually gives rise to a fiber bundle structure of12

N=A.� / pver N=A.N1� / with fiber N1=� . The conclusion of our lemma would13

follow trivially from this. The proof that the sheeting gives rise to a fiber bundle14

structure of the type indicated requires only that we prove the existence of local15

cross sections.16

Clearly the sheeting of M D N=A.� / gives rise to an involutive distribution and17

hence we may apply the Frobenius theorem. let m0 2 M and let Y.m0/ be the18

sheet through m0. Let Ui , i D 1; : : : ; k, be local coordinates which cover Y.m0/19



and are such that if .Xi1; : : : ; Xin/ are the coordinates on Ui , then20

1. Xi1 D C1; : : : ; Xik D Ck correspond to the connected components of the21

intersection of a sheet with Ui .22

2. Y.m0/ \ Ui is given by Xi1 D 0; : : : ; Xik D 0.23

3. If a sheet Y meets
T
Ui , then Y �

T
Ui .24

4. Consider y0 2 Y �
T
Ui . Let y0 2 Uj0

, say. Then y0 determines a25

connected component of Y \ Uj0
. Call this W.y0/. We may consider26

W.y0/ \ Ui , i D 1; : : : ; k.27

We may also consider Uj0
\Y.m0/ and the collection of sets Uj0

\Y.m0/\28

Ui .29

We will require thatW.y0/\Ui be empty if and only if Uj0
\Y.m0/\Ui/30

is empty.31

It is clear that coordinate neighborhoods exist with these four conditions. We will32

have proven our lemma once we have shown that each sheet Y �
T
Ui meets33

each Ui in exactly one connected component.34

Let U D
T
Ui and let U � be a connected lift of U into N . Then we can delete35

from U � a cut set G� such that G� is invariant under �1 and for each coset of N136

in U �, X , XnX \G� is a collection of disjoint fundamental domains for N1=�1.37

We now let G be the image of G� in U and consider U nG. We will use Y 1 to38

denote the restriction of sheets in U to U nG.39

Now Y 1.m0/ is contractable. Let U 1
i be the covering of U nG induced by the40

Ui . Then, since Y 1.m0/ is contractable, we may contract Y.m0/ to a point by41

contracting Y 1.m0/ \ U 1
j0

first until what is left is covered by the remaining U 1
i .42

By this method we can contract Y 1.m0/ to a point. But we may do the same for43

each sheet of Y meeting U 1
j0

and since the incidence relations are the same we44

obtain that each sheet Y 1 can be contracted to a point. We next note that any point45

in Y beginning and ending in G must be in the same sheet on Y in U . Hence Y46

must meet U in exactly one sheet. This proves our lemma. ˘47

Lemma 2 Let G D S �H where S is a simply connected solvable Lie group, H48

is an analytic group and the dot denotes the semidirect product. Let � � G be49

such that50



1. A.� / operates properly discontinuously on S .51

2. The image of � i G=S is discrete and isomorphic to � .52

Under the above conditions, � is abelian.53

PROOF: Let h.� / denote the image of � in H . Consider G=� ! G=� S .54

This is a fiber bundle, since � S is closed in G with fiber homeomorphic to S and55

hence to euclidean space. Hence we have a fiber bundle over H=h.� / with fiber56

euclidean space. We may let c W H=h.� / ! G=� denote a cross section in this57

bundle. Now we also have the fiber bundle58

G=�

�

��
SnG=� ' S=A.� /

Let p.t/, 0 � t � 1, be a closed path in H=h.� / realizing the fundamental59

group element 0 2 � . Then let p�.t/ D c.p.t//. Then �.p�.t// realizes the60

fundamental group element 0 in S=A.� /. Now through each point of p�.t/61

there passes a fiber of G=� ! G=� S , say X.t/, where X.t/ is topologically62

a euclidean space. Further, �X.t/ is the covering map of X.t/ onto S=A.� /.63

Consider p�.0/ 2 X.0/ and let m0 D �.p�.0//. Then � has a unique lifting to64

an action of X.0/, once the pointm0 and p�.0/ are specified. Then for each value65

of t D t0, the path �p�.t/ for 0 � t � t0 � 1 determines a unique action of � on66

X.t0/ by f�p�.t/gf�p�.t/g�1 for 0 � t � t0 � 1. Then for t0 D 1 we have the67

lift of � to X.0/ given by68

0
�1
0 ;  2 �:

But since the action of � on X.0/ is determined uniquely by m0 and p�.1/ D69

p�.0/ we have that70

0
�1
0 D ;  2 �:

Hence 0 is in the center of � . Byt 0 was arbitrary and hence our lemma is71

proven. ˘72

Important Observation. This lemma does not depend on the groups explicitly73

appearing in the statement of the lemma, but rather on the existence of certain74

fiber bundles with certain mappings.75

Lemma 2’ Let X be a topologically euclidean space and let � be a properly dis-76

continuous group of transformations of X . Assume there exists a fiber bundle77

% W B ! X=� with a continuous fiber F such that78



1. � operates properly discontinuously on F .79

2. B is a fiber bundle over F=� with euclidean spaces V as fiber.80

3. For each V � B , %jV is a covering map of V onto X=� .81

Then � is abelian.82

Theorem 1 Let � be a finitely generated fundamental group of a complete locally83

affine manifold M . Then the radical of � , r.� /, is of finite index in � .84

PROOF: Let G1 be the identity component of the algebraic hull of � and let85

G2 be the group generated by G1 and the group of pure translations in A.n/. Let86

G D ŒG1; G1� and � � D � \ G. Then if we can prove the theorem for � � we87

will have proven the theorem for � . Now G has the property that its radical N is88

nilpotent and must consist of unipotent matrices.89

Now N \ � � contains r.� �/ to within finite index and the image of � � in G=N90

must be discrete and isomorphic to � �=� � \ N . This follows from the work in91

[A1]. The crucial point to observe is that � �=� � \N is finitely generated, as the92

homomorphic image of a finitely generated group, and is a matrix group. Hence93

there is a normal subgroup of finite index which is torsion free [A15]. Call � �
194

the subgroup of � � which maps onto the above normal subgroup in � �=� �\N .95

Then � �
1 is normal and of finite index in � �. Once we see that if � �

1 has a radical96

of finite index then � � has a finite index and hence � has.97

Hence we have the following.98

1. G � � �
1 as discrete subgroup.99

2. The radical N of G consists of unipotent matrices.100

3. � �
1 =�

�
1 \N is torsion free.101

4. If N1 is the algebraic hull of � �
1 \ N then N1=� �

1 \ N is compact and102

�
1N1

��1
1 D N1.103

5. With no essential loss of generality we may also assume that G D N � H104

where H is contained in the group of continuous automorphisms of N .105

Clearly A.� �
1 / acts properly discontinuously on N , since N contains the106

pure translations.107



Hence by Lemma 1 A.� �
1 =�

�
1 \N/ acts properyl discontinuously on N=N1. We108

may now apply Lemma 2’ to conclude that � �
1 =�

�
1 \ N is abelian. To see this109

we take X D N=N1, � equal to � �
1 =�

�
1 \ N , B to be N1nN �H=� �

1 , F will be110

H , and F=� is given by H=.Image of � �
1 in H/. This completes the proof of the111

theorem. ˘112

§ 3 General remarks

We look at some of the issues in Auslander’s proofs, as there are many points that
are confusing or not obviously correct. It seems to me that, for all the confusion
in the proof, the crucial mistake is simply an unwarrented claim on the lifting of
loops to the covering space in line 65 of Auslander’s proof of his Lemma 2.

Line 19, Line 21: The index k is used with different meaning in these two lines.

Line 46: At the end of the proof of Lemma 1, line 46 and the following, Auslander
probably means “connected component” rather than “sheet”.

Line 53: This statement contradicts the existence of the Margulis counterexample;
take S D R31, H D SO2;1 and let � � SO2;1 Ë R31 � Aff.R31/ be a free group
in two generators acting properly discontinuously on R31. Then � satisfies the
requirements of Lemma 2, compare the discussion in §1, but is clearly not abelian.
So Lemma 2 must already be wrong.

Line 58: The appearance of SnG=� in the diagram below line 58 does not make
sense. What Auslander means is HnG=� .

Line 60: The cross section c W H=h.� /! HS=� S need not be globally defined.
So for some  2 � and their corresponding curves p.t/, the embedding p�.t/ D
c.p.t// might not even be defined.

Note that since G D HS is a semidirect product, there is a global section � W
H=H \ � ! G=� coming from the semidirect splitting of groups. However,
in general H=h.� / ¤ H=H \ � , and it is not clear that the former can have a
global section into G=� .

For example, suppose c W H=h.� / ! G=� is only locally defined, on a collec-
tion of simply connected neighborhoods covering H=h.� /. Then any loop p.t/
can only realize the identity element of the fundamental group � , and accordingly
for p�.t/ D c.p.t// in G=� .

Anyway, it is not clear what purpose the cross section c has, since the fact that the



curve p�.t/ in G=� is defined as c.p.t// does not seem to be of any relevance in
the following arguments.

Line 60, Line 61: It is not true in general that �.p�.t// realizes the fundamental
group element A.0/ of S=A.� /. However, it seems this can be remedied simply
by considering the double quotient � nG=H � A.� /nS instead. So, for the sake
of argument, let us assume that � W G=� ! S=A.� / restricted to the fibers
X.t/ is indeed the covering map for the action A.� / on S (and we stick with
Auslander’s notation of writing A.� / on the right).

Line 65: This seems to be the crucial mistake in the proof. It is not clear what
Auslander wants to say here. Since X.0/ � S and � is the fundamental group,
the action of A./ on S can of course be identified with a curve from p�.0/ to
A./:p�.0/, which is uniquely defined. Auslander states that a � -action on X.t/
is defined by

�.p�.t//�.p�.t//�1:

This presumably means that �.p�.t//�.p�.t//�1 refers to a loop at �.p�.0// in
S=A.� / obtained by traversing �.p�.�// backwards to �.p�.t//, then traversing
the loop corresponding to  at this point, and then traverse �.p�.�// again to get
back to �.p�.0//. If we choose t D 1, then this is a concatenation of three loops
at �.p�.0// that corresponds to the fundamental group element 0�1

0 .
X.0/

X.t/

p�.t/

p�.0/

�0

G=�

S=�

A.�/

�

�.p�.0//

�.p�.t//

p�.0/

A.�/

lift to
basepoint p�.0/

A.�0/
�1

A.�/

A.�0/

S

Auslander’s claims that the “uniqueness” of the lift of � to X.0/ � S means that
0

�1
0 must be  . It is not clear to me why this should be the case (or what he

even really means by this “uniqueness”), given that none of the above gives us a
reason to assume that the loop given by 0�1

0 lifts to the same curve in S as the
loop given by  .



Line 86: The group G2 in the proof of Theorem 1 is never used.

Line 92: Auslander’s reference [A1] is his own paper [6] from 1963 on radicals
of discrete subgroups of Lie groups. The result from this paper that is used here is
[5, Theorem 1], which requires � � to be a uniform subgroup. But this is not as-
sumed in the proof of Auslander’s Theorem 1. (Note that Auslander’s [5, Theorem
1] is also proved in a more general and clearer form by Wang [19, Appendix].)
However, this part of the proof does not contradict Margulis’s example, as the
properties of � � that allegedly follow from [A1] are satisfied if � is a free group
in two generators, since then r.� �/ and N \ � � are trivial.

Line 94: The reference [A15] is Selberg’s paper [15] (this paper is hard to find).
An elemantary proof was given by Alperin [3].
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