On the kernel function of a domain
and its behavior at the boundary

By STEFAN BERGMANN in Berlin (1933), Tomsk (1935)

Part I

§1

The Cartesian (rectangular) coordinates of a point P of the four-dimensional Eu-
clidean space 2R|T_7] are denoted by x, y1, X2, y» and we put

Zk = Xk + 1Yk, Zk = Xk — 1Yk (k: 1,2).

For a point P(xy, y1, X2, y2) we also write P(zy,z2,Z1,Z5). In the same manner
we replace the real components &1, 11, &>, 7, of a vector by the complex ones

1, G2, EI’EZ’ where & = & + iy, Ek = & —inx (k = 1, 2), and by a unit vector
(&1, &, 21 , 22) we mean one that satifies

(Gl =1, [&] =1

The angle 6 between two unit vectors a1, &, &1, &> and By, B2, 31 , Bz is given by

cos(6) = 3 (@B, +Tufs + 0B, + T,

For a real or complex function ¢ in the four real variables x1, y1, X2, y, we write
¢©(z1,22,21,22), or ¢(z,Z) for short. By

2 2
d d
dp = Z (—‘pdxk + Tidyk) = Z(Akdzk + Brdzy) (1.1)
k=1

DIn the following, we will use boldface upper case German letters for four-dimensional
manifolds, boldface lower case German letters for three-dimensional manifolds, ordinary up-
per case German letters for two-dimensional manifolds, and ordinary lower-case letters for one-
dimensional manifolds.

Regarding the notation used in the following, note that B[ f(z, z2) = Y] denotes the intersec-
tion of the domain B with the surface f(z1,z2) = y.
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we define the derivatives

and thus obtain?)
dp 1 [ dop . dp g 1 ([ de 4 g
— == — =—|—4+1i—.
aZk 2 8xk 8yk ’ 85]( 2 8xk 8yk

The function ¢ is called an analytic function of the two complex variables zy, z;
on a connected domain 8 if it is continously differentiable there and moreover

satisfies

¥ _o k=102 (12)
aZk

the Cauchy-Riemann differential equations. In this case we write

(P(Zlv 22721752) = (/)(Zl, ZZ)-

In the same way we call a continuously differentiable function on a connected
domain 8 analytic in Zy, zZ, if

W _o k=102
0Zx

and write accordingly

©(21,22,21,22) = ¢(Z1,Z2).

If ¢(z1, z») is an analytic function of zy, z,, then ¢(zy, z,) is an analytic function
of Z1,Z5, and we write

W(Zl, 22) - 5(31’22)-

Now let B be an open, simple domain of S of which we shall assume that it can
be mapped to a bounded domain by an analytic map. By Fs we denote the totality
of all regular analytic functions f(z1, z) on ®8 for which the integral

. f)m = [B £ (1 22)Pdo (1.3)

YRegarding this notation, cf. Wirtinger, Zur formalen Theorie der Funktionen von mehr
komplexen Verdnderlichen, Mathematische Annalen 97 (1927), p. 357, and Kneser, Die sin-
guldren Kanten bei analytischen Funktionen mehrerer Verdinderlichen, Mathematische Annalen
106 (1932), p. 656.



is finite, where dw = dx;dy;dx,dy, is the four-dimensional volume element. If
the distance between two functions f and g in Fy is defined by expression

d(f.g)=V(f—g f—8m» (1.4)

then Fy forms a metric linear space. As inner product ( f, g) of two functions f
and g in Fg we deﬁneff]

(o= [ 11 mECn 0. (15)
The function f, g are orthogonal if
(f.&)s =0. (1.6)
For every domain 8 there exists a complete orthonormal system@ If

01(z1,22),  @2(21,22), @3(z1,22), ...

denotes a complete, normalized orthonormal system, such that

I, uw=v
0, w#v "’

then every function of Fsg can be expaned into a series

(‘P,uv @) = Spw =

f(z1.22) =) cvpu(z1.22) (1.7)

v=1

where ¢, = (f, ¢y)s, and the series converges uniformly in the interior of %
The latters follows from the fact that the series

K (z1,22:71,72) = ) lpu(z1, 22) (1.8)

v=1

3 Compare also (T.3)) for this definition.

“The completeness of the system ¢, means that for every f in Fyg, the relation (f, f)s =
> o2 I(fs ¢v)m|? holds, compare Bergmann, Zwei Scitze iiber Funktionen von zwei komplexen
Verdiinderlichen, Mathematische Annalen 100 (1928), p. 399, as well as Bochner, Uber ortho-
gonale Systeme analytischer Funktionen, Mathematische Zeitschrift 14 (1922), p. 180. More
recently, Herr Hammerstein proved, using the theory of complex orthogonal functions, that for
a very general class of simply connected domains the orthonormal system is already complete.
For these domains, an effective computation of the kernel function is possible. His work ap-
pears in Sitzungsberichte Berlin der preulischen Akademie der Wissenschaften, mathematisch-
physikalische Klasse, 1933.

5)Bergmann, Uber unendliche Hermitesche Formen, die zu einem Bereiche gehoren, nebst An-
wendungen auf Fragen der Abbildung durch Funktionen von zwei komplexen Verdnderlichen.,
Mathematische Zeitschrift 29 (1929), p. 640.



converges to a finite value for every inner point zy, z, of B. Ky (z1, 22: 21, Z2), the
kernel function of the domain 8, depends on the choice of orthonormal system.
More generally we introduce the function K (z1, z2; 71, t5) via

Ke(z:7) = K(z1.22:71.72) = Y 9u(z1. 22) 00 (11, 1), (1.9)
v=1

where z1, z5 and 11, t, are taken from the domain . Then

Kes (21, 22:20,29)

M%(ZlaZZ;E(l),Eg) = (110)

K (z?,29:29,29)

is the minimal function of the domain B with respect to the point z{, z9, that is,
the function in Fyg that assumes the value 1 in z?,z2 and minimizes (f, f )%ﬂ
This minimum is then given by

(Mg, Mg)p =

1
, 1.11
K (z?,29:29,29 (11D

which leads to a new definition of the kernel function: The kernel function can
also be defined as the upper bound |h(z?, z9)|?, where h(zy, z2) runs through all
functions that satisfy

(h.h)s < 1.

This readily implies the following fundamental relation
K (2:7) > K+ (2:7), (1.12)

where
B* C B.

©The kernel function and the minimal function were introduced to the theory of functions in one
complex variable in Bergmann, Uber die Entwicklung der harmonischen Funktionen der Ebene
und des Raumes nach Orthogonalfunktionen, Mathematische Annalen 86 (1922), p. 237. They are
related to the circle map of the domain 8 in a simple manner: If % is simply connected and a
an inner point of B, then the circle map w(z) normalized in the point a (dw(z) |z=¢ = 1) of B is

dz
w(z) = [ az Mg (z; a)dz, whereas K (a;a) = where Psg(a) denotes the mapping radius
of B with respect to a.

For multiply connected domains one obtains different kernel and minimal functions, depending
on whether one chooses Fsg to be the class of one-valued analytic functions f(z), or whether one
further restricts the class by requiring that the integrals | az f(z)dz of the functions in the class
should be one-valued as well. Compare the work of Zarankiewicz, Uber ein numerisches Ver-
fahren zur konformen Abbildung einfach zusammenhdngender Gebiete, Zeitschrift fiir angewandte
Mathematik und Mechanik 14 (1934), p. 97.
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Another property of the kernel function follows from the last definition. Consider

the intersection B(z, = y)m Then the kernel function assumes its maximum on
the boundary of B(z, = y). Namely, for every inner point z{ of B(z, = y) there
is a function f(zy, y) such that

£ 91 > Ke(2).y:2].7) —e.  &>0. (1.13)

This function f(zy,y) is a function in one complex variable z;. Its absolute value
on the boundary thus assumes a value

& y)IP =119 = Ke(2),v:29.7),

which implies the claim.

An analytic transformation of the domain is realized by

7 = gk(z1.22) (k=1,2) (1.14)

where the gj are regular analytic in 8 and the transformation (1.14)) maps the
domain B bijectively to a simple domain B*. The map (T.14) has an inverse

zk = hi(z],z5) (k=1,2)

where the /iy, are regular analytic functions in 8", The functional determinants

3(217 ) * % 3(21,22)
ez DT E) T gy

are different from 0 and oo on B and B*, as D(z1,22)E(z},z3) = 1. If (1.14)
maps the domain % C B to the domain A* C B, then

/da)=/ |E(z}, z3) Pdo™,
A €A*

where do* = dx}dy{dx;dy; is the volume element of B*. Hence

D(zy,22) =

(f.8)s = (f(h1,h)E,g(hy,h2) E)sg*.

Via the map

f(z1.22) = f7(2].25) = f(h1. h2) E(21. 23)

9B (z, = y) denotes the intersection of the domain B with the plane z, = y.




the class Fs of functions is mapped to Feg+, and the inner product is preserved un-
der this map. In particular, the complete orthonormal system ¢,,(z1, z5) is mapped
to the complete orthonormal system for the domain B*

@, (21, x3) = (21, 22) E(z7, 23),

and the expansion (1.7) becomes

o0
x5 =) epl (), 23).

v=1

This further implies that for the kernel function of 8%,

00
Ke-(z1.23:21.23) = ) lor (21, 23)
v=1

(1.15)
— K%(hl(zik, Z;)a hZ(Zikv Z;), hl(zik’ Z;)v hZ(Zikv Z;)) : |E(Zikv Z;)|2'
The kernel function is thus a relative invariant for analytic maps.
If we set
_ 0°T
T =1In(Ks(z1,22:21,72)) and Tz, = —
0Zx0Z
then the Hermitian differential form
2
ds?> = Y To,z,dzedz,, (1.16)

k.m=1

is positive definite and invariant under analytic transformations z; = gx(z1, z2)
(k = 1,2). Considering that by (1.2)) and (1.15])

0? In(K (27, 233 21, Z3))

3z} oz,
P In(Kg (11, hai by ho)) 02 In(E(zF,z2))  2In(E(ZF.Z3))
= * =k + * 05k + * 0%
0z, 0z, 0z; 0z, 0z;0z,,
_ 02 In(Ks (hy, ha: by, ha))
B 0z} 0Z,,

(with by = hi(zF, z3)), this is easy to see by a formal computation. Thus ds? we
have an arc element that yields a metric that is invariant under analytic transfor-
TZ[E] Tzzfl

mations. That the determinant N =
TZ 122 Tzzfz

does not vanish at any inner
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point z; =z, z, = z9 of B can be seen as follows: If we put

o 82 ln(K%(Zl,Zz;El,Ez)) . 1 K 82K§3 aKgg 8K;B
FEm 021, 0Z T K, \®0z07, 0z 07, )

T

then we can write

Ko Koo K oK K
B B
N = ﬁzl Kzlfl KZ2§1 (Where sz = E, szfm = aZkaE ) .

Zo Kzlfz Kzzfz
Since Kgg = Z:fo:l vv(z1,22)9,(Z1,22), it further follows (by the generalized
Schwarz relation) that

o o0 XX

N = 6% Z Z Z |DKMU(ZI’ZZ)|27
B

k=1 pu=1v=1

where
021, 22) Bwkz()?],zz) Bwkz()?z,zz)
Dater 2 = putey ) ) omllo
nroz) e mlio

In the last expression for N, all summands are positive. Thus it remains to show
that there is one among them that does not vanish. But we can always find an
orthonormal system whose first three functions ¢;, @2, ¢3 can be expanded as fol-

lows on a neighborhood of a point z}, z9:

(pl(zl,zz):ao—l—al(zl—Z?)+oz2(zz—zg)+... ayg # 0
01(z1,22) = B1(z1 — 20 + Balza — 29) + ... B1 #0
01(z1,22) = ya(za — 29 + ... Y2 #0

Then
Dxuv(Z?,Zg) = aofiy2 # 0.

The invariant metric allows us to easily find new invariants. In our unitary geo-
metry there is an important invariant, namely

K (z1,22:71.7 K (z1.22:Z1.22)*

Io(, 270, 5) = 2L 2270 70) _ Kol 2271, 72) (1.17)
TZ]Z] TZQE] KZB K21 KZZ
Tzlfz Tzzfz KE] Kzﬁl Kzﬁz

Kfz KZ 122 Kzzfz



which we investigate in the following.

Let it be remarked that the Hermitian differential form (1.16)) does not lead to
the most general case of unitary geometry. For (in Schouten’s notationﬂ the
following relations hold:

- —n —n 321%(21»2251,32)
Sy =0, =Y R == R =— + Tz
n n

mnp mpn aEmaZp ZmZp

(1.18)
(and similarly for the conjugate quantities).

Instead of (1.16) we can use any differential form conformal to it (arising from it
by multiplication of (I.16) by an invariant).

The kernel function Kss(z,Z) of a domain B is a infinitely differentiable function
on the interior of %B; in the following we will study the behavior of this function
for a point zy, z, approaching a boundary point Q. In general, the kernel function
then becomes infinite. In the following paragraph we will make the mode of
approaching the boundary more precise and define the order of becoming infinite.

Let B(z,Z) be a non-negative function on 8. By the class of generalized square-
integrable functions with weigh B(z,Z) we mean those regular analytic func-
tions f(z1, z2) on B for which the integral (I.3) is finite, where now the measure
dw denotes the four-dimensional (possibly non-Euclidean) volume element multi-
plied by the weight B(z,z). (For example, we can choose B(z,z) = Kg(z,2)™",
n>0,or B(z,7) = e K=

8Compare Schouten’s Uber unitire Geometrie, Proceedings of the Koninklijke Nederlandse
Akademie van Wetenschappen 32 (1929), p. 457, and Schouten and Danzig, Uber unitiire Geome-
trie, Mathematische Annalen 103 (1930), p. 319.

If the line element is given by Zm,n gmndz,dz,,, then the associated linear connection is char-
acterized by the vanishing of the covariant differential of gz;,. Then

7 8g7m .
Ty = 28" 50 iy =Ty = Ty

-
and for the components of the curvature tensor

k
3 ary,

afm yeen

RyX = —Ry;%

mnp — nmp =

DTranslator’s note: This is “Belegungsfunktion” in the German original.



§2

Given the boundary point Q of 8 at which we will study the behavior of the
kernel function, we will assume that in a sufficiently small neighborhood of Q the

inner points of B are given by
¢(Zl, Z2, Ela 22) > Oa
whereas the boundary of 8 is formed by the hypersurface

@(21,22,71,52) = 0

2.1)

(2.2)

Here, @ denotes a continously differentiable function in a neighborhood of the
boundary point Q that we choose as coordinate origin. Now, if not all derivatives

Lo Lo
—_— — (k=1,2
8Zk’ 0Zk ( 2)

vanish at Q, then the tangent hyperplane exists at Q (0, 0),
a1z + a1z +azzy + azz, =0,

_ 0P 0P
ap = (a) 2120 y ar = (a) 21=0 (k = 1,2)

z2=0 z2=0

where

The normal directions at Q are

% =2 k=12,

O[k = —, =
|a| |a|

If we now determine a real © such that
ta; = e’ cos(f), ta, = e”?sin(H),
and apply the orthogonal transformation

z¥ = e cos(0)z; + €2 sin(0)z,

i i s — 5 — — 8 ,
z3 =% sin(0)z;, + €% cos(0)z, Y1 =01 =7y2—02

the the tangent hyperplane (2.3)) is written in the new coordinates
zy +z] =0.

9

(2.3)

(2.4)

(2.5)



We choose the sign such that the inner normal corresponds to
x; > 0. (2.6)

The coordinatex z] and z5 are called normal for the point Q. If we reintroduce
the variables x, y; for normal coordinateﬂ Z1,Z1, then by solving for x; we can
express the boundary hypersurface in the neighborhood of Q by

2x1 = ¥ (¥1,22. 22), 2.7)

(B =0 ()= (),
nuz 2/ 0 2/

where

The interior points in the neighborhood of Q are then given by the inequality

2x1 > Y (y1,22,22). (2.8)

When investigating the behavior of the kernel function at the boundary point
0(0,0), we will distinguish between different modes of approaching the bound-
ary:

1. Approach A!: By this we mean the convergence
z1—>0, z,—>0, (2.9)

such that the point P(zy, z») in 8 remains within a cone 2, that consists of all
rays passing through Q and have an angle less than « with the inner normal. If
we use normal coordinates at Q, the the cone £2, is given by the inequalities

X1 > 0,
o izl + |z - 1 (2.10)
Xy X1 cos(a)

2. Approach A'(a): Let zy, z, denote the normal coordinates. In addition to (2.9),
we require

arc(zy) —> o, J|o| < g (2.11)

to hold.

1OWe omit the * from now on.
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3. Approach A" (@): It further restricts A'(«). Instead of (2.11)) we require

T
arc(z;) = const. = o, || < 7 (2.12)

4. Approach A (a,,a»): Let Py(ay,a) be an inner point of ¥, and assume the
segment Q P, is contained in the interior of B8 with the exception of the point Q.
Then A (a,, a,) means the approach along the segment Q Py, that is, along the
straight line of points P(tay,ta,), where t — 0.

For the approach Al we let XI(Q; B) (or XI(Q) or XI for short) denote the upper
order and A'(Q;8) (or A'(Q) or A") the lower order of the kernel function be-
coming infinite at Q (0, 0), which mean the lower and upper bound, respectively,
of those numbers r and s for which

0rKss(z,2) <M < o0 (2.13)

and
0'Ksp(z,2) >m >0 (2.14)

holds, if z;, z, converge to Q(0, 0) in the sense of Al and o, denotes the projection
of o = /|z1|? + |2z2|? to the inner normal.

Ifr > XI and s < A, then clearly s < r and hence generally

IfA = T = AL then we simply speak of the order !

We say that the order A! is attainable from above or below, respectively, if
oM Kp(z.Z2) <M <oco or o¥Kg(z.Z) >m >0, (2.15)

respectively. The relations (2.15]) for the attainability of the order can be written
as

—IA! — I
L (Q)=1limpo} Kx(z,z) = L < o0,
L™ (Q) = limo} Ke(z,7) = L > 0.

We call L and L the upper and lower limit at the point Q, respectively. We speak
of a limit of order A" if L = L = L, that is, if

LY(Q) =limo* Kg(z,7) = L (2.16)

11



exists and is different from zero. If z;, z, are normal coordinates at the point Q,

then _
Z1+ z1

2
In the case of approaches of type A'(a) and A'(«), in the definition of the limit

(2.17)

Qn e -xl e
values we replace g, by the distance g, to the analytic plane that lies in the tangent
hyperplane. If we use normal coordinates again, then we obtain

0= |zi1l. (2.18)

— —m _ . o
The orders A , A", A"and A, A™, A" and in particular their limit values now
depend on the angle «, and in particular we use the notation

LE(0.a) = limo} K(z.7). arc(z1) — o

(we use the respective abbreviations for upper or lower limits or in the case of the
approach All()).

In the relations corresponding to (2.13) and (2.14) M and m are functions of «
that for any fixed a whose absolute value is less than 7 are finite and positive,
respectively.

In the case of an approach A (a1, a,), 0, and g, are replaced by the distance o of
the point P(z1, z,) lying on the line Q Py (Py = Py(ay, ay)) to the point Q:

0 = /Iz1lfza|?> = tV/|a1]? + laz/?,
and we introduce the abbreviation
v . v
Ly* (Q:ay,az) = tlgf(l) ((f\/ |a1)? + |aa|?)? K%(tal,taz;tal,ta2)> -

In the definition of the order, M and m are now functions of P, that are finite
and positive, respectively, for every P, for which the line segment Py Q (with the
exception of finitely many points) lies in the interior of 8.

§3
THE REPLACEMENT DOMAIN. Let
Z; =gik(z1,22) (k=1,2) (3.1

12



be an analytic map of the domain 8 with the following properties:

(1) In a certain neighborhood U of the boundary point Q(0,0), the functions
gk (z1,22) (k = 1,2) are still defined on the boundary of % by their limits, and
are continuously differentiable on the intersection of U and 8 augmented by the
accumulation points.

(2) For the functional determinant of the map we have

(g1,
lim D(z.zy) = lim O81:82) _
21,220 z1,22—>0 3(21,22)

(3.2)

A domain B™ that is obtained from % by such a transformation is called a re-
placement domain of %8 for the boundary point Q (0, 0). Near the image point Q*
of Q the domain 8™ behaves in the same way as we assumed it for the point Q.
In the following we will assume that Q and Q* coincide.

Assume that the coordinates zy, z, for ¥8 and z7, z5 for B* are normal. Then the
transformation (3.1)) can be written in a neighborhood of Q(0, 0) as

2y =121 + g12(21,22),  zy; = azy +vip + gaa(z1,22), T >0, (3.3)
where
1 , )
v = =, lim g12(21, 22) —0 822(21,22) —0. (34)

, lim
T z1,22—>0 /lZl|2+|ZZ|2 Z1,22—>0 /|ZI|2+|22|2
We call t the measure factor of the transformation.
If B™ is the replacement domain of %8 for the point Q, then with regard to the
approaches A! or A'(«), the following holds for %B:

(a) The upper and lower orders in Q for B* coincide with those for B, so that
the existence of a certain order in Q holds simultaneously for % and B*.

(b) If a certain order exists, then it is attainable simultaneously for 8 and %B*
from above or below, respectively.

(¢) In case of attainability, the limits Leg+(Q) and L+ (Q) satisty the follow-
ing relations,

Ly+(Q) = t"Ly(Q), Lg+(Q) = t*Ly(0).

so that Q is a simultaneous limit for %8 and %™ of the same order, and then
it holds for the limit that

Ly+(Q) = t*Ln(0Q). (3.5)

13



All these claims follow immediately from the transformation formula (I.13) for

the kernel function,

Kw(z1,22:21,22)
% *, —% —k 9 425 1,42
K= (z7.25:21.23) = 2 )
9(g1.82)
9(z1,22)
as well as the limit equations
* *
. 0 . o
lim =2 =rt, lim -t =,
z1,22—>0 On z1,22—>0 Ot

and (3:2), if in addition we prove that the approaches A!, Al(«) in % are trans-
formed via (3.3)) into the approaches of the same type in 8™, and vice versa.

For this proof we assume normal coordinates to be given for both domains 8 and
B*, and then we can write the transformations in the form (3.3). First, consider

the case of the approach Al. From (3.3) it follows that
2x] = 2tx1 + g12(21, 22) + 81,(Z1.22),
and thus, by (3.4) and

X - g12(21,22) + 812(Z1.22) V|z11* + |22|?

X1 V0zi? + |22]? 2x1

we have . .
. X . 0

lim L =7 =1Ilim=2

z1,22—>0 X1 On

if the approach happens within a cone

2 2
Viz1]* + |z M

X1 -

In the same way one proves (3.7) using the inversion formulas
Z1 = ;Zl + 12(21722)’ Z2 = ;21 + ;Zz + 22(21,22)7

if instead of (3.8) the approach is in a cone

*|2 *12
\/|Zl| + |z3] <N

*
X1

14
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in B*. On the other hand,

* 2 2
‘Z_l <34 g12(21,22)  Iz1]* + |22
X1 Xl Vlzi? + |z2f? X1
‘ﬁ‘ L Lz 822(21,22)  I|z1]* + |22)?
Xl [ Tt Vi0zil? + |z2]? X1

< Vizi? + |z2)? \/|oz|2 n iz n |822(21, 22)| ,
*1 v VlzlP 4 |z2f?

which implies

V0zil2 + |z2)? - \/|le2 + |22]?

X1 X1

const., 3.11)

and because of

VIZTP + 12372 Iz + P x
X7 B X1 x_ik
it follows, taking into account (3.7), that condition (3.10) is satisfied whenever
(3.9) is.
In the same manner, by using the inversion formula (3.9), it follows that condi-
tion (3.10) implies condition (3.8)), which proves the claimed equivalence of the
admissibility conditions at the points Q and Q*.

The invariance of the approach A"'(«) follows immediately from

lim 2L = lim 21 (= tan(a)), (3.12)

*
27 =0 Z; z1—>0 X1

as soon as either of the limits exists.

If we assume the existence and continuity of the second derivative of (2.7), then

the equation of the boundary surface can be expressed in normal coordiantes in a
neighborhood of Q(0, 0):

2x1 = ay? + 2y (bzy — bZ,) + cz2 + Tz + 0|z2)? + ¥ (V1. 22.Z2),  (3.13)
where _

> — = 0, o, 0 real.
1,220 yi + |Z5]

We sharpen the definition of a replacement domain by requiring that the functions
g1 and g, in the transformation (3.I) have continuous second derivatives in a

15



neighborhood of Q in the closure of B. Assuming the coordinates in 8 and its
replacement domain B* to be normal, the transformation (3.1)) can be written as

* 2 2
z1 =1z1 + c11zy + ci2z5 + 2bi1z122 + g13(21, 22),

« ) ) (3.14)
Zy =0z1 + vz + 2127 + 2225 + 2brz122 + 823(21, 22),
where
r>0. vl _ 1 g13(21, 22) _0 g23(z1,22)
’ T 212220 |z1 |2 + |25]? T z21.z>0 |92 + |22

Via the transformation the domain B is mapped to B™ and the coefficients
{a,b,c} are mapped to those {a*,b*, c*} of B*. As we shall see soon, by a
suitable choice of coordinates of the transformation (3.14) we can achieve that
a*,b*, c* vanish, whereas ¢ has an invariant meaning, namely, it transforms ac-
cording to

o* =10, (3.15)

or in the case of a general transformation,

[ (g1, g2)
U0 p = (28182 . 3.16
“=ibp P (a<zl,z2>) 0 .10

zZ1=
z2=0

If b» = ¢ = 0 at the point Q for the domain B, then B is called canonical at
0(0,0), and a replacement domain 8™ of 8 for Q that is canonical at Q is called

a canonical replacement domain for the point Q. For the boundary hypersurface
we have the expansion

2x1 :ay12+o|22|2+... (3.17)

Such a canonical replacement domain can be obtained, for example, by applying
a transformation

z¥ =21 —2bzyzy — 23, zi = 2, (3.18)
whose inversion is
7y =z} +2bzzy v ez 4 ..., oz =z). (3.19)
For if we consider that
2iy1(bzy—bZ5) = (21—21)(bz2—bZ,) = 2bz125+2bZ1Z,—(21+Z1)(bz2+DbZ5),
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then it follows for the transformed domain that
(Zl + E])(l + b22 +522) = aylz + U|22|2 + ...

(where we omitted the stars), and hence the expansion (3.17) follows. By (3.15)),
the sign of o is invariant under the considered transformations since ¢ > 0. It is
identical to minus the Levi expression

0 20 20

3221 3222

_ __|90® - P 0-P
L(¢) - 0Z1 325831 32%3?1 *

P - P 0~ P

0z, 0210z2 0z20z2

For if we write the equation of the boundary surface (compare (2.7)) as

_ Z1—Z1 _
¢=Zl+21—1ﬁ( - ,22722)=0,
21
then

0 = —[L(P)]z1=0

z2=0
and the sign of o is invariant under any analytic transformation. Its meaning is
elucidated by the following: Consider any canonical replacement domain for 8
(or only such for which a = 0), then for the plane z; = 0, the following holds:

(1) For o0 > 0, in a certain neigborhood of z, = 0 and the plane z; = 0:

2x1 — Y (y1,22,22) = —0|z2* —... <0,
that is, in a certain neighborhood of the origin, the analytic plane z; = 0 lies
outside the canonical replacement domain.

We will study the case o > 0, which in a way is the regular case, in §5 and
determine o from the kernel function for very general cases.

(2) 0 < 0. Then
2x1 — Y (¥1,22,Z2) = 2x; —ay; —o|z)> —... > 0,

and thus a certain neigborhood of the point z, = 0 of the analytic plane z; = 0
lies in the interior of the canonical replacement domain.

Here we can easily show that the kernel function remains bounded under the ap-
proaches Al and A" («) to the point Q. We may assume thata < 0 in the expansion
(3.1°7)), for otherwise we can use the transformation

I1=—", Zh=12; (3.20)



to pass to a replacement domain for which this holds, and since the approaches
A! and A"(«) behave invariantly under this transformation. If @ < 0, then the
domain given by

Ix1] >0, |z1| <61, |z2| <62 (3.21)

for sufficiently small 8y, 6, satisfies
2x1 = 022> — ¥ (1. 22.72) = 0.
The points
zZ] = O, |Zz| = 52
are all contained in the interior of 8 by the above, that is, they have a positive
distance k to the boundary of 8. So, if we consider the points

|z1] < 5/1, |z2| = 62

(where §7 = min(5, §;)), then these points have a distance to the boundary of
8 that is greater than 7. At the points whose coordinates satisfy the inequalities
(3.21), the following estimate holds for the kernel function

32

24

Ks(z1,22:21,22) < (3.22)

(compare equation (14) on p. 651 in the work cited in footnote [5)|on p.[3). On the
other hand, by the maximum property of the kernel function (compare p. [3)), the
inequality (3.22)) also holds for poiints z,| < §; (that also belong to ®8). Therefore,
on the whole domain we have

X1 > 0, |le < 8/1, |22| < 52, (323)

which proves the claim.

(3) In the case 0 = 0 we cannot make such a positive statement on the position
of the analytic plane z; = 0. We will consider two special cases for o = 0 in §§6
and 8.

INNER AND OUTER COMPARISON DOMAIN. Domains 8 and % are called in-
ner and outer comparison domains of the domain B8 for the boundary point Q,
respectively, if there exists a replacement domain B of B such that

BCB*, BOB (3.24)
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and B and B contain the point Q* (image of Q) and have the same tangent
hyperplane at this point as B*.

Now, if % is an inner comparison domain of ¥ and 8" is the corresponding
replacement domain, then by (1.12)), the points of B satisfy

0 K (2:7) = o K+ (2; 7). (3.25)

So if A(Q; %B) is the upper order for any innter comparison domain, then the order

is A(Q:B") < A(Q: D), and, since A(Q;B) = A(Q: B"),

A(Q:%8) = A2(0:B). (3.26)
In the same way it follows for the outer comparison domain that

A(Q:%B) < A(Q:B). (3.27)

Therefore, if it is possible to choose the outer and inner comparison domains for
the point Q such that

AQ:B) = A(¢:3B),
then from A(Q;B) < A(0:B) < A(0:B) < A(0Q;B) follows the existence of

the order

AMQ:B) = A(Q;B) = 1(0; B). (3.28)

In the case of existence of a certain order A(Q; %) for becoming infinity of the
kernel function in neighborhood of Q it follows from (3.25)), (3.24)) (compare also

p. | for the limits L%(Q), ZM(Q)
Ly(Q) > L. (0) = 1} LE(0Q) (3.29)

and
Lg(0) < Lg;(Q) = 5 Lj(Q) (3.30)

If it is possible to construct the inner and outer comparison domains for the point
Q such that the measure factors of the two transformations coincide, that is, such
that

T =17, =T, 3.31)

'DNow let B], B be two replacment domains of B that do not necessarily coincide.
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and such that

LE(Q) = Lg(Q). (3.32)
then (3.29) and (3.30) imply that
T LE(0) = LA(Q) = LE(0) (3.33)

exists, that is, the point Q is a limit point of order A.

For the approaches A'(a) and A™(«) we can draw the analogous conclusions in
a similar manner.

§ 4

For the unit bicylinder €,
lz1] <1, |zp| <1 4.1)

the functions

1
—(my + )(my + D22 (mp =0,1,2,...: k=1,2)
T

form a complete orthonormal system. We obtain for the kernel function:

N
Ke(z1,22:21,22) = — Z (my + 1) (my + 1)]z; [P |25
T

my,m>

& =
=D (m+ DIz Y m+ D]z 4.2)

1 1 1 1
T (1= |z21?)? (1 = [22[?)?

= Keg, (21;21)Ke, (22; 22).

We consider the boundary point Q(—1, y),
z1=—1, zZz=vy (ly|<]. (4.3)

If we set

nn=z7—1, z3=1z, (4.4)
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then after applying the transformation (4.4) we obtain (omitting the primes)

1 1
K@,(Zlil) = — — Na 4.5)
w((z1 +Z1) — |z1]?)
and in the new coordinates, B
_ Z1 -+ Z1 (4 6)
On > . .
Therefore,
—\2
z1+ 21 ) _ 1 1
K®1(Zl;zl) = T LR 4.7)
( 2 47 (1 — %)2
and since

E ‘((21 +Z1) + (21 — 71))? _a+to 2(z1 —71) | (21 —71)?
Z1+ 21 4(z1 + Z1) 4 zZ1 + 24 (z1 +21)?

1+ M\? N
< 5 (z1 +21),

where we assume

Z1 — 71
—| <M,
Z1+ Z1
it follows that 5
: 1+ 21 =1
lelg()( 2 ) Ke\(z1:21) = 47’ (48)
and hence under approach?] Al
L20)= lim  oKe(1.72i71.%2) = 1 4.9)
€ z1—>0,z—y n e ’ 42 (1 — |)/|2)2. '

If P(y) denotes the mapping radiuﬂ of € with respect to y,

1
Py)=1-|y]?) = ————.
ViKe, (v;7)
then 1
12 _ : 2 55 —
Le@) = lim oKe(z,2:70%) = p o505 (410)

12Here, the conditions for the approach can be sharpened.
3For this definition, compare Bieberbach, Lehrbuch der Funktionentheorie, volume II, Springer
Verlag (Berlin 1927), p. 322.
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The equation (4.10) remains valid if instead of the bicylinder we consider any
product domain 3,

m = ?Il X 912,
where 2[; and U, are simply connected domains in the z;- and z,-plane, respec-
tively, that are bounded by closed rectifiable Jordan curves. If

§1=g1(z1), G2 = g2(22)

maps P to the unit bicylinder |{;| < 1, |{,| < 1, the by (I.13) the kernel function
of P is

g7 (z1)]? |85(22) |2
(1 —[g1(z1)]?)? n(1 — [g2(22)]?)? (4.11)
= Ka, (z1:Z1)Kar, (225 22).

KSB(ZlaZZ;EIaEZ) =

Now let Q(y1,y2) be a boundary point of B, such that y; lies on the boundary
of 2, and y, lies in the interior of A,. For the assumption on the existence of
the tangent hyperplane to be satisfied, we assume: if the boundary of ; (pa-
rameterized by arclength s) is represented in the form z; = w(s), then in some
neighborhood of y; the derivative w’(s) exists. Moreover, on this neighborhood
w’(s) shall satisfy the Holder condition |w'(s + h) — w'(s)| < k|h|* for some
0 < o <1, k < co. By a theorem on conformal mappings on the boundarym
g1(z1) has a continuous derivative in y;. But now

Ka, (z1:Z1) = Ke, (G1: ) Igi (@)%
and hence, of g, denotes the distance in &1,
. _ . = . = 1
lelgogrleﬂl(Zl;Zl) = ;111210 K(§1(§1;§1)Qr21|g/1(21)|2 = L_l]linoar?K(ﬁz(é‘l;é‘l) = .
that is,

: _ 1 _
L%Z(Q(O» y) = lim QrleSB(ZleZ;Zl’ZZ) = EK%(Zzﬂz)

z1—=>0,z0—>y
1 1
4n? P%[z (V)z ’

(4.12)

14)Compare Lichtenstein, Enzyklopiddie der mathematischen Wissenschaften, and Warschawski,
Uber einen Satz von O.D. Kellog, Nachricthen von der Gesellschaft der Wissenschaften zu Got-
tingen, mathematisch-physikalische Klasse, 1932, p. 73, where the most recent literature on this
subject is listed.
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where we set y; = 0, y» = y.

For the bicylinder we can use the approach A(«). From

|z, : 1 1
= limm = = R
220 (21 +Z1) — [2117)? 220 (B2EL —|z7|)> 4cos(a)?
assuming
lim arc(z;) — «, (4.13)
Z]—)O
it follows that
1
12 1 2 = =
L& (Q(0,y)) = 2(111%10 oKe(z1, 2271, 50) = 5 s (19
arc(z1)—o
2=

So the limit depends on the angle «. The computation of the last limit is also valid
in the situation where instead of a bicylinder we consider a product domain 8 and
the boundary of %, at z; = 0 satisfies the above conditions. The formula changes
slightly if the point z; = 0 is a cusp in which tangents meet at an angle w
Here, |a| < 7 is to be assumed. For if {; = g1(z) and {, = g»(z») are functions
that map the domain ¥ to the unit bicylinder, where the point z; = 0, z, = 0 is
mapped to itself, then

21K (21, 22521, Z2) = 211K, (613 £1)1€7 (20) PKar, (225 72). (4.15)
But now
EAREACHIS
18112
By a theorem on conformal mappings on the boundary,
o 12Plgi Gl (n)z
im ————=(—) .
a—o0 |62 &

On the other hand, due to quasi—conformality@ the points on the bisector are
mapped to the radius and the angle « is mapped to the angle **. Hence

lim |61 PKe, (¢1:2) =

leiglo|21|2|g/1(21)|2K®1(§1;21) = élligl() Ke, (15 ¢y).

47 cos(7r)?

19We assume that the cusp is formed by two continuous curve segments. Compare Lichten-
stein, Uber die konforme Abbildung ebener analytischer Gebiete mit Ecken, Journal fiir die reine
und angewandte Mathematik 140 (1911), p. 100, and Warschawski, Uber das Randverhalten der
Ableitung der Abbildungsfunktion bei konformer Abbildung, Mathematische Zeitschrift 35 (1932),
p- 321, where notes on the current literature can be found.

16)Compare Carathéodory, Elementarer Bewelis fiir den Fundamentalsatz der konformen Abbil-
dungen, Abhandlungen zum Doktorjubilium von H.A. Schwarz (Berlin 1914), p. 20, in particular
§18-§20.
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and therefore .

4w? cos(7)*Pa, (v)*

L (Q.a) = (4.16)
Now consider the hypersphere &,
211> + 22> < 1.

For the hypersphere &, the functions

2 ni'n,!

4.17)

ny_n2 2 __
CrninaZ1' 230 |Chymal™ =

form a complete orthonormal syste so that the kernel is

o0

Z |Cnl,nz|2|21|2nl|ZZ|2n2 - ; Z niln,! |Zl|2nl|22|2n2
1:12:

ni,nn ni,n2 (419)
2

2(1 — (|z11% + |2212))*

If we now apply the transformation

Z1

/ /

Z. = —, ZA =
1 o 2

b

Z3
o

then we obtain the kernel function for the hypersphere &g, |21|* + |z2]* < —5:

20*
Kg, (z1,22:21,72) =
o \“1s42541> TE21_0—222_|_223
( (I 12| |221%)) 4.20)
1202(55 — (212 + |221%))*
D The constants Cy, ., are derived from
Gl [ 121 122200 = 1. @18)
K

We set z; = r1e%l, z, = rpe2, Then dw = riradeide,dridr,, so that

2

! 2n1+1 =i 2ny+1 |C | ! 2n1+1 +
v 27 ni,n
|Cn|,n2|24752/ ry! drl/ ry 2 dr, = —Lz / ri (l—rlz)"2 Ydr,
0 0 ny + 1 0

2 2 1
— B |Cn1,n2| / unl (1 _ u)n2+1du
ny +1 0
In,!
2 2 ni:np!
| nlsﬂz| (”11 + 1, +2)!
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Now consider the boundary point z; = —g z, = 0, and change the coordinate

system such that via

1
Z1=z1+ - Zh =1z (4.21)

this boundary point becomes the origin. Now,

1 1

2 zZ1— — El——‘ :(72|Zl|2_0|21 +El| + 1.
o o

o

The kernel function of & is

20
712((z1 +z1) — 0|21 — 0]22]?)3

Kg,(21,22:21,22) = (4.22)

The equation for the boundary hypersurface of &, after the transformation (4.21)
is

—(z1+Z)+ 0z +0|zP =0 or (21 +7Z1) = 0|z |* + 0|22 (4.23)

The normal points to the interior, and the expansion (4.23)) has the canonical form
with o > 0. By (@.22),

. _ o
Lg,(Q) = _lim olKg,(z1,2:71,%2) = . (4.24)

As we will see, this result holds under some general conditions for a large class of
domains if o > 0.

It suggests itself to establish analogous relations to the limit relations (4.10), (4.24)
for the minimal function (I.10) and for the invariant (I.17).

For the case of the bicylinder €, |z; — 1| < 1, |z3| < 1, and the hypersphere
Ko, |% —z12 + |z, < 0—12 we obtain the following expressions for the minimal
function:

(ti +11 = [0 )?(1 = [6*)?
(z1 + 11 — z111)2(1 — 225)?

M(E(Zl,Zz;fljz) =

_ (4.25)
- (h +11 —o|n]? —o|n?)?
Mg, (z1,z2:t1,12) = = = — 3>
(21 +11—0z114 —0’221‘2)
from which we obtain the limit formulas
z [T t +11)%(1 = |12]?)?
lim n?"??Mg (—1,22; —l,tz) = U +2 MGl ) (4.26)
n—00 np n 21(1 _22[2)2
7y Zp [1 I t1 +11)°
lim n33?Mg, (=, 21, 2 ) = (1+3 ) (4.27)
n—00 n? n? n n z3



with 0 < p < 1. Similarly we obtain

1
le(z1,22;21,22) = o and Ig, (21,22:Z1,22) = 92’ (4.28)
from which

1
li I ,Z22,21,22) = —— 4.29
, Jim ®(21,22:21,22) = (4.29)

. _ 2
Z],l;?LO Iﬁg(21322921,22) - ﬁ’ (430)

follow.

As will be shown in the following, the minimal function Mg and the invariant
I 5 of the boundary points considered in §5 and §6 satisfy relations analogous to

@.27), (@.30), and (@.26), (#.29), respectively.

§5

THE CASE 0 > 0. POINTS OF THIRD ORDER. For the investigation of points on
the boundary with o > 0 we assume the approach Al and first prove

Theorem L. Ifo > 0 at a the point Q(0, 0) of B, then under the approach A',

o

15 3 « =~ r—= <
Zl};ggognKas(zl,ZZ,zl,m) =2 (5.1)
PROOF: Let & denote the hypersphere
2
5 1
z1——| + |Zz| < —, 01 > 0. (52)
01 04

We claim that the domain &, g, , obtained from &; by the transformation
Z2

= Tﬂlzi (O(l > 0,/31 > 0), (5.3)

f=—=2— g
is a comparison domain of % for sufficiently large o, B;. Let 8™ be a canonical
replacment domain of B, for which the boundary hypersurface is

2x; = ayi +o|z* +.... (5.4)

in a neighborhood of Q. We will now show that the domain &, g, is contained in
B* for sufficiently large 8" (and has the same tangent hyperplane as 8" and B

at Q).

26



If we apply the transformation
1= ———, =1, (5.5)
to &1, then the transformed domain &, has the representation
2x1 = (07 + 2a1)yf + G|Zz|2 + ... (5.6)
By choosing «; large enough such that
o1 + 2a1 > a,
in a sufficiently small neighborhood U, of Q it holds that
2x1 — (07 + 2a1)yf — (71|22|2 + ... <2x; —ayf — 02|22|2 + ..., 5.7

that is, in Uy, every point of &,, also belongs to B*. For the intersections
Kq,(z1 = y) and B*(z; = y) of the domains &,, and B* with the plane z; = y
it thus holds that

Koy (21 =y) CB (21 =y) (5.8)

if y 1s sufficiently small, say
Iyl < li(en). (5.9)

Consider now the intersection &, (z2 = 0), that is, the circle

1
o1 + 20,

1
T o1+ 201

(5.10)

21

Because of the inequality (5.7), this is contained in the intersection B*(z, = 0)
for sufficiently small z;. (If oy is chosen sufficiently large, then the circle
moves into an arbitrarily small neighborhood of z; = 0, and we can thus arrange
that it is completely contained in 8*(z, = 0).) Once «; has been fixed according
to the preceding conditions, consider the set %1@ of values z; in the intersection
Ko, (z2 = 0) that in addition to (5.10)) also satisfy

|z1| > Li(a1), (5.11)

then those points that are contained in the normal intersection B*(z, = 0) in the
arbitrarily small neighborhood of Q are inner points of B*(z, = 0).

1®Shaded in Figure 1.
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Figure 1

About every point (z1,0) (z; € B;) there is thus a hypersphere with maximal
radius o(z;) > 0 whose interior belongs completely to B*. As a continuous func-
tion in z;, 0(z1) assumes a positive minimum o* in the closed 8. In particular,
every intersection B*(z; = y), for y in By, contains a circle with center z, = 0
of radius o*. Considering now the corresponding intersections &y, (z; = y) of
the domain &, , represented by

2
Z1
'1—0{121 01

2 1
+lz2P < . (5.12)
0

then these are non-empty only if z; belongs to the circle (5.10), and are themselves

circles with center z, = 0 and a radius less than % If we apply the transformation
Z2

1+ Bizy

to &g, , then the intersection K, (z; = y) is mapped to a circle centered at z, = 0

/ /
Zy =21, Z,

(5.13)

of radius o(y), for which

oy) < ——
o[l + B1y|

holds. Since |y| > [;(«) on the set By, B can be chosen in such a way that for
all y in By,

—————— <" < (5.14)
ol + By~ =
holds. Then, for |y| > [;(a1),
Raip (21 =) CB (21 =), (5.15)
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On the other hand, the values |y| < [;(a1) in the circle (5.10) also satisfy

1
- <
11+ Biyil

as for these values y + y > 0. Since therefore

Ralﬂl(zl = V) C ‘Qd](zl = V)

for |y| < [;(a), in connection with (5.8), the relation (5.15)) also holds for |y| <
[1(a1). Hence
Ka1p C B (5.16)

Moreover, both domains have the same tangent hyperplane z; + z; = 0 in the
common boundary point Q, that is, &, g, is an inner comparison domain for 8.

Now, &, g, is a replacement domain for &1, that is,

Z;;(Q): lim Q3KSB(21,22;51»32)
Z1,22—>0 n

; » o o1 (5.17)
< : = —
= lim o, & (21,221 71, 22) ey
and since this holds for every o, > o, this completes the proof of (5.1]).
Theorem II. If the point Q(0, 0) satisfies

o>0 (5.18)

and if furthermore the sections B'(z; = y) of a canonical replacement domai
BT for sufficiently small y are contained in an arbitrarily given neighborhood of

Q, then
o

Lg(0) = Zl’lgl)oQgKSB(Zl,Zz;fl,fz) = i (5.19)
PROOF: Assume the expansion
2x1 = ayi + ol +... (3.17)

belongs to the canonical replacement domain 8B7. Again, we start with a hyper-

sphere &,
2

1
+ |22|2 <—, 02<0, (5.20)
03

1 — —
02

9Here, 81 is once more a replacement domain for B, but it does not have to coincide with B*.
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and claim that the domain &, p, obtained from &, by the transformation

zZ
z) = ﬁ zb = z21(1 + Baz}) (5.21)
— U242

for sufficiently large o, B is an outer comparison domain for 8" (with respect
to Q). If we apply the transformation

2 =—2L =y (5.22)
! 1—0(221, 2 2 '

to &, then we obtain the transformed domain &, with
2x1 = (0 — 2052)y12 +oo|zP + ... (5.23)
If we choose o, positive and large enough such that
0y — 200, < a, (5.24)
then in a sufficiently small neighborhood U, of Q
2x1 — ayl2 — 0|z 4+ ... < 2x1 — (02— 2a2)y12 — oz + ... (5.25)

holds, that is, in the neighborhood U,, every point of %87 is at the same time an
inner point of &,,. But by assumption there are no other points of BT outside of
this neighborhood if y is sufficiently small, say

ly| < lr(or2). (5.26)
Then
BY(z1 = y) C Kan(z1 = y), (5.27)

if y satisfies (5.26). We now consider the section &g, (z2 = 0). If we assume (as
we always can) that
0y — 205 < 0,

then the intersection is formed by the exterior of the circle

1
Oy — 20[2

1
20!2 — 02.

(5.28)

Z1 —
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Figure 2

For sufficiently small z;, this circle lies completely outside of the section BT (z, =
0) due to (5.23). If «, is chosen sufficiently large, then the circle (5.28) moves
into a sufficiently small neighborhood of z; = 0, and thus we can achieve that it
is located completely outside of BT (z, = 0).

The set ?B of those points of %T(zz = 0) for which |z1| > l5(a>), is then
completely contained in the interior of the intersection &y, (z2 = 0), that is, they
have no points in common with the closed circle (5.28). The sections &g, (z; =
v), where y belongs to ‘B,, are circles with center z, = 0, and the radii of these
circles have a positive lower bound r. If we apply to &, the transformation

2y =21, 2o = z2(1 + Bazy), (5.29)

then the section &y, (z; = y) is again a circle with center z, = 0 and of a radius
greater or equal to |1 4+ B,y|. For these values of |y| > [5(a3) we can choose 8,
large enough such that

r|ll + B2yl > P (5.30)

holds, where P is such that for all sections BT (z; = )
|Zz| < P

holds. As the domain B was assumed to be bounded, there always exists a finite
such P. If 8, is chosen such that it satisfies the inequality (5.30)), then for |y| >

[>(a2),
B(z1 =y) C Kappy(z1 = 7). (5.31)

20Shaded in Figure 2.
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On the other hand,
11+ Boyl > 1

if B2 > 20, — 05, for the inequality |1 + B,y| > 1, which may also be written as

ly + %| > ﬂlz’ states that the point y lies outside the circle with center —é and
radius é For B, > 2a, — 05, all points of the section K, (z2 = 0) lie outside of
this circle by (5.29). Thus for |y| < [ («2),

Kaapo (21 =) D Ko, (21 = p), (5.32)

so that in connection with (5.31)), we obtain that (5.31)) is also true for |y| < l>(c2).
Hence
RKarp, O B, (5.33)

and furthermore, the two domains have the common boundary point Q and the
tangent hyperplane z; +Zz; = 0 atit, that is, &, , is an outer comparison domain
for 8. Now, K,,p, and B are replacement domains of &, and %8B, and thus it
holds that

) _ o
L%(Q) = lim QiKEB(ZI’ZZ;ZI,ZZ) =z ng(Q) = 4—22, (5.34)
z1,22—>0 T
and as this holds for every 0, < o, we also have
LR(Q) = lim 0 Km(z1,22:71.22) > 2 (5.35)
B 4m2
z1,20—>0

and combined with (5.1)), (5.19)) follows.

§6

In the cases 6 > 0 and o < 0, for a canonical replacement domain 8%, in a
neighborhood of the boundary point Q (0, 0), the plane z; = 0 was located either
completely outside or completely inside of the domain 8%, with the exception
of Q itself. We assume now that the intersection of the analytic plane z; = 0
with the boundary of B contains, in addition to the point z, = 0, a whole surface
patch $ that contains the point Q, that is, z, = 0, in its interior Therefore

2DIf there exists an analytic surface z; = f(z) passing through Q and sharing a surface patch
with B, where f(z,) in B* (the projection of B to z; = 0) is a regular analytic and injective
function of z,, then this case can be reduced to the one considered in this paragraph or in §8 via
the transformation z| = z; — f(22), 25 = z».
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clearly 0 = 0. First, we investigate the case 0 = 0 for this special case. (The
assumptions can be slightly generalized by only requiring continuity for the first
derivatives of (2.7), where the existence of o in the sense defined previously is
not guaranteed.) We assume the approaches Al'(«) and A™(«) and use normal
coordinates throughout.

By the assumption of continuity of the first derivatives of (2.7) it follows from

(a—w) =0 (6.1)
3)’1 y1=0

Iyi| <6 (6.2)

that for

W (V1. 22,22) =¥ (0, 22, Z2)| < [y1lA(V1, 22, Z2), ylimOA(thz,Ez) =0
1—
(6.3)

holds. Form the assumptions made in the beginning, it follows for the z,-values
in $ that

V¥ (0,22,22) =0

and hence
W (1,22, Z22)| < [y1|A(Y1, 22, Z2). (6.4)

If we only consider the points in B, for which
x1 >0, |y1| < Nx; (6.5)
holds, then for these points
[V (¥1,22,22)| = NA(y1, 22, Z2) X1
So if we pick a neighborhood U (e) with
|z2| < e, (6.6)

such that A(y1,2,,2Z5) < % in this neighborhood, which is always possible due
to (6.3), then for these z;,

|V (y1,22.22)| < 2x1, (6.7)
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that is, the points whose coordinates satisfy the inequalities (6.3), (6.5)), (6.6), are
interior points of EBFE] The product domain T = B x R, where

B |z1] <6, x1 >0, |yi] < Nxy,
R: |z <e

is thus contained in B and has the point Q(0,0) as a boundary point. So, given
an approach All(«) in %8, it is enough to choose

N > tan(@)

to ensure this is an approach in ¥ in the sense of the approach A''(«) defined in
[§ 3] Because of T C B and (I.5) we thus have

1
4262 cos(Z2)?’

(6.8)

lim |z*Ksg(z1,22:21,22) < lim |z;*Ke (21,2221, 22) =
z1,22—>0 z1,22—>0

where w = 2 arctan(/N ). So the following holds:

Theorem I11. Ifin a boundary point Q (0, 0) of 8 or of the canonical replacement
domain 8", the analytic plane lying in the tangent hyperplane (at Q) of %8 or
B*, respectively, has a common surface segment with the boundary of %8 or 8%,
respectively, that contains Q as an inner point, then for the approach A(x),

—1I2 — o
Ly (Q,) = lim Q?K%(Zl,zz;zl,zz)

z1,22—0,arc(z1)—>a

T
for every |a| < 3.
Under stricter assumptions we prove:
Theorem IV. Assume the domain %8 or one of its replacement domains B*
satisfies the conditions of Theorem III. Moreover, the analytic hyperplane lying
in the tangent hyperplane at Q of % or B*, respectively, is assumed to have no

common points with the interior of %8 or 8", respectively, and the points of the
domain obtained from B or 8™ by the transformation

2y = ¥z, zh=12, (6.9)

shall satisfy
Z1+z2,>0

?YThe interior of B is given by in a neighborhood of Q, cf. 2.8).
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if n is sufficiently large. Then in the approach A(«) for any «, the point Q is of
order A = 2.

In view of Theorem III, we only need to prove that for every approach A'(«)

lim Q?K;B(zl,zz;fl,fz) >0 (o0 =|z1]). (6.10)

Z1,22—>0

Let B’ denote the domain obtained from B or B™* by the transformation (6.9).
For the kernel function of the transformed domain, we obtain by (I.15)

K (z125:77.75) = n®|z " K (21, 22: 71, Z2)
and hence also
|21 1P Key (21 25; 77, Z5) = n?|z1|*Kss (21, 225 Z1, Z2). (6.11)

The transformation (6.9) maps the x;-axis to itself, and under the approach A" («),
arc(z;) — «, || < m, corresponds to the approach

arc(zy) — ¢ (6.12)
n

So if |z1|Ks(z}z5;Z},Z,) remains above a certain bound under the approach
All(r), then the same will hold for the kernel of B if the approach is in the sense
of A'(«). If now P denotes a simply connected domain of the z,-plane contain-
ing the projection of all sections B’(z; = y) in its interior (hence in particular
$ = ¥B/(z; = 0) and the point z, = 0), then B’ lies in the product domain

R=CxP,

4

where € is the half-plane z| + Z| > 0, z, = 0. Now let any approach A" («) for
the point Q with respect to B be given. This corresponds to an approach in %8’
with limit (6.12)) which also represents an approach A"(£) for the product domain.
Hence

21K (21, 22:Z1.Z2) = n—2|Zi|2K§3’(Z/1,Z£§71,72) > |21 PKs (21,2271, 72) > O,
(6.13)
which proves Theorem IV.

After having provided a class of boundary points with order A(Q; 8) = 2, in the
remainder of this paragraph and in §8 we will encounter important special types
of boundary points Q of this sort, for which we prove the existence of the limits
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Ly (Q,a) and Lyg*(Q,«). To study the first type of these boundary points, we
need an auxiliary function f,(z). This is the function mapping the half-plane
z +z > 0 to the triangle O; A B; in the w-plane, where 014, = O;B; = 1 and
01, Ay, By correspond to the points z = 0, z = —i, z = oco. Here, let 00 be
the positive u-axis, and let the points O and O; have the coordinates 0 and 1. The
angles O Oy B; and O O A, are both equal to % Then

fo(z) =1-1,(2), (6.14)

where 7,(z) is a function defined and studied in a previous articleFf]

z-plane w-plane
Y A UV A
B
Tk ¥ K
—i
Figure 3 Figure 4

Lemmal. Let0 < k < 1. In the domain T, (k) of the right z-halfplane given by

| /v(2)] > «, (6.15)

the following inequalities hold for sufficiently large v:
@) < A=k)zl", lim k() = 1, (6.16)

1 2
16,(2)| = | arc( fo(2))| < My|z|® sin (%) 0<Mi<=. (617

2)Compare the article Uber ausgezeichnete Randfliichen in der Theorie der Funktionen von zwei
komplexen Verdnderlichen, Mathematische Annalen 104 (1931), p. 611, §2. In the following we
will use the estimate (13) for 7, ;) derived there.
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By equation (13) in the previously mentioned article, it holds for |z| < B < 1 that

fu(z)=1-— zv + Z%gv(z) =1- |z|%ei%(l —gv(2)), ¢ =arc(z), (6.18)

0,(:)=0 (1) .
v

Now consider the semicircle z+Zz > 0, |z| < B. Then the image A’'m B’ (compare
figure 4) of the boundary segment |z| = B will come arbitrarily close to zero for
sufficiently large v, that is, it lies within the circle

lw| < k. (6.19)

Due to the uniqueness of the map it thus follows that the points, for which the
inequality (6.15)) holds, lies in the interior of the circle |z| < ,B But for these
points, the representation (6.18]) applies, which immediately yields (6.16). Fur-
thermore, for z in T, (k), and M, < 1 + ¢, with lim, o, &, = 0,

umuu@ngu—fmﬂm(gﬂ<A@m%m(£), (6.20)

hence for sufficiently large v, | Im( f,(z))| < 7, and thus

K
|Re(fu(2)] > [fo(2)| = [Im(f,(2))] > 5 (6.21)
From (6.20) and (6.21)) it follows that
My 1o TN 1, (T _2M,
6,()] < [tan(8, ()] < ==z sin () = Mz sin (5-). M, v

which proves the claim (6.17). The points in the right z-half-plane lying outside
of T, (k) satisfy
/(@] = . (6.23)

We now wish to describe a category of boundary points Q of which we will show
that they are limit points of second order. For the point Q(0,0) we assume that
the section $ = B(z; = 0) (belonging to the boundary of ) is a starshaped
domain relative to z, = O,@ that is, the equation defining the boundary curve is

21n the article mentioned in the previous footnote, our 8 is denoted by A.
23 Compare the footnote on p.
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R = h(0), and moreover we assume that the function 4 (6) satisfies the following
Lipschitz conditior@

|h(0) —h(0")] < N116 — 0], Ny < 0. (6.24)

For the sections B(z; = y) we assume that, for |y| < 6,

Bi(z; = 0) C Bz = y) € m(|y))B(z, = 0), (6.25)
m(|y|)

where § is a given arbitrarily small positive quantity, and
m(|y|) = 1—|—N2|)/|%, 0<t<00,N < o0.

(Here, by m(]y|)®B(z; = 0) we mean the domain obtained from B(z; = 0) via
the transformation z;, = m(|y|)z,.) From (6.24) it follows that for every z, in the
section B(z; = y), the inequality

@D |zy) < (1 + Maly [ Hhare(za) (6.26)
1+ Naofyl*

holds. Finally, we assume that z; + z; > 0 for the domain B.

Zp A

Figure 5

We construct a domain A® in the following way. Let € denote the half-plane

z1 + z1 > 0, and consider the product domain

A=Cx5H.

20)The inequality (6.24) can be replaced by |h(0) — h(0")| < Ny|6 — 0’| (u > 0). Then the
following arguments have to modified insignificantly.
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The domain %" is obtained from 2 via the transformation
f v (Z 1) .

If Ay, 1s a lower bound for the /4(0) (thatis, if 0 < Ay, < h(0) forall0 < 6 <

27) and Z3™ is an upper bound for |z5| of all coordinates in the domain B, then

k (compare Lemma I) shall be chosen such that

/ /
2y =21, Z,

(6.27)

<1 (6.28)

After fixing «, we choose v large enough such that the inqualities (6.16), (6.17),
(6.23)) hold, and moreover such that

1
v>2t, k(v)> 7 (6.29)

If B denotes the radius of a circle centered at z; = 0 whose interior contains
T, («), then finally we assume v large enough such tha@

1 3N M 2
Na(Blic, v+ < (5 -2 hl ~L sin (%)) My< = (6.30)
Bk, v) <. (6.31)

First, we consider the sections 2 (z; = y) for y in T, (k), where T, («) is the
domain introduced on p. The section 2(z; = y) yields the starshaped domain
$ for all points of &. Hence every section 2" (z; = y) is again a starshaped
domain, whose boundary is given by the equation

h(@+ 9,
R = h(y.0) = W ac(fo(y) = h(y).  (632)

Now, our chosen v satisfies by (6.29) and (6.16)

1, 1
/(] =1- §|V|U’ (6.33)

and by (6.24) and
7O + D(1) = h(0) = Ni[9y(r)] = h(6) — Ny My|y|¥ sin (%)

> h(6) (1 Sy Y sin (%)) = 1) (1= Naly [ sin (1))

(6.34)

2DThat it is possible to choose B such that (6.30) and (6.31) are satisfied follows from the fact
that for fixed « and sufficiently large v the domain T, (k) lies in the interior of an arbitrarily large
circle centered at z = 0 (compare the proof of Lemma I).
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with N3 = NIM‘ , and thus

1, T 1 1
h(y,6) > h(6) (1 — Nsly|? sin (Z)) (1 + 5|y|u) . (6.35)
On the other hand, by (6.26)), the z,-coordinate of a point in B(z; = y) satisfies
22l ShO)(1+ Naly|?), 6 = are(z). (6:36)

Since now, by (6.30), for |y| < 8,

L M5 <14t (L n (“) 1N||1'(’T)
V) |ylY v{=—Nzsin(—)—= v sin [ —
2y Y Y > 3 o 5 3|y o

(6.37)
it follows (for y in T, (k) z5 in B(z; = y)),
|22| < h(y. arc(z2)), (6.38)
that is,
AV (z; = y) D Bz, = p). (6.38a)
For the y-values outside of T, (k), by (6.23)),
A =k (6.39)

If Sin denotes a circle of radius A, centered at the origin, and 3™ denotes a
circle of radius ZJ** with the same center, then by (6.38) and (6.39), for all y
outside of T, (x),

Zmdx
AV (z; =y) D ssmm D 52— Hmin = 3" 5 B(z; = y), (6.40)
which, together with (6.38a)), implies:
AV > 8. (6.41)

Now, A" is obtained from 2 via the transformation (6.27)), and hence

3(z}.25)

= = 6.42
z1,22—>0 8(21,22) z1—>0 fv(Zl) ( )
It thus follows from (1.13]) and (6.42) that
1
Ly (Q) = Ly’ (Q) = : (6.43)

472 cos(a)?P?
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where P is the mapping radius of $ = B(z; = 0) with respect to z, = 0, and

hence by (6.41),
Ly (Q) =

. 44
472 cos(a)?P? 644)

We now construct the inner comparison domain. Let ® denote the intersection of
Ty(k) and B(z, = O)Fﬁ] Consider the product domain

D=D9x9
and apply to it the transformation
Z/l =1, Z; = 22 fv(21). (6.45)

Then the transformed domain ®® is

DMz =y) = (D1 =y) = LS. (6.46)
D®(z; = y) is again starshaped. The equations of the boundary curve is
R=n"(y,0) = h(6 — (NI, (6.46a)

and thus the sections B(z; = y) satisfy
* 1, bl 1 1
B (.0) = h(®) (1+ Naly[¥sin (5-)) (1= 5 1v1* ).
2v 2
On the other hand, by (6.25) for z, in B(z; = y),

z2] > h(O)(1 = Ny[y|7), 6 = arc(za),

and hence, if v is sufficiently large according to the earlier conditions ((6.16),

(6.17)), etc.), then

L= Malylt 2 1=t (5 - vasin () + Syt i ().
2 2v 2 2v
This implies
DV (z; = y) C B(z; =y) and DM -3, (6.47)
and hence

ng(v)(Q’O‘) > Ly (0, a).

280r the connected component containing the boundary point z, = 0 of this intersection.
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Now, by (6.42),

1
2 _ 2 _
Lg(m;)(Q,Ol) = LS) (Q,Ol) = W’ (6.48)
so that the comparison of (6.44)) and (6.48) yields
1
Lg(Q,a) = (6.49)

4m2 cos(a)2P2?’

§7

In the following we study the case that the analytic tangent plane z; = 0 has
a common surface segment with the boundary of %8 under different assumptions
on B than in §6. The current paragraph serves to introduce the tools for this
endeavour by introducing and studying a certain class of special domains.

In this paragraph, by a sector 8 we mean a circular sector OAB in the z;-plane
whose vertex O lies in the point z; = 0. It is completely determined by the angles
¥ and 9, (> ;) enclosed by its radii with a fixed direction, say the positive x;-
axis, and by the radius ¢ = OA = OB of the circle.

Y1 4

B sector &

Figure 6

We also write (91, 9>, 0) to emphasize the dependence of § on v, 9, 0. In the
following, we study domains © with the following properties:

1. The sections &(z, = y) are non-empty only for those values y belonging
to a domain $ in the z,-plane, and then they are sectors .
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2. For the determining values 1, ¥, o of the section ©(z, = y), which are
now functions of y, it holds that

U (y) — 91(y) = @ = const. > 0, 0 = const. (7.1)
3. Hy) = 192(1/)-;191(3/)'

4. There exists a sector & (191(0), 1‘}§O) ,0), independent of y, that has only the
point z; = 0 in common with all &(z; = y) = (% (y), %2(y), 0) )

5. There exists B (with 0 < 8 < m) such that
T T
—n+p =< ﬁl()/)57 192()/)5 <n-—B. (7.2)

1) 4(2)
s

Common to all sectors §(J1(y), 92(y), 0) is a fixed sector § () , 0) with

95" — 9V > 0.

For the positive x;-axis we choose a ray contained in the interior of § (291(1), 1952), 0).
Then
ﬁlsup <0< 02infa (73)

where ¥, is the upper bound of ¥ (y) and iy is the lower bound of ¥, (y).

In the following, we will occasionally write 7 (6, w, o) instead of §(6, w, 0). Via
any of the transformations

Z1 = Mz, Zp = Iz, (n>0), (7.4)
or

71 = eiOZl, 72 = Zjp, (9 real), (75)
or

71 = Z‘lg, 72 = Zp, (/,L > 0), (76)

the domain & is mapped to a domain & with the same properties and for the
determining parameters, we then obtain

F2(y) = %a(y), () = (), T=po @=ow, B(y)=70(@),
(7.7)

2)Possibly also the point z; = oo.
~30)In order not to lose property 4 under the transformation (7.6), it might be necessary to consider
@ in a (multiply covered) Riemannian space.
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or

92(y) = (1460, D1(y) =h(»)+0, T=o0 @=w, V(y)=0)+0,

(7.8)
or
Ta(y) = Ba(y), 01(y) = poi(y), T=0% @=0f, I(y)=po©).
(7.9)

For domains &, we investigate the behavior of the kernel function in a neighbor-
hood of the boundary point Q (0, a,), where a, is an inner point of $. In general,
the tangent hyperplane does not exist at the point Q(0, a;) (with the exception
of w = ). However, in analogy to the approach A'(«), we can introduce corre-
sponding notions of approach and order. Under an approach A"(«) we understand
here

z1 —> 0, 2z, —> a,,

arc(z)) — o, |a—0(an)| < % (7.10)
For this approach, we study
1211’ Ke (21, 22: 21, Z2), (7.10a)
and in particular will prove the existence of
LE(0(0,az), @) = lim 1*’Keg(te'?, 25,1679, 2), (7.11)

t—0,0—>a,z0—>as

where te'? ( < ) is an inner point of the section &(z, = a,), and ¢ is real and
positive.

Under the transformations (7.4), (7.5), (7.6), the kernel functions become

2 _
z z Z
121 PKg (21, 22: 21, Z2) = ~| Ke (—1,22; —1»72) , (7.12)
n W
or B
_ _ z Z1 _
1211PKg (21, 22:21. 22) = |z11°Ke (eTIG,Zz§ e_ﬁﬁz) , (7.13)
or
) U e (b b
|z1] Kg(zl,zz;zl,zz) = E|Z1 "Ke | 21 ,22:21 .22 ) - (7.14)

If we replace the parameter ¢ for the domain © by w7, then the expressions ((7.10a)
and (7.12]) become identical in the two domains. On the other hand, for identical
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¥ (y) and w, the domain G has radius ‘0 = po. For our investigation, the value of
o is thus irrelevant, and the limit (7.11)) is also independent of o.

A particularly important class of domains @ is given by the domains &', for
which ¢ = oco. The transformation (7.4) maps a domain & to itself. So if we set

z = te'?, then by (7.12)),
t|*Kgr (1€, 22517, 25) (7.15)

is a function, independent of 7. If £,, is a simply connected domain contained
in the interior of 9, then §,,, (¢ + ¢, ¥, — €) shall denote the following variable
domain of (z,,®): z5 is a point of $,, and the corresponding « is a point in the
interval

$1(z2) + e < a < Ba(zz) —e. (7.16)

For values (z,,«) from §,,(%; + €, 9, — &), the expression (7.15)) is, for fixed
t = to > 0, auniformly continuous function in & and z, (compare §1, p.[3). Now,
since ([/.15) is a function not depending on 7, the following holds:

Lemma IlI. For (ay,«) in§,, (V1 + &, ¥, — ¢), the limit

L™ (0(0.a). @) = lim 1% |Kgr (16", 22;€7, 25) (7.17)

t—0,0—>a,z2—>as

exists and is a uniformly continuous function on ¥, (¥, +¢, ¥, —¢) in the variables
a, and o.

Lemma III. Suppose the sequence of domainsF‘E]

)
8™ =36 =y) =) 8O ¥). 9" ().c0).  m=123 .
14

converges uniformly on $ to the domain

$
6'=>) Gl =y) =) 8@i(1) %) ). (7.17a)
14
in the sense that for each y,
M) > ¥ (y), and o™ - w. (7.18)
Then:
mh_l;noo LIéZT(m)(Q(O?QZ)’a) - Llézw‘(Q(O’ az),Ol). (719)

3DFor the notation Zf, see Hausdorff, Mengenlehre, Berlin 1927, §1.
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For the proof, apply the transformation
1=z " 7o =1y, T >0, (7.20)
to &'. The thus obtained domain &' is again a &'-domain with angles

91(y) = (1 =0)(y), T2p) = (1 —1)0a(p).

Since
ti(y) <0, a(y) >0, (7.21)

we have
T10) = A =09() > h(). D) =1 =00a() < Da(y).  (7:22)
and for sufficiently large m, due to (7.21), and (7.18)),
1) > 90" ), Day) < 95 (). (7.23)
Hence, for sufficiently large m,
3@ 1().92(y).00) € SO ()95 (). 00). (7.24)

that 1s,
et c ™,

From this, we obtain under the approach A'(«)

lim |Zl|2K@T<m>(Zl,Zz;71jz) < lim |Zl|2K§T(21722;71,32)’
|z1]|—0,arc(z1)—>a,zo—>ar |z1]—0,arc(z1)—>a,zo—>as
hence also
mlgnooLIé%F(M) (Q(Ov aZ), 0e) S L’Ié%- (Q(()’ aZ)’ Ol)

Now, by (7.14),

LZ2(Q0.a)) = —— L% (0.4, — ). (725)

GT sU2), _(1—‘[)2 GT b 271_‘[ . .
As T can be chosen arbitrarily close to 0 and LI;(Q(O, a,), o) is a continuous
function in «, it follows that
lim L (0(0,a2), @) < L (0(0,az), @) (7.26)
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On the other hand, if we apply the transformation

?1 = Zl+t, 72 = Zp, 7.27
1

then we obtain in the same manner that for sufficiently large m,

o™, (7.28)
and from this
lim L g (Q(0, a2), @) = LZ (Q(0, a2), ). (7.29)
Now (7.26) and (7.29)) imply (7.19)), which proves the lemma.
By a g-circle we mean a circle with center % and radius m located

in the plane z, = y. (The points z; = 0 and z; = R have all circle peripheries
in common.) We will also write ¢ (9 (y), R) to emphasize the dependence of ¢
on ¥(y) and R. In doing so, we assume that 9 (y) satisfies all conditions on
w stated on p. By a §-domain we mean a domain

9
=) 8E=y)=) ¢@®F).R), R=const
Y

Via the transformation

z
ZI = 7 _12_1, Z; = Z,, (7.30)
R

the &-domain is mapped to the domain &' = Y B(zp=y) = Zf’ T@(y), t,o00),
where the boundary point z; = R is mapped to the point zir = 00. As the

transformation ([7.30) is regular in a neighborhood of z; = 0, z; = a,, and
. a(zT,zT) .
lim 5222 = 1, by (3.3) and (3.12) we have,

Lg’z(Q(Ov a2)7a) = LICI‘;T(Q(O’ a2)7a)’ (731)

and by Lemma II, (7.3T]) is a uniformly continuous function on §,, (9, + ¢, ¥, —¢)
in the variables a, and «.

The domain @ = Y. G(z2 = y) = Y0 81 (¥). %2(»).0) = Y0 T(¥(¥). 0.0)
under the transformation

I
~

Z1 = le, 72 = Zjp, (732)
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is mapped to the domain

D=o0v. (133)

T
a)

)
€= Cln=y=) TOW.n2. I =
14

From now on we denote by 62; and §, a certain &'- or §-domain, namely, with
angles

Fi(y) = gzw), Faly) = gzm), (7.34)

and with R = ¢'sin(B) (see (7.2)) and (7.1]) for the meanings of 8 and @, respec-
tively). Then
3,C8cCe (7.35)

and therefore
Ks,(21,22:21,22) = Kz(21,22:71,22) = K@S(ZlyZZ;EI»EZ)- (7.36)
From (7.31)) and (7.36)) it follows that

LZ(0(0,a,), ) (7.37)

exists and equals (/.31). Hence (/.37/) is a uniformly continuous function on
h,, (V1 + &,1U, — ¢) in the variables « and a,. If we introduce the polar coor-
dinates z; = Te'® andZ; = te'% for the quantities in (7.32)), then by (7.14) and
(7.32)

2 . L .
(g) PKZ(16, 511679, 5y) = T?Ke(Te'®, 25; Te ™, 5,), (7.38)

il T ~
t=Te, @=—@, z,=12,.
1)
Since t — 0 implies 7 — 0 and the transformation (7.32]) corresponds to the
transformation ¢ = 2,7, = 25, implies the following theorem.

Theorem V. L& (Q(0, a»), a) exists for values (az, ) in §,, (%1 + &, 9> —¢), and
is a uniformly continuous function on ¥,,,(¢; + &, 9, —¢) ina, and «.

From Theorem V and Lemma III now follows and important generalization of the
latter, namely:

Corollary 1. Suppose the sequence of domains
I3

8" =Y 6"z =y) =Y SO 1) 9" (1).0™), 0<00<0™ <01 <00,
14
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converges to the domain & = ) G(z; = y) = Zf 8(01(y), V2(y), 0) in the
sense that 9 (y) — ¥ (y) and 0™ —  uniformly on $ for each y. Then

lim L, (0(0.a2).) = Lg(Q(0.4). ).

Remark. Let $; C 9, C 93 C ... denote an ascending sequence of do-
mains converging to a kernel domain $. Let &' be the domain given by
and &), = 7" 8(1(y), Pa(y),00). Then: limy, o LI2 (Q(0,42),@) =
LI;(Q(O, a,),a), uniformaly on §,,(, + &, %, — ¢) ina, and a. For, if f,,(z5)
(with f,(a2) = aa, f,(az) > 0) denotes the function that maps £,, to 9,
and r,,(z,) the corresponding inverse function, then the transformation z; = zy,
%3 = fin(z2) maps the domain &1 to &), = . 8™ (), 9™ (v). 00), where
3" (v) = Oa(rm(y)). By (LI it holds that L2 (0. ) = |r,, (a2) PLE (Q.«0).
By a well-known theorem from complex analysis, limy,—c fm(z2) = z2) uni-
formly on $. Together with Lemma III, this yields the desired limit. An analogous
limit relation can be obtained for domains & by (7.31)), etc.

$ 8

Let z1, z; be normal coordinates for the point Q of %8, and assume again that the
plane z; = 0 has a common surface segment $ with the boundary of 8 with inner
point z; = 0. In this paragraph, we make the following assumptions:

1. & = B(z; = 0) is a starshaped domain for which the boundary curve
satisfies

R = h(0), (8.1)

and /(6) satisfies the Lipschitz condition

|h(6) —h(0")] < Al6 — 0. (8.2)

2. We assume that all z;-coordinates satisfy |z;| < 1 (we can easily achieve
this by a simple transformation), and assume that the sections B(z; = 0)
satisfy

B(z, = 0) C

9, 0<v<oo. (8.3)

1

1—yv
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3. For each non-empty section B(z, = y) we assume that there is a line g(y)
passing through the point z; = 0, for which the angle ¥ () with the positive
Xx1-axis satisfies

Q) —v) =Cly—y1" >0, (8.4)
and
W)+ Clyl*zl” <are(z) <+ ¥ () = Clyl“lzil”. 8.5)
where z; is any point in the section B(z, = y).

It follows in particular from (8.5)) that the section B(z, = y) and its bound-
ary, with the exception of the point z; = 0, lie on one side of the line g(y).
For those values of y belonging to $, by 4., the line g(y) is the tangent of
the boundary of B(z, = y) in the point z; = 0 (compare figure 9).

4. We make the assumption on the sections B(z, = y) that for every closed
domain $’ contained in the interior of £, there is a positive number « (in-
dependent of y) such that for y in &', every section B(z, = y) contains
a circle of radius « that touches the boundary of B(z, = y) in the point

21:0

5. For ¥(y), the following inequality holds:
—n+p=¥(y)=-p. B>0 (8.6)
(So there is a fixed sector § (independent of y) that has only the point
zy = 0 in common with B(z, = y).)
Under these conditions we prove:

Theorem VI. For every domain 8 of the given type, there exists the limit

L%Z(Q,(X) = lim |Z]|2K%(ZI,ZZ;EI,22) (87)

z1,z2—>0,arc(z]) >«
under the approach A'(«).
Proof: Apply the transformation

~ ~

1
Z1 =121, Z2=(-2z)z, (8.8)

to the domain 8 and prove for the transformed domain B:

3nstead of 4., we could make the weaker assumption that for each &’ there exists a sequence
TW(y) + %,wm,gm), m=1,2,3,..., with g5, > 0, limy,—,oc ®;, = 7, such that for each y in
&’ it holds that T (¥ (y) + 3, @m.0m) C B(z2 = y). Compare p.
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1. We have
B(z; =0) D VB(z; = y). (8.9)

2. If y is a point in $, then the line g(y) touches the boundary of %(22 =y)
in z; = 0, and the section B(z, = y) lies on one side of this tangent

Part 1 follows immediately from assumption 2 above.

For part 2: If
2X1 = W(yl,Zz,Ez) (27)

is the equation of the boundary surface, then from the assumptions 4 and 3 on

it follows that .

2y
is a continuous function in the variables y, z, Z,. Now, for every y in 8,

= X(yl»ZZ’EZ) (893)

) 2y1 1
tan(¥(y)) = lim — = —,
) = o222~ 10.7.7)

and for the tan of the angle enclosed by the tangent and the boundary curve of
B(z, = y) (given by 2X7 = ¥ (1, 221, —221)) we obtain, again using (8.93),

1-z; 1—?

A ) 1 1
Jdim — = lim = —, (8.10)
Y10 2X1  x1.y1=0 y 7 x0,7.7)
X\ )1, T T
1—z/ 1-z}

so that the line g(y) is the tangent at the point z; = 0 to the boundary of the
section B(z, = y) of the transformed domain, which proves the first part of 2.

Letz; = r{)ei‘/’o, z, = y be apoint of B and z; = r{)ei‘/’o, z, =y the correspond-
ing point in 8. Now we have to show that ®B(z, = y) lies on one side of g(y). In

1
combination with y —y = yz; it follows from (8.4) that

W (y) —¥@)| < Clyl*|z1]". (8.11)

We will now show that for the angle y enclosed by g(}) and the line connecting
the point z; = 0 with the point z;

0<y<m (8.12)

331n the following, ¥ can denote a point in the z;- as well as in the z,-plane.
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holds, which implies the second part of 2. Namely,

XI=0o YY) =900 —¥() +¥(y)—¥¥). @o=arc(zy),

and hence
lpo =¥ =¥ @) =YW < x <lpo =¥+ 7+ [¥(y) PP,

and the inequalities (8.11]) and yield (8.12).
On the other hand, by (1.15)), we have the relation

_ 1
r51|2K§(51,22;21,22) = |z21*Kss (21, 22; 21, Z2) : |1 — 2 %, (8.13)

and it is therefore enough to prove the statemen of Theorem VI for the domain
%B. Now let Sm,m=1,2,3..., beasequence of closed domains contained in £,
such that £,, is contained in the interior of $,,4, and the 9,, fully exhaust the
domain $. Let B™ denote the domain

(8.14)
X2
A Zp-plane
7|2 $
+1
m 2
Figure 7 Figure 8
For the domain %(”‘), we construct the following:
I. A domain .
6™ =Y 6" (z =y) > B™ (8.15)

Y
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of the type studied in §7, p. where the sector 8™ (z, = y) = 8(%1(y), 92(¥), 0)
is a semicircle whose diameter lies on the line g(y) and whose radius g is
large enough such that, for y in $,,,

™ (z, = y) D Bz, = 7). (8.16)

As B is bounded and %(22 = y) lies, by assumption 3, on one side of the
line g(y), this construction is clearly possible. From assumption 5 it follows
that properties 4 and 5 of §7 are satisfied.

II. A sequence of domains
Hm
& =) 6"z =y). (8.17)
y

such that for every m
e c 8™ (8.18)

holds, and the angles w,, , of @™ satisfy

lim wp, = (= 0n), (8.19)
n—0o0

uniformly in y for fixed m on $,,.

Let €, be positive and lim, o &, = 0. As the function ¥(y) is uniformly contin-
uous, there exists 7, such that in each point y of £,, there is a circle &, (y) with
radius 71, and center y, such that in the interior of &, (y):

w(y) — ‘% < W(z) < ¥(y) + ‘% (8.20)

for z, in &, ().

Furthermore, we may assume 7, small enough such that the circle &, (y) lies in
9m41 for each y in $,,. By assumption, for each y in 9,41, hence a fortiori in
&4, (¥), there is a circle of radius ky,,; that is contained in B(z, = y’) (for y’ in
Ky, (¥) C Hm41) and touches the line g(y’). Then B(z, = y) contains a sector
with angle w, = m — &, and radius ©,, = 2Km+1 cos(%), where the angles
9 (1) and 9 (y) of the sector satisfy

") + 0y

9 =0 () = wn, 2

—uy) + g (8.21)
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for y"in &, (y). By (8.20), we thus obtain for z, in &, ():

n En
D" (z2) = W(z) + 5 < W) +én

. (8.22)
9 (25) = W(zp) + 7 — ? > W(y) —e, + T,
hence for z, in &, (y)
9" (22) < 97" (y) < 137 (y) < 957 (za), (8.23)
where we put
() =0 () + %" = W(y) + én,
95" () = 957() = 3 =) + 7~ 824)

O3 (y) =97 (y) = 7 — 28,).

Y14 z1-plane

T —é&p
Tmn = 2Km+1 cos( 5

4
a(y) a)

Figure 9

If 8,,.,(y) denotes the sector with angles 9" (y) and 93" (y) with radius

T — &,
Tmn = 2Km+1 COS 5 ,
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then for y’ in &, (y) (with y in $,,), 8, , is contained in B(z, = y) Hence
the product domain
Gnn(y) =K, (V) X Smn(y) (8.25)

is contained in BV (compare figure 7).

If we now return to the domain B¢ and consider the sections %(22 = y), then
1
these correspond to the sections B(z2(1 —z,') = y) of the domain B with the an-
1

alytic surface &, given by z,(1 —z;") = y. The intersection of &, with the prod-
uct domain &,, ,(y) is a surface segment in ¥, that is bounded by a closed curve.
This boundary curve f, is the intersection of the surface &, with R[S, ,(y)]
(where R[. . .] denotes the boundary). Then f, is composed of the intersections of
&, with Ky, () X R[S, ()] and with (8y,(7) + R[S0 (7)) xR[K,, (7)]. The
zy-coordinates of the first part of f, either lie on the two rays rei?t (n)(”), rei®s ")
(0 < r < o0) oron a circle with radius 7, ,. For the z,-coordinates of the remain-
ing points of f,, (8.26) below holds. We will now show that the the z;-coordinate
of the points on f, satisfy the inequality |z;| > 0m,» > O unless they lie on the
rays mentioned above. Namely, consider the part of the boundary of &,, , whose
z-coordinate is given by

|z2 = y| = 1. (8.26)
Then |z| has a positive minimum for the points on the curve segement ¢ obtained
by intersecting (8:26) with &, | If we now apply to

1 1
Cman(z2(1 —z{) =y) CB(z22(1 —z{) = y)
the transformation (8.8]), we obtain

gm,n(ZZ = V) - %(22 == )/)-

3If, instead of assumption 4, we make the assumption stated in the footnote on p. |50} then k41
in the last equation has to be replaced by g;,.
3)Namely, if z = y + 1,¢e'?, the points in the intersection satisfy

Vaiv
e’

y " '
(nnei(p +y)P '

Nel® +y

2] = |1—

and the boundedness of y implies the existence of a positive lower bound for |z1|. So if we choose

i (2 cos (T2 [ 2h
= min | 2« cos , A ,
Om,n m+1 5 (e + 1)

then the z;-coordinates of the curve c satisfy the inequality |z1| > om n.

55



The section %mn (z = y), now in the plane z, = Y, is bounded by the two

.qx(n) .qx(n) .
rays z; = re?t @ and z; = re?2 ) and a curve segment c that satisfies
21| > Omn. Hence G,y n(z2 = y) contains a sector § (7™ (), 95 (). 0m.n)

with

m o, = lim 3P @y) -9 () = lim n—2¢, = 7. (8.27)
n—00 n—o0o n—oo

So if we define the domain

Sm
8" =3 "M (z, =) (8.28)
y
by
8"z, = y) = 8T ). 95" (), 0mn), (8.29)
then
& c B™ c g™, (8.30)
and moreover, due to (8.21)), (8.22), (8.24),
lim 97 (y) = @ lim 9} (y) = w 8.31
im 9,77 (y) = ¥(y),  lim 9,7 (y) = ¥(y) + 7. (8.31)
n—o00 n—00
Hence by (8.30),
|21|2K@(m)(21,22;31,52) < |21|2K%’(m)(21,22;31,72) < |21|2K6(m.n)(21,22;51,22)
(8.32)

and therefore
L% (0.0) = L, (0.) = Tgm(Q.0) < Tim L, (Q.0),  (833)
and since by the corollary of Theorem V
Jim L& (Q, @) = Lghn (Q, @) (8.34)

holds, L2

Qs(m)(Q, «) exists and is

L, (Q,0) = L (0, ). (8.35)
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Part 11

The totality of domains that can be mapped to one another by pairs of functions
in two complex variables zi = z(z1,22), z; = z;(21,22), are called a class of
equivalent domains.

If we restrict ourselves to classes to which belongs at least one finite and simple
domain, and consider all regular functions 4(zy, z) on such a domain 8 for which

/ |h(z1,22)Pdw < 1 (dw = dx;dy dx,dys)
B

holds, then the squares of the absolute values of the /4 attain a maximum in every
point {1, t,} of B that defines a positive and analyti(ﬂ function Ksg (¢1,12;71,12)
in B. For every point {#1, f,} there exists one and (up to a factor of absolute value
1) only one function for which this maximum is attained. Dividing this function
for the sake of normalization by /K (t,.%:71,1,), the thus obtained function
Mg (z1, z2: 1, t2) assumes the value 1 in the point {¢1, #,} and yields the minimal

values for the integral [4 |h|*dw when compared to all regular functions /(zy, z2)

on B that satisfy |h(t;,1,)| = 1. We call Mg (z1, 22511, 1) = % the

minimal function of the domain B with the base point {¢, t2} The Hermitian
differential form
2
0% logK
dsz - ZTmﬁdZden’ Tmﬁ - ﬂ ‘

e 02,02,

is invariant under transformations by pairs of functions in two complex Variablest

1)By an analytic function p(zy, z2;t1,t2) we mean a function in the for variables z1, z5, 11, f>
that can be expanded into a convergent series in a neighborhood of every regular point in a suffi-
ciently small polycylinder |zx| < &, |tx| < k.

2)Compare Uber unendliche Hermitesche Formen, die zu einem Bereiche gehoren, nebst An-
wendungen auf Fragen der Abbildung durch Funktionen von zwei komplexen Verdnderlichen,
Mathematische Zeitschrift 29 (1929), p. 641 to 677, in particular §1, in the following cited as
article H. In the present work, we denote the minimal functions of 8 with base point {1,#,} by
Msg (z1, z2: 11, t2) rather than by Mg (z1, z2:71.72) as we did in earlier works. For the kernel func-
tion, on the other hand, we keep the old notation K (z1, z2; 71, 12), as it is an antianalytic function
iy, 1.

dCompare Uber die Kernfunktion eines Bereiches und ihr Verhalten am Rande. I, Journal fiir
die reine und angewandte Mathematik 169 (1933), p. 1 to 42, in particular §1, in the following cited
as K; the formulas taken from it will be indicated by a star. See also Uber eine in der Theorie der
Funktionen von zwei komplexen Verdnderlichen auftretende unitire Geometrie, Proceedings of the
Koninklijke Nederlandse Akademie van Wetenschappen 36 (1933), p. 307, and Sur quelques pro-
priétés des transformations par un couple de fonctions de deux variables complexes, Rendiconti
Accademia Nazionale dei Lincei (6) 19 (1934), p. 474 to 478.
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The metric given by (T.I6[%) is positive definitef’] and has the property that in the
corresponding Riemannian space the invariant I (given by (I.17}*)), where the fol-
lowing relations between the contracted curvature tensor, the fundamental tensor
and the covariant derivatives of I holds,

02 log(I) y
T + Z e (1.18%)

The Riemannian space defined by the metric (I.16f) within a class of equivalent
domains shall be called the primal space of the class.

In the case of one complex variable and finite simply connected domains 82,
M2 (z; t) is the derivative of (appropriately normalized) circle mapping that maps
the point {¢} to the center of the circle. Here, the differential form

ds? — 0% log(Ky2(z,2))
020z

|dz|?

is transformed to the Poincaré metric of the unit circle.

Let it be remarked that the introduction of the primal space leads to an interest-
ing corollary: Every domain 8 of the class can be obtained by introducing the
(Cartesian) coordinates zy, z, for 8 in the primal space. This fact allows us to
use the results of differential geometry in the theory of mappings given by pairs
of functions in two complex variables. In particular, it follows that when mapping
the domains onto each other, certain quantities appear, namely invariants (scalars),
integral invariants (densities), tensors etc., that transform in a very particular way
when mapping from 9B to another domain 8" in the class (in our sense, mapping
from B to B* means that in the primal space we switch from the coordinates
Z1, Zp to the new coordinates z7, z5).

One of the important problems in the theory of functions is the study of the an-
alytic functions in two variables defined on a class of domains. If we use the

“In §1 of K it was shown that the determinant N of the differential form (I8 is positive
everywhere on 9B, which only implies that the form is definite. But similar to the proof of positivity
of N, we can conclude that

K Kooto
KlOOO K1()10

Tll:‘ K2 = KZZZ

and T,5 > 0, from which the positivity of the form follows.

M dm+n+p+qK%(Z1 22;51’52)

dz"dz3dz8 dzd

@ (z1,22)

9 ,
(pL(Zl7Z ) (pM(Z; z2)

> 0, Kmnﬁ =
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give metric for this investigation, mainly questions on the primal spaces and the
characterization of the domains belonging to a primal domain arise.

The present work makes certain contributions to this problems by making some
statements on the situation at the boundary. It based mainly on the results in K. As
was shown there, under certain natural assumptions on the structure of the domain,
the kernel functions tends to infinity when approaching the boundary. However,
the order of becoming infinite can be different at different points on the boundary.
Accordingly, in K the boundary points of zeroth, second, third and fourth order
were introduced. In each class of these boundary points we can identify a subclass
of points with a simple structure, which are called limit points. To conveniently
formulate the function theoretic properties of a limit point Q of second or third
order, it is helpful to introduce the so-called normal coordinates relative to Q.
By the assumption on @, the boundary hypersurface of 8 in Q has a tangent
hyperplane e®. The normal coordinates relative to Q are obtained by making Q
the origin and choosing the analytic plane €2 lying in e and passing through
O and the plane orthogonal to €2 as z;- and z,-coordinates, respectively For
certain types of approaches to Q discussed in K, there exists, as shown in K,

lim (z; +z1)"Ksg(z1,22:21,22), m =2,3.
{z1,22}—>0
The method to prove this limit relation, which will be further developed in the
present work, shall here be illustrated by considering the corresponding situation
for the case of one complex variable. Let B2 be a convex domain, Q one of its
boundary points, where the boundary curve in Q has positive curvature. Now, the
normal coordinates with respect to Q shall be those coordinates for which Q is
the origin and the inner normal to Q becomes the positive x-axis. Let 32 and A?
be two circles touching the y-axis in Q, where 32 contains 8?2 (inner comparison
domain). The kernel function of a circle :? or radius r touching the y-axis in Q
has (in normal coordinates relative to Q) the value 1 5. If the approach

n(z-i—f-i—ﬁ)
|
takes place in a the domain T2 of angles lele] Cosl(a) » le| < 7, then it follows

that lim;_, o (z + 2)?’Ky2(z,2) = % (the limit is thus independent of the radius
of the circle). Since on the other hand by (1.12[%), Kg2(z,2) < Kg2(z,2) <
Ks2(z, Z) holds, it follows that also lim,_, o (z + Z)*Kg2(z,Z) = .

T

3n §1, the structure of the limit points of second and third order will be studied more closely,
and the normal coordinates for both types of boundary points will be described in more detail.
For manifolds of dimension less than 4, the upper index indicates the dimension of the manifold.
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In §1 of the present work, we investigate the behavior of the metric given by
(L.16[) at the aforementioned limit points. It will be shown that for limit points
of order m (for a certain approach described later in the text and using the normal
coordinates relative to Q) the relations hold:

lim (z142z1)%ds* = m|dz,|?, lim Ig(z1,22:21,22) = m_—l m=2,3.
{z1.22}—>0 {z1,22}—0 m2y?
Following the investigation of the kernel function, it seems reasonable to study
families of functions whose square means satisfy certain inequalities, and in par-
ticular the behavior of these functions in the neighborhood of a limit point of
second and third order. In §2 we consider a limit point Q of third order and a

sequence of points $B° in the interior of B with lim,_,.{r", 1{”} = 0.

To every point {¢1,1,} in B° we associate a regular function f(zy, z5; 1, 1) in two
variables z1, z, on B that assumes the value 1 at {1, ¢, } (thatis, f(t1,2;t1,1) =
1), while [y | f[*dw satisfies the inquality (in normal coordinates relative to Q)

2
T _ _
/ | f(z1.22: 11, ) P, < > +11)’(1+ C@t +11)")
B

where o is a quantity determined by the structure of the boundary point, and
C < oo, r > 0 are constants independent of the position of the point {¢,,,}. If
the approach of the pair of points {zy, z5; t1, 3} is towards {0, 0;0, 0} in such a
way that there is always some relation between the x;-coordinate of {z;, z,} and
that of the associated point {¢1, z;}, then

. z3
lim T3
{z1,22311,12}—0,0;0,0} (f1 + 11)

[ min ) =1 @3)

The minimal function Mss(z1, z5; t1, t2) satisfies both of the given conditions, and
in particular the limit relation (4.3)).

Analogous formulas are derived in §3 for the approach of limit points of second
order.

I am indebted to Herr Erwin Klein for the help in preparing this workd.

§1

A further development of the methods employed in K allows it, as we shall see in
the next paragraph, to derive limit relations for several characteristic quantities of
Hermitian metric.
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An important tool are the so-called Jacobian reductions Js(Xoo, ..., Xmn) =
J s5(X) of certain Hermitian formsﬂ which were already introduced in an earlier
work (for different purposes) The precise definition of the J g (X) will be given
on p.

In a Jacobian reduction, the coefficients of the X,, appear as the aforemen-
tioned quantities of interest. On the other hand, in analogy to (I.12f¥), the re-
ductions J(X) and J g+ (X) of two domains B* C 9B satisfy for all values
Xpg: Ju(X) < T+ (X).

This fact allows us, as will be shown in the following, to employ the methods from
K to derive the aforementioned limit relations.

For the following computations it is helpful to introduce symbols for certain ma-
trices, namely,

Xoo K Kooto  Kooor -+ Koomn
[X]mn — XIO [D]mn _ KIOOO KIOW KIOT te KIOWn
Xm” KmnOO Kmnﬁ Kmnﬁ Tt KmnW

[Y]/mn - (Y()O’YIO, o ,Ymn),

[K(z1, z2; 1, fz)]mn

= (K(Z1, 22511, 12), Kooto (21, 225 11, 12), Koot (21, 223 F1. £2), - - -, Koow(zhzz;fufz))

where

- - AP AU Keg (1, 15311, 1)
K= K%(Zl9t2’[1,12)7 KpquA = D 1.7 159 1Y )
AP de i dr)

dl’+’K%(zl,zz;f1,52)
g .

KOOW(ZI, 22;?1’f2) =

9 As we work with functions in two variables, we will mainly use double indices. In the fol-
lowing, we will use the order

(00), (10), (01), (20), (11), (02), ...

(mn)

The term preceding the (mn)-th term in this order will be denoted by (mn,), and Z( pa)=(00)

means a summation over all terms up to the (mn)-th term in the given sequence.
7)C0mpare H §2 as well as Uber Hermitesche Formen, die zu einem Bereich gehoren, Sitzungs-
berichte der Berliner Mathematischen Gesellschaft 26 (1927), p. 178.
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The lower indices attached to the matrix symbols indicate the missing columns in
the matrix.

The following problem leads to the Jacobian reductions: Determine the minimum
of the integral

/|h(21,22)|2d& dw = dx;dy dx2dys (1.1)
B

among all regular and square-integrable functions on 8 that satisfy the conditions

h(ti,t2) = Xoo. hio(t1.t2) = Xi0.  hio(t1.12) = Xo1,

cor hmn(t1, 1) = X, (1.2)
where _— )
d 21,22
hon(t1, 1) = | ————=
( ! 2) |: dZi"dZé’ :|21=11
Zr=1y
and the X ,, are given constants. The desired minimum takes the value
T o] -
The Hermitian forn{®| (I.3) can also be written ad’)
(mn) kyl,| kI|y1kl
1020 [[X]*' [P
> 15 XOP. 15(X) = (-l L0 (14

[D]¥] |[D]*]

(k1)=(00)

We call (1.4)) the Jacobian reduction
J8(Xoo. X105 -+ -+ Xmn)-

The point {#1,7,}, assumed to be an inner point of B, is called the base point of
the Jacobian reduction J s (X).

PROOF: Let 9 (z1,2,), v = 1,2,3,... a complete orthogonal system of func-
tions on ¥B. Then any square-integrable regular function on 8 can be written in
the form

o0
Berz) =Y AwVGiz). A= [V,
v=1 B

$Now consider the X ,, as variables.

9See H, in particular p. 671 to 674.

10(—=1)lPD+1] means 1 if the index pair (pg) has an odd, and —1 if it has an even number in
the order given in footnote
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where -
[ i zPaw = 314, (16

B v=1
holds (the completeness property). Conversely, for every set of values A, with
finite Y 0, |Ay|?, there exists a regular function on B with the representation

(T3] our task is reduced to computing the minimum of the infinite Hermitian
form H(A) = Y -, |Ay|? under the condition

Y Ave) = X, (kI) = (00),(10), (01). ... (mn), (1.7)
=1

where

v _ dkH(P(v)(Zl,z)
zZ1=H '

@
ki dzkdzl
Zr=1p

To obtain this minimum, we differentiate the expression

00 (mn) 00 (mn) 00
Nl Y (Al - xa) - Y 7B (XA - Xu)
v=1 (k1)=(00) v=1 (kI)=(00) v=1
(1.8)
and obtain
(mn)
A= ) we). (1.9)
(k1)=(00)

If we now substitute the thus obtained expressions for A4, in (1.7)) and exchange
the order of summation (which is possible due to the absolute convergence of the

sequence (I.7) and of "2 | |9W),, |2 then we obtain

(mn)

> K =Xeg. (rg) = (00). (10), (O1)..... (mn), (1.10)
(k1)=(00)

"DCompare Zwei Siitze aus dem Ideenkreis des Schwarzschen Lemmas iiber die Funktionen
von zwei komplexen Verdnderlichen, Mathematische Annalen 109 (1934), p. 324, and Hammer-
stein, Uber die Approximation von Funktionen zweier komplexer Vercinderlicher durch Polynome,
Sitzungsberichte der preuBischen Akademie der Wissenschaften (mathematisch-physikalische
Klasse) 1933, p. 259, in particular Hilfssatz I.

2The convergence of ) oo, |<p,§‘;) |2, (k) > (00), is proved in the same manner as the finit-

ness of 352, [¢™|2. To find a bound for 3 5 |¢,§7)|2, the minimum of [g | f'|*de under the

v=1
. K+l
condition % needs to be found.
dz{dz; [ z1=1
=0
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from which

_ [[XT™"" [ D]

= ()T (1.11)
follows. The desired minimum 1is
00 00 (mn) (mn) (mn)

— —kl—(v = I[XT"" DI
SP=YA( Y )= Y aXu= Y o,
v=1 v=1 (k1)=(00) (k1)=(00) (k1)=(00)

(1.12)

which implies (I.4). Interchanging the order of summation is now possible, since
both 322 | |4, and 32, 14,9, (kI) = (00), (10), ..., (mn), exist. We can
now show that can also be written in the form (I.4). Like any other Hermitian
form, (1.3) can be brought into the form

(mn)

T (Xoo. X10.-- . Xoun) = Y [LGX)P, (1.13)
(k1)=(00)

where
LY (X) = /A (A8 Xoo + AR X10 + ... + Ag " Xpes, + Xir)

If we now fix the first (m,, nv)m variables X0, X10, ..., Xin,n, and let X,,, vary,
then this expression will have a minimum, namely J %(X00, X10, - - - s Xmn,). On
the other hand, the same minimal value is obtained if we substitute

(myny)
(k)=(00)
in (T.T3)). Then
(myny)
Z LKL (X)|? = T (Xo0. - - - Xonon,)
(k1)=(00)
or

J8(X00s -+ s Xmn) = J8(Xo0s - - - » Xomon,) + |Lgg" (Xo0s - - - » Xmn)|>. (1.14)
But for Lg" (Xoo, - . ., Xmn) We obtain
[[X]™""[D]5n

mn — (_1\[mm)+1]
B (XOO, Xlo, cee an) - ( 1) \/|[D]mn[D]mvnv|

(1.15)

13)See footnotefor the meaning of (m,, n.).
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By successively determining the respective last linear expression in Lg in the
forms Jg(X), (kl) = (mn), (myny),...,(01),(10), (00), we obtain (I.3).

Remark. For every base point {¢{,,} there exists one and (up to a factor of
absolute value 1) only one solution function

‘ Omn [K(zy, Zz;fni;lfz)]’m”
f(z1,22) = — il |[D]"[1”D|] (1.16)
for the minimum problem on p.
By (1.5)) and (1.9)),
00 o0 mn) 0o
f(z1.22) = ZAv(p(v)(Zl»ZZ) = Zﬁkl Z (P(v)(ZhZz)@;((vl) = Zﬁleooﬁ(zl,Zz;fl,fz)-
v=1 v=1 (k1)=(00) v=1

(Exchanging the order of summation is allowed, as every sequence > 07 lo®™ (24, 22)@({'}) (t1,17)]
converges uniformly on every subdomain of 8 contained in the interior of 8.)

Taking into account (I.TT)), this implies (1.16).

In the following arguments, we shall only use the following Jacobian reduction

2
1 K K
2 1000
J 5 (Xo0, X10, Xo1) = —|Xoo|” + — |— Xoo + X0
K K K0010 K
Ki000 KioTg
2
K K iooTo EIOOO EIOW K K Eoom
1000 Kio1o 0100 Ko1To 0100 Ko11o
7 S p— — o 1%X00 = T —7X10 + Xo1|
0010 0001 0010 0010
Kiooo Kio1o Koot ‘ Kio000 Kio1g ‘ Ki000 Kio1o
Ko1oo Ko115 Koror
(1.17)
their parts and the Jacobian reductions under the conditions %h(t1,%) = Xogo,
hoi(t1,12) = Xor:
2
1 K K
2 0100
H s (Xo0, Xo1) = | Xoo|” + — Xoo + Xo1 (L.18)
K K Kooot K

K0100 K01ﬁ

'We will not use this result in the present work.

I9Establishing the formulas for Js(X) in full generality was done because the method em-
ployed here allows to derive analogous limit relations for further important quantities of the met-
ric.
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For the hypersphere & given by |z; — 2| 4 |23|*> < &5, we have by (4.22/%):

n2E? n2E° 3 — 301, 2
J & (Xo0, X10, Xo1) = ——|Xoo|* + Xoo + X
& (Xoo, X10, Xo1) 20 | Xoo 60° (% —12P) ‘ 5 00 10
2
2E4(1 — 021, 37 L_n)t
+Z ( 2U|2|) - 2X00+—((17 1)22X10+X01 ;
60 oz — |12 — — |52
(1.19)
72E3 72E? 3t,0 2
H & (Xo0, X10) = ——|Xo0/? = ——Xo0 + X10|
& (Xo0, X10) 2o | Xool +602(11+t1—a|t1|2) 00T 10'
(1.20)
where E =t + 11 — o|t1|* — o|t2]?.
For a bicylinder € given by |01 — z1| < 01, |22] < 02 we obtain by (4.11f*):
J &(Xo0, X10, Xo1)
_ 2
3] _
2 2 ( - g_l) w2 2f,
= n?EIEZ| Xoo|* + 7Eg‘Eg E—IXOO + X10| + 7EfE;‘ —EXOO + X10
(1.21)
w2 21 2
2
H@-(Xo(), X()l) = 7T2E12E;|X00|2 + TE%E; _Q—EXOO + XIO 5 (122)
2L2

here E, = 7ol g, P
where £y =1 + 11 — - B2 = 02— -

From the fact that Js(X) is the value of the minimum for the problem posed
on p. [62] a property follows that is important for further studies of the Jacobian
reductions:

Lemma I. If 8 C B”, then the Jacobian reductions J s (X) and J g+ (X) with
the same base point {t1,1,} € B C B* satisfy for any set of values X p;:

J5(Xo0, X10s -, Xmn) < S5+ (Xoo, X10, -+ Xmn)- (1.23)

§2

We now turn to establishing the anounced equations for the limit points of third
order and first recall a few results from K. As before we assume that the interior
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of B in a sufficiently small neighborhood U of the boundary point Q is given by

@1

D(z1,22;21,22) > 0, (2.1)

and that the boundary b> of 9B is given by
D(z1,22;21,22) =0, (2.2)

and that the tangent hyperplane e at the point Q exists. As mentioned in the
preface (p. , the plane €2 containing Q and lying in e? is chosen to as z; = 0,
and its orthogonal plane as z, = 0 (the latter is determined up to a rotation about
zy = 0, as it is only required that it contains Q).

Finally, we can choose the positive direction of the x;-axis such that the inner
normal at the point Q corresponds to values x; > 0, y; = x, = y, = 0 (compare
K §2). For the following, we use these normal coordinates relative to Q from §2
of K. Then (2.2) is written as

2x1 =Y (V1. x2,22) =0, (2.3)

)= o)y o ()0
") ng = =

By slightly strengthening the assumptions made on v in §3 of K we assume

where

that v is three times smoothly differentiable in a neighborhood of the point Q.
Instead of (2.3])) we can then write

@ = 2x; — (ay] + 2iy1(bz> —bZ,) +cz3 +ez5+ ol + ¥3(y1.22.22)) = 0,
2.4)

¥3(r1,22,22) _ 0,and a, o arereal. Y3(y1, 22, Z») is a function

2 2
1 +|z2|
in y1, z2, Z, that is three times differentiable in a neighborhood of the coordinate

origin Q. Assume that there exists an analytic maﬂ of the domain 8 of the form

@.19%)

where limy,, 0 7, -0

2y =z +2bzizy +czy + ..., zp =15, (2.5)

19For simplicity, equations that already appeared in K are indicated by a *.

DThis strengthening will only be used in §§3 to 5.

'®By an analytic map z; = gx(z1.22), k = 1,2, of a domain %8, we will mean a bijective map
of 8, where the g (z1, z2) are regular and uniformly bounded functions in two complex variables
on B. The function z;(z], z5) in is of course also regular on 8.

67



and so the equation for e3 assumes the form (3.17})
2 =ay® +olz; | + Y307, 23.23) (2.6)
in a neighborhood of Q

A domain B* obtained from %8 via (2.5)) for which the boundary hypersurface
in a neighborhood of Q is of the form (2.6) is called the canonical replacement
domain of B for the point Q.

As shown in K, §5, if 0 > 0 and there exists a canonical replacement domain
B* of B whose sections B*(zy = y) for sufficiently small y lie in an arbitrarily
small neighborhood of Q, then Q is a limit point of third order, which shall be
denoted by Q3 in the following.

By an approach A! we mean convergence {z;,z,} — Q3 such that the point
{z1, z»} from B remains within a cone W, where W, denotes the totality of all
rays through the boundary point Q3 whose angle to the inner normal is less than
«. Using the point Q3 for normal coordinates, the cone ¥, is characterized by

/1712 2 1
S el 21 el < Z 2.7)
X1 cos(a) 2

Finally, let ., denote the subset of W, that in addition to (2.7) also satisfies

the inequality

0<x <c. (2.8)

Functions that converge uniformly to 0 upon an approach A! to Q3 (where the
path of the approach is in ., ) will be denoted by the symbol 2.

Theorem 1. Under an approach A!, the following limit relations hold at a limit

point Q37

lim(21 + 21)4

dKs(z1,22:21.22) _ _6_07 lim(z, +El)4dK%(21,22;31,52) _
dz; 2 dz,
(2.9)
2
lim(z; 4+ Z1)?ds® = lim(z; +21)* Y Tpadzmdz, = 3[dz;>,  (2.10)
mn=1

hmISB(Zl,Zz;El,Ez) = i (211)
972
1YWe emphasize that for the proof of Theorem I in §5 of K only the uniqueness of (2.3) in a
sufficiently small neighborhood of Q is required, and therefore b** can always be brought into
the form @]*) in the neighborhood of Q.
20 As agreed upon before, we will use normal coordinates for Q3 in the following arguments.
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PROOF: By the arguments in §3 of K, a sequence converging to Q3 in the sense
of Al is mapped to a sequence of the same type under a transformation (2.3)).
Moreover, by (3.7), under the approach Al

21 +z7 = (z1 + Z1)(1 + £2).

It is therefore sufficient to prove that the claimed limit relations hold for the canon-
ical replacement domain ‘B*F—_B]

A domain 3 (or o) contained in B* (or containing B*) and containing the bound-
ary point Q3 and in it the same tangent hyperplane as 8" is called the inner (or
outer) comparison domain.

As shown in §5 of K, such comparison domains 3 or % are obtained from the

hyperspheres
2
+|z,)% < k=1,2 (2.12)

zy— —
Ok

=,
Ok

via the transformations (5.3[*)

I
L z;=22( Rl ) 2.13)

1+ (a1 + B1)n1

or (5.21FP?)

1 _
7] = _a zh =13 ( + (P> aZ)Zl) , (2.14)

1—0[221, 1—06221

where 0%, k = 1,2, are two arbitrary positive quantities satisfying 0, < 0 < o7,
and o, Bk, k = 1,2, are certain contants given in K@

We proceed with the computation of the coefficients in the Jacobian reductions
J (X900, X10, Xo1) and H (X9, Xo1) of 3 and A, which themselves are functions
of the base point. Since we are primarily interested in the behavior of the func-
tions under the approach A!, we will use the symbol £2 introduced on p. The

2D1In the following, we omit the * in z¥, 5.

2Tn ) it should be z, = 14—;3—212’1 rather than z, = H—jﬂﬁ’ and in l' it should be
zbh = z5(1 + Boz}) rather than z5, = z,(1 + B2z1).

29In §5 of K, we tacitly assumed that B*(z, = 0) is the projection of B* to the z,-plane (that
is, the set of all zo-coordinates of B*). If this is not the case, we can use this projection rather than
B*(zo = 0) in K for the construction of the outer comparison domain. Since now in a sufficiently
small neighborhood of the point Q5 the boundary b*? is given by (2.6), it follows that the boundary
curve of the projection of B to z, = 0 is given by 2x1 = ay? + o|z2|*> + ¥3(y1, 22, Z2). The
arguments of §5 in K may thus be repeated in the general case without difficulty.
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functions appearing here still depend on o, and will use the symbol §2 only if the
function also converges uniformly in o to O on the interval for o.

For short, we write{”)]

A¥ = (1 —oz)(1 + Brzy) = 1+ 2,

A = (1 + az)(1+ o)’ = 1 + £2,

E® =21+ 71 — Qoy + 01)|z1 > — o1l z2(1 + (B1 — o1) 7 — a1 priz})?

E¥ =z2; + 71 — Qua — 02) 211> — 02|22 |* + Balz1 + Z1)7 + 12112 (21 + Z1) (B3 + B2z — 02))

— 0202(21 + Z1)|22)* + BEQaz — 02) |21 |* — 0202 |z122* = (21 + Z1)(1 + ).

(2.15)
For the derivatives of these quantities, we obtain@
3 dAS N
Afy = P (Br—a1)— 82, Ajy = (a2 +285) + £2,
1
dE dE _
Eirpoo = —— =1+ 82, Eoroo=— = —0xZ2(l + £2),
d21 dZZ
ES o= —Qai+01)(1482), Els = Qua—0a+B2)(142), ES 5= —0122(1+2),
Ejs =0, Egor =—0r(l+ ).
Since by (4.22) and (1.158°)
20k|A|2 20k
K= = 1+ £2), 2.16
n2E3 72(z4 +El)3( +42) (2.16)
it follows that
K . 20'k Aloz 3AZE1000 i 6Uk(1 + Q) N 60']322(1 + Q)
1000 =~ 7B o T TGt 0100 = It
240y 2401322
Kige=——— (1 2 , Kot = — 1 2 ’
1010 71_4(21 +El)5( + ) 011 7T2(Zl + 21)5( + )
607
Kojor = ——————(1 +
0101 = 757, _'_31)4( + £2)
(2.17)

2To facilitate the eventual handling of the main formulas, the intermediate results of our com-

putations are compiled in (Z.13) to (2.22).

291f the indices 3 or % are missing for the Kynpg, 4, .. ., then the respective formular holds for
both 3 and 2.

20)1n those cases in which it is clear from the context which domain the kernel function refers to,
the name of the domain in the index of K is omitted.
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and therefore

2
K Kooto — M, (2.18)
Kiooo Kioto| 74(z1 +7Z1)8
3
K Kooor — M, (2.19)
Kotoo Koot n4(zy +21)7
3_
K Kooo _ 126k22(1 —_|— .Q)’ (2.20)
Kotoo Koi1o n4(zy +7,)8
K Kooto  Kooor 720}?(1 + )
Kiooo Kioto Kioor| = 6z £ 22 (2.21)
K0100 KolTo KOIT ! !
KK Eoom
To obtain the limit relations for T,;; = w, we employ the Jacobian
reduction J (0, X19). By Lemma I,
J3(0, X10) < J+(0, X19) < Ja(0, Xy10). (2.22)
If 11° denotes the expression®”|
K
K Kooﬁ ,
K1000 K1oﬁ
then it follows from (2.22)) that
Ag < Agge < Ay (2.23)
from which we obtain by (2.18) and (2.16))
201 (14R2) 20,(1+£2)
72(z1+21)3 <l 72(z1+21)3
1202(1+2) — B — 1202(1+2)
74(z1+21)8 74(z1+21)8
and 10
2 2
T fim—® < (2.24)
60, (21 + 21)5 60,
As 01 — 0, may become arbitrarily small,
AIO* 2
li v _ T (2.25)

N +25 60

2 Compare ).
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Finally, by (2.16),
) 1
lim(z; +71)*Ty =lim(z; +2;)’—5 = 3. (2.26)
11 K%*X%*

Using H (0, X¢1) and J (0, 0, X¢;) in a similar way, we obtain:

01
. 1 K 2
lim — 8" _ Jim _ - 2.27)
(z1 +Z1)* (z1+z)*| K Koroo 602
Kooﬁ Kmﬁ
501 K Kooﬁ
. 1 K Kioto 2
lim —2" _ — |im - 1000 Totol T g 0g)
(z1 +7Z1) (z1 +7Z1) K Kiooo Koioo 60
KOOT Kloﬁ K01E
KOOT Kloﬁ Kmﬁ
which imply
. _ * . o1+ zZ
lim(z; +Z)) TS = lim K;—,LLOII =20 (2.29)
%*
and by ((LT7)%)
2
lim 1 g+ (21, 22:21,Z2) = im Ky AgeAge = o3 (2.30)
which proves (2.T1).
Using J ( \/(Z}]((I’Em, 7 Z)l( fz,)s) leads to a limit relation for (HQT‘BI*. From

JN( Xoo X1o ) _ J< Xoo X1o )
i V(z1 +71)3’ N A V(1 +71)3’ Vi +70)°

J%( Xoo X10 )
B \/(21 +31)3’ \/(21 +7z,)°

<
(2.31)
together with (2.16), (2.25]) and (2.17) it follows that
w? w? w? w? _ _ K
—|Xoo|> + =—13X00 + X10/* < ==|Xoo|> + —| —lim(z; + Z)) 1000Xoo + X1o/?
20, 601 20 60 K

2 , 7w )
< —|Xoo|” + —13Xo00 + X10|",
20'2 60'2
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from which we obtain

60
K1oo =3, thatis, lim(z; + Z1) K1o0o = —
/1

—lim(z; + zy)

(2.32)

and taking into account (2.16), we obtain the first relation in (2.9). Moreover,

from
H g+ (Xo0,0) < Hn(Xg.0)

and (2.16), 2.27), (2.17) it follows that

w? 2 K000 |
_(ZI+ZI) (1+~Q)+ (21 +21)* |—(z1 + Z1) K
2 w2 30,7, |?
= 5 G I 1+ 2) + o5+ )t |- =
6 2 Z1+ 2z

By dividing this inequality by (z; + Z;)?, we obtain

1000

lim(z, + z1) =0

and by taking into account (2.16), the second relation in (2.9).

Now, it follows from
J95+(0, X10,0) < Ju(0, X19,0)

and (2.25), (2.28), (2.20), (2.18) that

K

KOIOO

2 2

b4 _ .5 T _ 4
(@ +2)’+ (@ +7

G I+ S+

HKIOOO

that is (compare (2.18))

lim(21 + 21)8

from which we finally obtain

lim(z, +21)*T% = lim(z; + Z;)?
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Now (2.10) follows from (2.26), (2.37) and (2.29).

We now consider the points of second order. The boundary manifold B> in a
neighborhood of Q shall again be given by (2.3)), where we now only assume
to be differentiable once (in all variables). Moreover, in a neighborhood of Q, b3
shall have common surface segment $? with an analytic surface z; — g(z,) = 0.
Here, g,(z) with g’(0) > 0 is a unique and regular function in z, on B? (the
projection of b onto the z,-plane) and Q an interior point of $2 in z; — g(zz)

Via the transformation z| = z; — g(z2), z, = z», we can achieve that the surface
segment $? lies in the plane z{ = 0. We will always use these coordinates z}, z,
when investigating points of second order Under certain natural assumptions
on ‘B (see K, §6m the order of approaching infinity of the kernel function when
approaching these boundary points is A(Q,®B) = 2. In the second part of §6 in
K, we identified a special class of these boundary points and showed that they are
limit points. The assumptions (slightly changed compared to §6) on the structure
of the boundary points (denoted by Q») are:

1. The section $2 = b>(z, = 0) is a starshaped domain with respect to z, =
0. If R = h(0) is the equation of a boundary curve, then we assume that
h(6) is continuously differentiable. That is,

|h(0)>a >0, |W(@)|<B<oo, 0=<6<2m,
where a and B are suitable constants.

L > 0 that touches

2. The section B(z; = 0) contains a circle 32 of radius 2

the y;-axis in the point z; = 0.
3. For the sections B(z; = y) we assume that

B(z, = 0)

m(ly])
m(ly)B(z1 = 0) D B(z1 =y) for|y| <5, Re(y) >0  (2.39)

CB(zy =y), forly|<§, ye3? (2.38)

28)This type of boundary point appears for example in certain domains with maximum surface.
Compare Uber eine in gewissen Bereichen mit Maximumfiiiche giiltige Integraldarstellung der
Funktionen zweier komplexer Variablen I, Mathematische Zeitschrift 89 (1934), p. 77, in particular
the domains in §5.

2n the following, the primes will be omitted in z{, z5.

30Note that on p- 23 in K, A(z2,Z2) must be replaced by A(y1,z2,Z2) and in ),
lim;, o A(z2,Z2) must be replaced by lim,,, 9 A(y1, 22, Z2).
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holds where m(|y|) = 1 + N|y|% and N < oo, t > 0 are suitable
constants.

4. For all points in 8 + 63, z1 +z1 > 0 holds.

By an approach A towards the boundary point Q(0, a,), with a» in $7, we mean

the convergence {z1, z} — {0, a,}, where the z;-coordinates of the point {z;, z,}

of 8 remains inside the angular domain
|z1]

W2 x>0, —<
* P T cos(a)’

T
< . 2.40
ol < 3 2.40)

In analogy to our previous usage, T2, denotes the subdomain of B2 that satis-
fies (2.8) in addition to (2.40). Without further mention, once fixed, « shall be
considered constant in the following.

To overlook the changes in the limit formulas that appear in the variation of the
limit point in the interior of $2, we drop the assumption that Q, is the coordi-
nate origin and merely assume that Q, is an inner point of $2, that is, O, has
coordinates 0, a, (with a, € $?).

For those functions that converge uniformly to 0 under an approach AY to {0, a,}
(a, € $? fixed) and whose exact value is not of interest for our investigations, we
shall throughout use the symbol O, where the uniformly bounded functions under
the same approach are usually denoted by B.

Theorem II. At a limit point Q,(0,a,), a, € $?, the following limit relations
hold under the approach A" :

dK , 22,21, 2 2
lim(z; _’_21)3 8(21,22:21,22) _ ’
dz; 2P (a,)? 2.41)
dKs(21,22;21,Z '
lim(z, +21)3 8(21,22;Z21,22) —0.
d22

2
lim(zy + 21)%ds®> = lim(zy +21)% ) Tpadzmdz, =2|dz1|>.  (242)

mn=1

3DThe assumptions made on p. can be replaced by the weaker conditions stated here in 2. and
3. The following arguments in K do not have to be modified.

Moreover, note that the work cited in footnote 28)|and its second part (to appear soon in Math-
ematische Zeitschrift) studies certain domains that are bounded by finitely many analytic hyper-
surfaces. As shown in §7 there, for a large class of such domains, every “leaf” of the analytic
boundary surface can be transformed into our normal form here, where assumptions 1. to 4. are
satisfied.
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1
472’

where P(a») is the image radius of $* with respect to azﬂ

lim I'g(z1,22:21,22) = (2.43)

PROOF: To construct the comparison domain of 8 for Q,, we need a function
fv(z2) that was already introduced in (6.14) in K. It maps the right z-halfplane to
an isosceles triangle AOB. The sides AO and BO of this triangle are symmetric
with respect to the real axis, the point O lies on this axis and has abscissa 1. The
angle <AOB has the value 7. To determine the parameter v, we choose a positive
K < ﬁ < 1, where a is the distance of the point a, from the boundary of $2, and
Z5* is the maximum of the absolute values of all z,-coordinates in 8. By 32(x)
we denote the domain in the right z-halfplane on which | £, (z)| > « holds. Now

determine v large enough for the inequalities (6.16[*), (6.17[*), (6.29}*), (6.30f*) and

(6.31f*) to hold (the last three inequalities make use of the constants in assumptions

1. to 3.). All these inequalities yield a lower boundary for v.

As the circle 32 introduced in assumption 2. can always be replaced by a small
circle (touching the y-axis in the origin), we assume that 32 C 37?(k) to begin
with.

Let 3 = 3?x$2. The domain 3, obtained from 3 via the transformation z1 = Z1,
z5 = 2 fy(z1) is an inner comparison domain of ¥B: Firstly, at the point O, the
inner normal will coincide with the x;-axis, and secondly, as J, is contained in
the domain D C B (introduced in K), it follows that 3, C B.

As an outer comparison domain we use the domain %, given in K (denoted by
A" there), which is obtained from A = €2 x 2 (with €2 the right z, -halfplane)
viazy =21, 25 = 745

We will now compute the coefficients of the Jacobian reductions J (X0, X190, Xo1)
and H (X¢, Xo1) for 3, and A,,.

By (6.14[) and by §2 of the article Uber die ausgezeichneten Randflichen in der
Theorie der Funktionen von zwei komplexen Veréinderlicher@l, where a function

32)By the image radius of a domain $? with respect to a, we mean the radius of the circle to
which the domain can be mapped simply and conformally by that function which has derivative
1 at ap. Compare Bieberbach, Lehrbuch der Funktionentheorie II (Berlin, 1927), p. 322. In the
following paragraph we refer to §6 of K, where instead of A1, Oy, By, Ty (k) we use 4, O, B,
32(k). On p. 25, line 1, instead of “z-plane” it should read “right z-halfplane”, and in (6.20%),
M, < 1 should be replaced by M» < 1 + ¢, lim,_5 &, = 0.

3YMathematische Annalen 104 (1931), p. 611. This work in referred to as A in the following.
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t,(z) related to f,(z) was studied, f,,(z;) has an expansion

folz) = 1= Az} +enz ™ + 4y = TG (2.44)
z1)=1—A,zy +a1z, " ce = .
vi<1 V< 141 v F( )F(2 Zv
near z; = 0, which implies
£, (0) =1, limo(z1 +2z1) f,(z1) = 0. (2.45)
Z1—>

If w(z,), w(0) = 0, w(0) > 0 denote the function that maps $? to the circle
lw| < 1, and if we write w = w©®, 37’”2 == w®, etc. for short, then by the Mean
Value Theorem,

w® (%) = w(k)(ZZ)"_ZI%Kk(Zl»ZZ) and w(k)(ZZ)(Zva(ZI)) = w(k)(22)+z Gi(z1,22),
(2.46)

where

(1)
o (6
Kk=—“”k+”( G )ZZf ©2) Gy = W D (2, £(020)22 £ D021,

fH0z))  fo(0z1)?
(2.47)
with0 < 6 < 1,k = 0,1, ;') = <L Since now by (1.15%) and (4.11)
d(z) )*
2
Ky — [w'(725)]
w2(z1 + 21 — 0]z1[)?(1 = [w(F25) D2 A (z0) ]2 (2.472)

[w'(z2 fo (2 fo(z0) 2

Ke, = — ,
72 (z1 +Z21)*(1 = |w(z2 fu(21))?)?
we obtain®¥)]
B
K=———(1+0), K = —(—2+0), K = KBj,
72(zy + 21)2( ) 1000 7+ 21( ) 0100 1
(2.48)
3)The relation for K3%, is obtained from
KL000 _ K w(z)(fuz(ﬂ))zzf (@) _9 1 -0z _2w(flz(221)w(l)(fz(zm))Zqu/(Zl) _ fr(z1)
i w(725) £, (212 "z + 71 —olzi? (1= w(FZ) L) fulzn)

Similarly, using (2.44) and (2.46), the other formulas are established. If K,;,,,57 does not have an
upper indes 3, or A, then the formula holds for both domains.
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where, as already stated,

w1 wP(z) w(z)w'(z2)

SO w@PE  P@E D T w0y T (wi)P

Furthermore,

6+0

Kyyig =Kl ——— |, Kior = K(B24+0), K,go1 = — —(2B,+0),
011 ((Z1+51)2) 0101 (B210) 1001 Z1+Z1( 1+0)
(2.49)
where B, = |B1|?> + 2B. We obtain
K K1o00 2
=—(1+4+0), 2.50
Kooto Kioto (z1 + 21)2( ) ( :
K Kowoo| _ 2K%(B + 0), (2.51)
Kooor Korot
K Ko100 K*0
= , 2.52
Kooto Koo Z1 4+ 2 ( )
K Kio0o Ko1oo 4K3(B + 0)
Kooto Kioto Koito| = m (2.53)
KoooT Kon Kmﬁ ! !

In analogy to the limit points of third order, it follows from (2.23), (2.48)) and
(2.50) that

1 _
Ay = T Z1)*(1 + 0), (2.54)
which implies
: e _ . (@ +Z0)?
lim(zy +2)°T; = l1mT)L;90 =2. (2.55)
Analogously, by (2.51)), (2.50) and (2.33),
01 2
) Mg T
| = , 2.56
m (Zl +El)2 2B2 ( )
AOI nz
li B — 2.57
Gt 2B 237
which implies
limT = 2B (2.58)
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and (C43).

From

B Xoo X0 B Xoo Xio
_2J3v —_ = \2 E _2‘]% —_ = \2
T z1+z1 (z14+721) b4 z14+2z1 (21 +7Z1)

2.
LB, (Ko X ) Y
BE LA G- CHNEN T
it follows that
2 1 2 , 1 K1000 2
| Xoo|” + §|2X00 + Xi0l” =< | Xool” + 5 —lim(z, +Zy) Xoo + X0
< | Xool* + §|2X00 + X0/,
(2.60)
from which we obtain
2B
lim(z; 4+ Zz1) K100 = —2, thatis, lim(z; + Z1)*Kio00 = -—- (2.61)
T

Multiplying @) by %m and taking the limi z; — 0, z, — a», we obtain

2
KIOOO

1+11' <1+1|B|2
— lim — ,
2 = T

which implies

B|B,|

= |By|, thatis, lim(z; + Z1)*|Ki000| = 2

K
lim ' —1000 (2.62)

Multiplying (2.35)) by W and taking the limit z; — 0, z, — a,, we obtain

K

2
K Koioo
1 1 Kooa Koiio 1
_ [Poot atol | _ —|oP,
B 1 +Zl K K1000 B
Kooto  Kioto
which implies
K Koioo
1 Koos Koo Koo
lim 1 001 0110 =0, thatis, hm(zl+zl)|T 5| = lim(z;+Z7)
zi+zZ1| K Kiooo

KooT K10ﬁ

Now (2.42) follows from (2.53), (2.58) and (2.63).

79

(2.63)



§3

In §§3 to 5, we give limit relations under an approach to the limit points Q3 of
third order for certain families of functions, and moreover we will show that the
minimal function Mg (21, z5: 11, 1) = % of B with base point {t1,1,}
belongs to this family of functions.

By 1,1t and zy, z, we will always denote normal coordinates for the boundary
point 3, which we will not mention explicitely. As we remarked in §2, the
boundary hypersurface in a neighborhood of Q3 is given by (2.3). Through a
transformation of type we obtain the canonical replacement domain 8%,
where the equation of the boundary hypersurface b*> in a neighborhood of Q35 is
brought into the special form (2.6)).

We will now show: From the assumptions made on v3 in §2 follows the existence
of a constant A such that

[Vvs(ry, 23Z5)| < Ayt + 1231°). 3.1)

It is enough to show that (3.1) holds in a sufficiently small neighborhood of Q3.

If in we replace, according to (2.3), x1, y; by the real and imaginary parts
(x7 +iyy) +2b(z7 +iy7) (x5 +1iy3) + ..., x2, y2 by xJ, y5, then we obtain an
equation of the form @*(x7, y, x5, y;) = 0. As the pair of transformations (2.5))
maps the point Q3 to itself and a sufficiently small neighborhood of Q3 in z;z,-
space bijectively and continuously into such a neighborhood of Q3 in z}z5-space,
it follows that

0P*(x7, ¥1.x3.,55)

*
axl )xi“:yi“=x§=y§=0

6ot 2o,

hold. By the Implicit Function Theore @* = ( can be represented in a suffi-
ciently small neighborhood |yy| <6, |x5| <46, |y5| < by

xf =y 07 x5, v5). (3.2)

As @ was assumed three-times continuously differentiable and the pair of trans-
formations is analytic, @* and hence {* is three-times continuously dif-
ferentiable. A formal computation shows that the terms of second degree are of

35 Compare for example Osgood, Funktionentheorie I, p. 69.
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the form given in (2.6), whereas ¥} (v, X5, Z5) is a three-times continuously dif-
ferentiable function in y{ = z; = 0 for which the first two derivatives in all
variables vanish.

By the first Mean Value Theorem, we can set
VI(vE z3.78) = Az 4 Aoy PPzr 4 .+ Agzy?Zh + AoziZi,

where the Ay = Ax(y], x5, Z,) are uniformly bounded functions in a neighbor-
hood of y{ = z7 = 0. If % denotes an upper bound for the Ay, then we obtain
(3.1)), which was to be shown[?)

THE p-COUPLED APPROACH OF A PAIR OF POINTS. By a p-coupled pair of

points (p > 0F7)
{ZI’ZZ’tlatZ}’ Zk:xk—l—iykv tk:uk—l—ivk’ X1 >O’ 251 >O

we mean a sequence in which the x;- and u-coordinates of corresponding points
{z1, 25} and {11, t,} always satisfy the inequality

p

0<m=<"L <M < . 3.3)
X1

where m, M are suitable constants, independent of the positions of the points.

If moreover the points {zy, z,}, {¢1, £, } converge to Q3 in the sense of the approach
A', then we will speak of a p-coupled A'-approach of the pair of points, or simply
of a p-coupled Al-sequence of points.

As remarked in K, §3, we can change from one normal coordinate system zy, z;
/ / : : 5
to another one z/, z; via a transformation of the form (3.3[¥).

Now we wish to show that the given definition of the p-coupled Al-approach is
independent of the choice of normal coordinate system.

Since, as was expounded in §3 of K in more detail, a sequence of points converg-
ing in the sense Al in z;z,-space is mapped into such a sequence in z}z5-space,
/D

. . . ul
we only need to show that (3.3) implies an analogous estimate for e

39 As the domain %B* is finite, we may assume that all of the boundary b*3 of B* is given by
(2.6), where ¥} statisfies the inequality (3.1)) (possibly after enlarging A) and /3 has the stated
property in a neighborhood of Q3. (Of course, ¥ can be ambiuous outside of the neighborhood

of Q 3.
3D1n the following, we omit the * in zy, z5, with the exception of the arguments on p.
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NowP¥| (compare (3.6f) and (3.4)),

- D
. T+ gia(t,)+glLh) | A IP+Inl? ~
Qup? (5 +1)? JIn P+l n+n (ty +71)?
= = — 1
X1 z1+ 7, 7 + 812(21.22)4+815(Z1.22) | ¥ lz1P+1z212  Z1 + 23
Vlz1P+z2f? 21471

PSRV
hth (ty +11)?
T4+ Q- A 1z12+lz2? 1+

zZ1+21

As (277) holds under the approach Al, we have for a sufficiently small neighbor-
hood of Q3

P 'p p
km <kl <Xl < gL < gy, (3.4)
X1 X1 X1

where 0 < k < K < oo. As relation (3.3)) only needs to be shown for sufficiently
small values of the variables, it follows from (3.4)) that the sequence {z/, z}, 71, 25}
is also p-coupled, as was to be shown.

For the following, it is helpful to give different characterization for the p-coupled
Al-sequences of pairs of points.

Let M denote a subdomain of W, for which in addition to (2.7) also
O<c<X;<C < 3.5)

holds, where ¢ and C are suitable positive constants, small enough such that 8 ¢

lies in B*.

By capital letters Z, Z, (Zy = Xx +1Yy) and T1, T (Ty = Uy + iVy) we will

always denote points in .

We will now show that for every p-coupled sequence of pairs of points {ng), Z;U), tl(v)
v =1,2,..., we can construct a suitable domain It such that
Z(V) T(V)
ZIS)) = '; , t,ﬁv) =% lim n, = oo,
ny n, V—00

where {Z}”), Zév)} and {Tl(v), Tz(”)}, v =1,2,..., are two point sequences in M.

We choose n, = -4, that is, we set U = d. From limu{” = 0 follows
"
lim,_, o 1, = 0o. From (3.3)) it moreover follows that
dr uMPyp o gp
— <X =xnl < L= (3.6)
M m m

3)See §3 in K for details of this argument.
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VIZPPHZ12 Iz Pz 1

Since on the other hand 0 = O @

W€ nNow con-

1 1
clude that the sequences of points {Z\", ZV and {T*, T’} lie in a domain M

with p e
c=min(d,—), szax(d,—).
M M

. . . z" z®" ™ T .
Conversely, if a sequence of pairs of points { =L—, =2, -, —2— 7 is given, in
ny ny ny ny

w)p

which (3.3)) holds for X 1(V) and Ul(”), then % < M~ < €7 that is, the sequence

C
X1

Q

is p-coupled in the sense of our first definition.

§ 4

Theorem III. Suppose to every point {t;,t,} of a sequence of points B° lying in
W, with lim{t,,1,} = Q3 we assign a function f(zy,z,;ty,1t,) in the complex
variables zy, z, that is regular on 8 and square-integrable. Assume further that
every function in this family has the following two properties:

1. It holds that
Sttt 02) = 1. 4.1)

2. The integrals [y | f(21, 22; 1, 12)|*dw; satisfy the inequality

2
b1 _ _
f |f(21,22§11,12)|2d0)z =< %(Il + 11)3(1 +C(t +11)"), (4.2)
B

where C < oo, r > 0 are fixed constants independent of {t, t,}, and o is the

characteristic quantity of the boundary point Q 3 appearing in the expansion

(24). Then for every p with max(1 — %, 1%) < p < 1 it holds that under

a p-coupled Al-approach of the pair of points {z;,z,,t1,1} um'forml
(with respect to any path of approach within 88, )

3
Z1

limmf(21,22;tl,t2) =1 forp < 1, (43)
1 1

(2 + 7))’
m—

li = Z1,2Z2.t1,t0) =1 forp = 1. 4.4
(t1+t1)3f(1 2:11,12) p (4.4)

3By assumption, « is fixed for our angular domain 8, (that is, & in (2.7))).
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PROOF: For the proof, we use claims I to IV, which will be proved later in §5.

Via a transformation (2.3]) we replace ¥ by its canonical replacement domain 8™
(for which the boundary hypersurface in a neighborhood of Q3 = Q3 is given by
(2.6)). If on B* we consider the function

ko k%, ok % * % * % * % * % (Z ’ )
frl 25, t) = f(Zl(Zl,Zz),Zz(Zl,Zz);h(H,lz),tz(fl,tz)) E(l‘l )
1>
45)
with a( )
% 21,22
E(z7], = 5
SR e

for which f*(¢t],t5;t;,t;) = 1 holds, then (as will be shown in Ia) the integrals
S | ¥ (2f, 23 1], 13)|*dw, satisfy an inequality of the form (@2). On the other
hand, from the fact that f™* satisfies the limit relations (4.3)) and (4.4) we can easily
deduce that the same limit relations hold for f (see Ib).

To prove relations (4.3) and (4.4) for f * we construct a sequence of inner
comparison domains 3, (described in more detail later in II on p.[88)). The inves-
tigations in III and II (compare p. [96)) lead to the following result: Let {Z,, Z,}
and {77, T, } be arbitrary points in . Then { } € 3, and

T, T
/ MS‘n(Zl»ZZ§_1,_2)
S n
(4.6)

n
where B is a uniformly bounded function inn > ng and {77, T,} € M. Moreover

2

T _ Bn,T,,T,:T,, T
dw, = (Ti+T) |1+ (n, T 272
2n3o

ns

for every p with% <p<l,

17_11) ’ n > Zy Z, Th T,
lim | —2— (—_) Mgn (—, _—, —, —) = 1. 4.7
n—00 np T, + T, n? n? n n

We now introduce the sequence of auxiliary functions
T, T T, T T, T
h (21,22; —, —2) =f (21,22; =, —2) — Mg, (21,22; =, —2) . (43)
n o n n o n n o n

of which each one is regular in its corresponding 3,. Using Lemma II (to be
proved later), we find that for n > ny (where n( can be chosen independently of

{T1, T»} in M) it follows by using @2) and @.6) (compare p. 227

.Tl T2 2 C1 . 1
/n h(zl,zz,7,7) dw25n3+g, 0 = min r,g . 4.9)

4OWith the exception of the aruguments in I, we omit the * in f*, z}, z5, ¢}, £ from now on.
4DThe ¢k, k = 1,2, 3, 4, are fixed constants, independent of n > ng and {T1, 7>} € M.
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On the other hand, as will be shown in III, there exists for every point {Z, Z,}

of M and for every n > ng a bicylinder € (Z—p‘, Z—,%) centered at Zp‘ , p} and of

volume < 313, that is completely contained in 3 ,,. Here, ¢, = mw27>, where 7 is the

constant given in III.

Z1

Figure 1

For every regular function g(Z;, Z,) on a Reinhardt circle domain & a theorem
(proved earlier) holds, stating that the value of g at the center ({1, {») of & satisfies

the inequalit
! Y@ [ 18(Z1, Z,)?dw

Lo)P < 4.10
1g(81,82)|" = vol(K) ( )
Since {Z, Z>} € M (as shown in III) implies € (n,i n,,) C 3, forh (21,22, Zl, 7;2),
which is regular in € (n; , n,,) C 3, it holds by (.10) that
2
‘h (Zl Z, Ty Tz)‘ _ f@(%%) |h|2dw
n? nP 00 )| TN vol(€ (4, 22))
|h|*dw c ¢
= fsn = 3+3_3 = 73 14 3.
\ vol(€& (n; n;)) n>te=3r  ,s5+30-3p
4.11)

4)See H, Hilfssatz I, p. 649.t
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that is,

W3-30), Zi Zo T T2 _ C4 @4.12)
n? n? nn )| T pietie-3 '
Both functions My, (f),, nzﬁ, 7;,‘, 22) and h (f},, 22, %, %) are defined for any n

and any {Z, Z,} € M. If we now choose 1 > p > max (1 -3 %) then from
and (4.12) the limit relations (4.3]) and (#.4)) follows, which, assuming claims
I to IV, proves Theorem III.

The minimal function Mg (z1, z2; 11, 1) satisfies (4.1)) by definition, and by (1.12}*)
and (L.T1}*) and the relations (5.40) below also the inequality (4.2). Hence:

Corollary. Under a p-coupled A'-approach of the pair of points {z, z5, 11,1} —
{0, 0,0, 0}, the limit relations stated in(4.3)) and (@.4)) hold for the minimal func-
tion Msg(z1, z2;t1,1,) of B.

§5

Now we give the proofs for the statements I to I'V.
I. We show that

(a) relation (&.2) holds for the function f*(z}, z3; 17, 5 ) introduced in (@3)

(b) from the limit relations (4.3)) and @.4) for the function f*(z7,z5;t],15),
the same limit relations follow for f(zy, z2; 11, 12).

PROOF: (a) As a consequence of the regularity of #; (¢, ;') in a neighborhood of
t7 =0,y =0, it follows from the Mean Value Theorem that

to =15+ At 4 Ast ity + Asty?, E(tF, 1) = 1 + Aty + Ast],

where Ax = Ax(t].t5), k = 1,...,5, is a function in ¢],¢; that is uniformly
bounded on a small neighborhood of {0, 0}. By (2.7), in ¥+ it holds that
t; T
|’<|_* < e < =
tf+1, ~ cos(a*) 2

Hence there exists a finite constant A such that for the given neighborhood

T <+ + AGT + 7)), <1+ AGC+T0) (6.0

[EGE )] ~

#)Recall that the coordinates z}, z5 refer to the replacement domain, z1, z refer to the original
domain.
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holds. Hence, for r < 17

1
| f*(zF, 258, ) Pdw, = —/ | f(z1,22: 11, 1) |Pdw
/;s* b CECE )P e ’

2
T -3 _
S s )0+ C + 1)
- 20|E(t1*,t2*)|2(1 2 (1 (5.2)
2
T -k * -k * —k\r * —R\\ T
= Z(Zf + t1)3)1 + A(f] + tl))z(l +C(t + 1) (1 + At +1y)) )
n? —x s
< —@F+1)’A+CHer +1)),
20
where C* is a suitable constant. This proves (a).
(b) Analogously, we can write for z}" and m = E(z{,z}) as follows:
* 2 2 1
zy = z1+ Bizi + Baz1z2 + Bszj, D(r.20) =1+ B4z + Bsza,
1,22

where By = By (z1, z») a uniformly bounded functions in zy, z, on a sufficiently
small neighborhood of the coordinate origin. It thus follows firstly that under an
Al-approach
x 11
lim 2L = 1 (and thus Tim 111 — 1) (5.3)

Z1 h+1t

holds. Moreover, under a 1-coupled Al-approach of the pair of points {z, z, 11, 12},

Z1 +;T

Biz} + B\, + Bazizy + BoliTs + B3z} + Bat,
21+ 1 .

=1+ @ +n) @)

On the other hand, |z; + 7| > x; (as x; > 0, u; > 0), where

X1

U M x
1] < L 1

|zk| <

cos(a)’ cos() ~ cos(a)’

from which the uniform boundedness of the coefficients in z; + 7, and thus in the
case p = 1in (3.3)

follows.

“Without loss of generality, we may assume r < 1.
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II. We turn to setting up the comparison domains 3, and q,,, n = 1,2,3.. .
These arise from hyperspheres (2.12) (denoted by &, , ) of the radii

1 1 1 1
—=——F and — =——F- (5.5)

D
O1n o+ —11 O2n o — —
ns

via the transformations (2.13)) and (2.14), respectively, where we have to put
4
Bin = Cgns. (5.6)
The o appearing in (2.13]) and (2.14), as well as Dy, Cx, k = 1, 2, are constants,
independent of n, with whose determination we will be concerned later. We turn
to their determination and the proof that the thus obtained domains are the inner
and outer comparison domains B* for Q3. As all of these domains have the

coordinate origin Q3 as a boundary point and x = 0 as a common tangent plane,
all we need to show is that
3. C B, (5.7)

and
B*C A, (5.8)

holds. In K, §5, the same relations (compare (5.16f*) and (5.33}*)) were proved
by firstly constructing a domain &, from &,,, via the transformation (5.5[%):

2\ = Trgzs 75 = Z2, and showing that the part of K, that belongs to the
bicylinder

|le < 11 (59)
lies in B*. By another transformation (5.13[%): z} = z/, zJ = H%zi we achieved

that the remaining part of &, was contracted such that for the thus arising domain
&a, 8> now denoted by I, holds. By a similar method, (5.8) was proved.
By 87 we denoted the totality of the points of B*(z, = 0) for which |z;| < I,
k = 1,2, holds (see footnote 23)).

The situation is different from §5 in K because we now have an infinite sequence
of domains 3, and N, respectively, that (since lim,, . Br, = 00) converge for
n — oo to a disc and a domain extending to infinity, respectively, and because
now the /., k = 1,2, converge to zero.

Therefore, we have obtain some sharper estimates as in K, §5, that allow the
application of the described method.

4)The outer comparison domain will be used in the corollary for the proof that the minimal
functions satisfies relation (4.2). All quantities that vary with n will be given an index 7.
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We begin by establishing some inequalities.

1. There exists a constant Py = P;(«,) independent of n such that for all points
{z1, 22} in every &q,, the inequality

|z2] < P1(051)|Z1|% (5.10)

holds.

The hypersphere (2.12) for which o, = o shall be denoted by & ;. The domain
obtained from &, by shall be called &,. Since &;,, C K, and hence
Kauin C Kayy Kayn(z1 = y) C Ky, (21 = y), it is sufficient to prove (5.10) for
&, . For a sufficiently small neighborhood of O3, the interior of &, is given by

2x1 = Qay + 0)y7 — 0122 + ¢3(31.22.T2) > 0, (5.11)
where @3 satisﬁes{ﬂ

los(V1, 22, Z2)| < B(y1|?> + |22]°), B < oo. (5.12)

At every point of &, belonging to this domain, it holds that

2x1 — Qay + 0)yi —ol|z* + Bly1|* + Blz|? > 0, (5.13)
which implies (as we may assume /; < 1 and |y;]| < 1)
|22%(0 — Blza]) < 2x1 — 2oy +0)yi + By; <2x; + By +1 < (2+ B)|z1].

Since now &, (z; = y) falls into an arbitrarily small neighborhood of z, = 0,
it follows that for sufficiently small zq, say |z;| <[ = [(«y), B|zz| < %0 holds,

4)The existence of a finite B in (5.12) can be deduced as follows: As &g, is a finite domain, we
only need to prove for sufficiently small values of the arguments, for example, if simulta-
neously |y1| < I, |z2| < I, where [ is a sufficiently small positive number. Now, the boundary of
K, is given by

D = 21+31—(2(x1+0)|21|2—0|1—a121|2|zz|2 = 2x1—(2a1+0)(2f+xf)—0|1—a1(x1—|—iy1)2||22|2 =0.

As (g%) y1=0 # 0, we can invert the equation @ = 0 for sufficiently small y;, z5, say for
z2=0

[v1| < 11, |z2] < I1, and we obtain 2x; = ¥ (y1, z2,Z2), where ¥ is an infinitely differentiable

function on the given domain. Application of the Mean Value Theorem yields

@3(¥1,22,22) = B1y; + Bayzo + Bsy1zi + ... + BgzZ5 + BoZs,

where the By are uniformly bounded functions in yi, z3,Z» on the given domain. If B is large
B

enough such that | B (y1, z2,Z2)| < {5 on the given domain, then we obtain (5.12).
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and thus in this inequality,

22+ B
23] < \/%vll% (5.14)

holds. As &, is bounded, (5.10) already follows from (5.14)) by setting Py (c1) =

2(2+B) M . .
max =, —«/W) where M is the maximum of the absolute values of the

zp-coordinates in &y, .
Analogous reasoning leads to the following result:

2. There exists a constant P, < oo such that for all points {zy, z, } of B*,
22| < Palzi|? (5.15)

holds.

3. For a sufficiently large E we can determine a positive constant P3 such that for
every point {z1, z,} on the boundary b** of 8* whose z,-coordinates satisfy

! < ! (5.16)
71— —| < —, )
" E|TE
it holds that
22| = P3(E)|z1]. (5.17)

We choose E large enough such that the circle (5.16) lies in the interior of B (z, =
0), with the exception of the boundary point z; = 0. Then E > a (see for
a), and we can determine a sufficiently small positive p such that £ > a 4+ Ap,
and moreover the part of b*> whose z;-coordinate satisfies |z;| < p can be repre-
sented in the form (2.6), where /5 satisfies the inequality (2.6). If we decompose
the circle (5.16) into two parts €3 + €3 such that €% contains all points {z1, z»}
with |z1| < p, then €3 is closed and contained in the interior of B*(z, = 0). For
all points {21, z,} of b*> whose z;-coordinates belong to &2, the corresponding
|z1| have a lower bound g, so that |z;| > %|Zl| holds for this part of b*>. So
only needs to be proved for those {z;, z,} for which |z;| < p holds. Now

this part of b*> is given by (2.6). By (2.6) and (3.1)),
2x1 —ay; = olzi]? + Y31, 22, 72) < 0lzal? + Alyi | + Alz2|?
and thus (as we may assume |z;]| < 1)

122 (0 + A) > 2x1 — yZ(a + Aly1]). (5.18)
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On the other hand, |z,|> < 2 by (5.16), and from (5.I8) follows

1z212(0 + A) > E|z1]* — yi(a + A|y1]). (5.19)

If we now set P3 = min (% ,/%}AP), then we obtain (5.17).

If &, denotes the domain obtained from &, via zj = {—__—, 2z, = 25, then

Ko, C Koon and Ky, (21 = y) C Kuun(z1 = y). With the analogous argument
above, we conclude:

4. For every F > o — 2, there exists a positive constant Py = P4(F') indepen-
dent of no such that for all points {zy, z,} the boundary E’gzn of &,n, for which

1 1
— | <= 5.20
Z1 FI=F ( )
holds, satisfies the inequality
|22| > P4(F)|Zl| (521)

/
#0)

_@oﬁ(zl
A 7

-— -

~ - -

S~ -

Figure 2

Now that claims 1 to 4 have been derived, we turn to the proof of and (5.8).
Here we determine o large enough such that K, (z; = 0) lies in the circle (5.16).
Then

o+20, >FE >a. (5.22)
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Moreover, the constants /;, D; and C; appearing in (5.9), (5.3), (5.6) are set to

A+ B)P 1
ns P3o
(5.23)
where Py, P3 mean the P;(«;), P3(E) belonging to the just chose o and E,

respectively, and A, B are the quantities given in (3.1 and (5.12).

1

n

lln = y D1 = (A + B)Pl, that iS, O1p =0

v

For sufficiently large n, every point {z;, z,} of &4,, with |z1] < [y, lies in B,
for it follows from (5.23) that for |z;| < [;, = =
ns

01w — BPy|z1|2 > 0 + APy|z 2,
and together with (5.10),
O1n — Blza| > 0 + A|z,|. (5.24)
Since moreover y; — 0 for sufficiently large n and thus by (5.22))
O1n + 201 — Bly1| > o + A1,

it follows from (5.24]) and (5.22)):

2x1 — (010 + 2a1) Y7 — 01]221> + @3 (1, 2272)
<2x1 — (o1, + 20!1))’12 — o1n|z2> + BIy1|’ + Bz’ (5.25)
< 2x; —ay} —o|z* — Ay P — A|z)? '

S 2x1 _aylz - 0|22|2 + w3(y1522a22)7

that is, every point {zy, z5} of &, , with |z1| < [; lies in B* (for large enough n).
1

By (53.2) and 2.12), Ka,n(z2 = 0): )21 — e | S s

(5.16). For the points {z;, z,} on the boundary b** of B* whose z;-coordinates
belong to (5.16)), holds. If o} denotes the minimum of absolute values of
z, on b*?, whose z;-coordinates belong to 82 , then by (5.17) and (53.23)),

lies in the circle

1n>
. : P;
0, = min |z| > —. (5.26)
71€%83, ns

The inequality (5.14f*) of K, which is a sufficient condition that the domain 3, (=
R(")ﬁl), obtained from &, via (5.13), lies in the interior of ZB* is clearly

o]

“DFor the proof that |' ) implies R((fl)ﬁl C B”, see p.
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satisfied; for by (5.23), (2.13), (5.6)), (5.26),

1 o 1 Py _ 527
< < =— <o )
Ol + Binz1|l =~ o|Binzil

4
ns 1
2
P3(7 ns

Thus, (5.7)) is proved and we turn to the outer comparison domain. We choose F
such that (5.20) contains the domain B*(z, = 0) in the interior (which implies
a > F), and determine o, such that

a>F>0-—2u,,

and for the constants appearing in (3.5)) and (5.6 we substitute the values

1 A+ B)P. P
lZn = 2> D2: (A+B)P2’ thatiSaUZn =0 — ( * 1 ) 2’ CZ: ’
ns ns P4
(5.28)

where P is an upper bound for the absolute values of z, in 8™ and P, is the
P4(F) belonging to F in 4. (B* is bounded, hence P is finite). From (5.28) it
follows that for the points {z;, z,} of B* that satisfy |z;| < L, = -,
ns
0 — APy|z1| > 0, + BP, |z |2
holds, and in connection with (5.15)
0 — A|z3| = 024 + Blzs], (5.29)

from which, using (5.5 and the fact that a — A|y;| > o — 20, + B|y;| for
sufficiently large n, it follows that

2x1 —ay? —o|za)* + Y31, 22, Z2) < 2x1 —ayi —o|z)* + Ay P + Alz)?
<2x1 — (02n — 20!2))’% - 02n|22|2 - B|J’1|3 - B|22|3

< 2x1 — (02 — 20!2))’% - Uzn|22|2 + 03(¥1,22,22)

(5.30)
holds, that is, every point {zy, z,} of B* with |z;| < [, lies in Ky, ,.
Now it remains to show that for the choice of
P 4
n = —ns 5.31
,32 P4n ( )
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in (53.6) and (5.28) the inequality (5.30f) of K is satisfied. This inequality is a
sufficient condition to ensure that the part of 8™ outside of the bicylinde@ |z1] <
L, is also contained in 2, ] But (5.30}) is satisfied, since the lower bound r of
the absolute values of the z,-coordinates of the boundary points {z, z»} of ?Zw
whose z;-coordinates belong to B3, satisfies by (5.21)

Py
ns

From (5.31)), (5.32) follows

P P 4 1
|1+ Banzi| = 7|Banzi] z—;‘.?n%‘-—zzp, (5.33)
ns 4 ns

which finally proves (5.8).

Now we turn to establishing the kernel functions of 3, and %,,, and the minimal
function of 3, and moreover the investigation of its behavior under an approach

to Q3. By applying (L.15}), @20), 2.13f), we obtain
1
KS'n(Zl, 22;;1732)

- - - - — 3
7% (z1t1 — oy + 01,)2171 — 01a2282(1 4 B1az1)(1 + Bial1)(1 — o121)(1 — 171))

B 201 (I —a1z1)(1 +/31n21)(1 _051;1)(1 +,31an)
(5.34)
If we now se@
Z Tk
Zk = — lk=—, (5.35)
n? n

then by (5.5) and (5.6)),

_ 3 = = \3
1 _ 2 Z 4 T, (1—2Hy(n,Z1,Z5:T1,T>))
K, (f_g’f_g,%,%> 2(0+D_l1)n3p 1 - 1—np1_%H2(n,Zl;Tl)
ns

(5.36)
where
Hl(n,Zl,ZziTl,Tz)
(21 + 0+ ) 2T+ (0 + 2) 22T (14+ 25 ) (14+ ©F1) (1- D)
5 ns n

n 5 ns>

Z + T

nl=r

®)See p. for the meaning of /.
49 Compare part I, p.
S0Recall that Z1, Z, and Ty, T» denote coordinates in .
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ClTl _ alClZf n %Z Tl _ O{lcllel _ olellel
nep n n n '

Hy(n,Zy;Ty)
alTl
+ "

o Z
= ! 4 ! + Ci1Z; — 7
n>—»?
Since M is a bounded domain, and by (3.3), Z; + Z; > 2¢, both H, and H, are
uniformly bounded for every n > 1 and all {Z, Z,} € M, {T1, T»} € M. Since

ns
(5.37)

Ksn(ZhZz;fh?z)
Ks, (t1,t2;11,12) ,
1
Ksn(tl,tz;fl,EZ),

by (L.I0F) and (L.IT})

My, (z1,22: 11, 12) =
/ | M3, (21, z2; ;1,?2)|2d60z =
n

we obtain from (5.36)) the result stated on p. [83]

In the outer comparison domain, we are only interested in the limit expression for
the kernel function. By (T.15[*) and (2.14f*), we have

— 3
w2 ((11 + 11 = (020 — 200)|t117) (11 + Bont1]?) — 02nl2?]1 + 01211|2)

(5.38)

1
Ko, (t1,12;11,12)

11 4+ axt1]?|1 4 Banty]*

)

B 202n
If we set ty = %, then, considering (5.3), (5.6) and (5.28)), we obtain
I+ 4L, Th, To: T T)

( ns
1 + L%Lz(l’l, TI;TI)
(5.39)

1 2 _
AN D (T+T0)’
Ko, (2. 2: 20 22) 2 (0 = B2) w3
nb
where
%(“—0—5—2“2)IT1|21+C2—1T‘ ("_D_‘z)
ns ns ns ns
Ty + T,

Li(n,Ty,T2;T1,T>)
(C2Th + G T (T +Tl)éC22|T1|2(T1 +T1)+
n

and
LTy T L 2 T \2 2 4 2 6
Lz(l’l, Tl, Tl) = 2C2(T1+T1)—|— T C2 ((TI‘I‘TI) +2|T1| )+ . +_ﬁ CZOé2|T1| .
ns ns
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This implies

1 n? = 3 1 S —
. A Y 20n3(T1 + T 1+ —Li(n,T1,T2:T1,T2) ),
1 2. 41 2
K n (n shn T) ns
(5.40)

where L is a uniformly bounded functioninn, Ty, T, forn > 1 and {77, T} € IN.

III. By (2.12)) and (2.13), the inner comparison domain 3, is given by

M(zy,22:21,22)

11 —aiz1]?
1 _
= m(zl +7Z1 — (010 + 201) |21 1> — 01a]22 2|1 + Binz1]?|1 —0l121|2) > 0.
— 12
(5.41)
Let{Z,, Z,} be any point in M and let p > %. There exists a positive t, inde-
pendent of {Z, Z,}, such that for alln > nq(p) the bicylinder

T

Zl Zz . Zl
G(n_l”n_P)' @G ——l=—. ®L-"7 =7 (5.42)
with center {nz—pl, f—g} liesin ¥,. (Compare Figure 1.)

PROOF: (1 — oy f—;) clearly will not vanish at all {Z, Z,} € IR for sufficiently
large n. So it is enough to show that for {¢1, {,} defined by (5.42), M > 0 holds.
We choose positive 7 and ¢’ small enough such that

2 4 ot + €)% < % (5.43)
where c is the constant in (3.5). From (5.42) (a) it follows that
‘t+|Zl| K
<—=<—, K= 5.44
1] < Py T+cos(a) (5.44)
and
z - Z1+Z,-2
Re (51 — —1) <D thatis, &y +7, > SLEELT T (5.45)
np n? npb

For the meaning of C and «, see (3.5)) and (2.7). From (5.42) (b) it follows for
sufficiently large n that

D
T4+ |Zn™2 t+¢€
R

(5.46)

D
nz2
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Hence

M(é‘l,é‘z;zl,gz) > M _ (

D K?
O'+—1+2051 —

n? ns n?p
T+ &)? G K\? K\*
o, ) (1+ ‘ 4) (1+a1—)
n? nP=—s n?
1 _ 1
=—\Z1+Z1 -2t —0op(t+&) — -G(n) ),
np nP=s

(5.47)

where

D K?
G(n) = (— (0 + 2061) — + ot +&)*2S + S2)) <TI < oo,
5

ns ns

and

O(lK C1K2
+ .

nt n?

K\7 [(2r\5= 1
n > ny = max (—/) , (—) (1 K)7 |,
e c

then it follows from and (3.3) that

M(&y, 82581, 8,) > n%, >0, (5.48)

S:C1K+

If we choose

which proves the claim.
IV. In the proof of Theorem III we used the following

Lemma II. Let n(zy,z,) be a regular and square-integrable function on & that
vanishes at the point {t;,t,} € &, that is,

n(ll,lz) =0 (549)

holds. Then n(zy, z5) is orthogonal to the minimal function Mg (z1, z5; t1,12) of
& with base point in {t1,t,}, that is,

/ n(zi,z22)Meg (21, 22 11, t)dw, = 0 (5.50)
&
holds.
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PROOF: By definition, the integral [ | f(z1, z2)|*dw assumes its minimal value
at the minimal function, namely the value m Here, all regular and
square-integrable functions h(zy, z,) in & are considered that satisfy the condi-
tion

h(ty, 1) = 1. (5.51)
The function

Js nMgdw
Jg In[?do

satisfies the condition (5.51)) by (5.49)), and is square-integrable by the Schwartz
inequality. On the other hand

m(zy,z2) = Mg (21, 22 11, t2) + n(z1, 22) (5.52)

_ 2 _ 2
m|“dw = / Mg |“dw— = —— .
/(‘gl | G’| | f@ |n|2da) K@(ll,lz;fl,lz) f@ |n|2da)
(5.53)
If (3:50) was not satisfied, then [g |m[*do < g———— would hold, which

contradicts the minimality property of the minimal function.

By @.2)), @.6), @.8)), Lemma I and (@.1),

T, Tr\/|?
/ h(21,22;—1,—2) dw,
., n n
T - S @9)
_ 7T_(T1 +T,) C(Ii+Ty) B Bn,T,,T5;T1,T>) . A
20 n3 n’ n — p3teo’

. 2 r . .
where o = min(r, %) c; < %4C3 (Cn(f—_cg) + ILQ) is a constant independent of
ns>"

n, B is an upper bound for the function B(n, 77, TZ;TI,TZ), n>1,{T, 15} €
N and C is the constant given in (3.5).

§6

In the present paragraph, we study the behavior of a certain family of functions
in a neighborhood of a limit point Q, of second order. We begin with some
preliminary remarks.

By a p-coupled AY-approach of a pair of points {zy, 25, 11,62}, Zx = Xg + iyg,
tx = ug +ivg, to {0, a,, 0, b} we again mean an approach under which the points
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{z1, 25} and {t;, 1} converge to {0, a,} and {0, b,} in the sense of A", respectively,
and in addition inequality (3.3) holds for the coordinates x; and u;. As before,
it is helpful to present another interpretation of a p-coupled sequence of pairs of

points {z?, (W (00 0y

Let U3 denote a simply connected domain contained completely in the interior
of $? that contains the point z; = 0, and let U7 denote a subdomain of T2
for which holds as well as % < Cosl(a), where ¢ and C, with C > ¢, are
arbitrary constants subject to the condition that g, lies in 32 and U3 x WZ.,,
lies in EB See pp. [74] for the meaning of W2 and 3?. The product domain
U2 x U2 is denoted by U, the coordinates of its points by capital letters Z;, Z,

and T, T», respectively. Now, given a sequence of points {Z\*, z{¥ 1 Ty

with limyeo Z = a5, limyeo T = by, where limy,_oon,, = 00, the
Z(M) T(M) . . .
sequence { nlfj Lz, 1 7 " )} is a p-coupled AV-sequence of points, since

p
UI(M)
Cp nu Cp

< o <
C X“ c
nj

holds.

Conversely, if a p-coupled sequence {ZY‘ ). Zéﬂ' ), tl(“ ), tz(”“ )} is given, we again set

n, = ﬁ, where d > 0 and is sufficiently small, then similar to p. c =

min (d , ‘}ﬁp), C = max (d , ‘fn—p) If we choose ll% as a domain containing the
points a, and b, in its interior, then by (2.38)) we can choose d small enough such
that WZ,, x U3 lies in B.

In the investigation of the limit points of second order, the parameter v appeared
(the auxiliary function f,(z) introduced in §2 depends on v). This parameter
satisfies the inequalities (6.28f), (6.17}%), (6.23), (6.29}*), (6.30;*), (6.31), by
which it is bounded from below. The quantities appearing in these inequalities
depend in a complicated manner on the structure of the boundary at ,. The

lower of the quantities satisfying the above inequalities, that is the lower bound
of the admissible values of the parameter v, is denoted by vy. With regard to the
continuing investigation, the parameter v must moreover satisfy the inequality

a cos (%) — 4B sin (%) > 0, (6.1)

SDFrom (2.38) one easily deduces that for every closed U2 we can find a sufficiently small C
such that the domain U x W2, lies in B.
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where a, B are the constants appearing in condition 1. (p. and « is the angular
aperture of T2 appearing in (2.40). By t(«) we denote the lower bound of the
quantities given by (6.1)).

Theorem IV. Assign to each point {t;,1,} of an AY-convergent sequence [3°
of points with limit Q,(0, b,), b, € $2, a regular and square-integrable function
f(z1,z2:t1,t2) onB in the complex variables z1, z,. Every function of this family
shall have the following two properties:

1. We have
flt,tt,00) = 1, (6.2)
2. and the integrals [o | f(z1, 22: 11, 1) [*dw, satisfy for {t;,1,} € B° the in-
equality

/ |f(Zl, Zy: 1, t2)|2d(x)z < 7T2(I1 + 21)2 (P(Iz)z + C(tl + ?1)"#*) (63)
B
where C < oo, v* > 0 are fixed constants independent of {t,,1,}.

Then for every p with 1 — % < p < 1 under a p-coupled A" -approach of the pair
of points {z1, z5, t1, t,} we have uniformly

2
lim (Zi—lf)zf(zl,zz;tl,tz) — Mgo(az: by)  forp <1, 6.4)
1 1
z1 +11)?
%f(ZI,ZZ;Zl,Iz) = Mg,z(az;bz) fOTp = 1, (65)
1 1

where M2 (z; 1) denotes the minimal function of $? with base point in {t}, and
v = max(vg, V¥, t(oe))FE]

The proof of our theorem is based on the same idea as in the case of a limit point
of third order. As the situation is slightly different here, the arguments shall be
worked out in detail.

I. In §2 we introduced the inner comparison domain 3. By (2.47a)), the reciprocal
kernel function of 3, assumes the value

1 7z + T+ 0mT)? (1 —w (525w (%))2 JRENVA)

Ks, (21, 22: 11, 12) - iz it
w (fv(21))w (fv(t1)>

(6.6)

. e -1 -1,
>2)Note that remains true if v is increased (we have (1 + £1)v < (t; +11)v if v < V).
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By (2.49), (6.6) equals

z1+1

- @ 2 -
72(z1 +71)? (1 + m)z (1 - (w(22) +21‘%K1(21,22)) (w(tz) +t1‘1’K1(t1=12))) (1 +21%P1(Zl)) (1 +t1%P1 (tl))

(w’(Zz) + ZI%KZ(ZI,ZZ)) (w’(lz) + lfl’Kz(ll,lz))

B ~\2 1 1 o 1 1 B
N2(21+t1)2(1+L't‘) (1 —w(z2)w(t2) + 2 Bs(z1,22;11,12) + 1] Be(z1,22;11,72))>(1 — z} B7(z1,11) — 1] Bg(z1,71))

z1+1

Kr(z1.22)
w’(z2)

Ky (t1.12)
w’(t2)

1
(et

1 o1 o
(1+Zl"B9(Zl,Zz;l1,t2)+11”Blo(21,22;l1,l2))~

w’(z2)2/(t2) (1 + 21%

_ 72(z1 +11)%2(1 — w(z2)2(2))?
w’(z2)w’(t2)

6.7)

Since |wy(z3)] < g1 < 1, w'(z2) = ¢» > 0 and |212T1?1| are bounded for z1,1; €
WZ.,, the functions B (21, z2;11,12) on {z1, 22}, {1, 1>} is uniformly bounded on
W2, x U3 by 2.47) and (2:44).

For ———L_ we need a sharper estimate. Using the abbreviations introduced
Ks, (z1,22:01,12)

on p. w®(X) = dk'{;’# and applying the Mean Value Theorem, we write

153

b /P (911)

(k) (k) v v
w (—) = w(t2) + 1" (1) Avta + 1) Koy (11, 12), (6.8)
fv(ll)
where
Kiio(t1,12)
_ L ( 2 )tzzfu“)(z?tl)z +2w(k+1)( 2 )mé“(ﬁn)z_ (k+1) ( t2 )
2 fv(tl) fv(ﬁtl)4 fv(ﬁtl) fV(ﬁt1)3 fv(ﬁtl)
(6.9)
with "
0<¥ <1, fv@):_{“, =1,2.
d(zy )~
Hence:
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where By (z1, z2; 11, t) are uniformly bounded functions in {¢1,#,} € U.
By setting ¢, = % th =T5,21 = %, z, = Z,, we obtain the following result:

For the minimal function and the reciprocal kernel function of the innter compar-
ison domain 3 ,,, we have:
Z T
MSV (_1’ ZZ» _1’ T2)
n? n
v WOE@ T2~ (T (1 + L Biy(n. Th, TZ;TI,TZ))
— N2 —
(Z1 + an—_l) (1 — w(Z2)w(Ta)) 2w (Ts) (1 + L Big(n, Ty, T5; T, Tz))
(6.11)

=n

1
Ks, (f—};, Zy; %, Tz)
_ 7T +Ty)?
- a2

dP(T>»)?

1 _
— B 11, T2;T1,T2) ),
a7 )) +n€ 19(n, T1,T2; T 2))

6.12)

24, 1
P(T2)> - =" Re (Tl” (P(T2)2 -7

nv

where Bis(n, Z1, Z»: T1, T>) and By (n, Ty, T»: T1, T»), k = 17,19, for{Z, Z,}
and {Ty,T,} in W and n > 1, are uniformly bounded functions in all variables,
and P(T,) means the mapping radius of $? in the point T,.

In the corollary in which we obtain the limit formulas for Mg, we need an estimate
for the kernel function of the outer comparison domain introduced in §2. By

(2.47a),

1 _ (1) (= |w(t f,(0)[?)? 6.13)
Ko, (11, 12: 11, 12) lwD (e, £, (0) 2] /o () ? '
By the first Mean Value Theorem, again
1 2
w® (6 f,(11) = wP(0) — 1] 4wtV (0) + 17 Ks(h, 1), (6.14)

where

Ks(ti,t2) = w* 2 1, £, @ 10)) 2 (PO 1))? + wE (£, 1)) fP 1),
(6.15)

with0 < ¥ < 1, fv(K) = Lfl), is a uniformly bounded function in {t1,1,} € U.

-
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We thus obtain for (6.13))

1 __ 2 2 2
72ty +11)? (1 —|w ()| + 2Re (tl" Avlzw(l)(tz)w(tz)) +1t) Byo + 1) B21)
2

1 2

2 2
1_111; Avtrw@ (1) +t1” Bas

1 2
Iuj(l)(tl)l2 w(l)(lz) I—Autlv +tlv 323

2 T\2(1 _ 2y2 1) 2) 2 2
ae(ty +11)°(1 — |w()|?) L 2wV ()w () | Lw'P () 2 2 2
= 14+2Relz A4 1 t’B t’ B t|v B
D)2 +2Re (1] 4, w2 + w0 @) + +1” B4+t Bas + |t1|¥ Bas

2
=n2(t +71)2 (P(t2)22Re (A‘,tl‘l’ (P(t2)2 —1 dP;;Z))) +Re (rfB%)) ,
2

(6.16)

where the By are uniformly bounded functions for {¢{,,} € ?233%0[ X 11%.

If once more we set ¢ = %, t, = %, we obtain the result:

For the reciprocal kernel function of the outer comparison domain 2,,, we have
1

Kar, (%, 13; %, Tz)

_ 73Ty + Ty)? (
S AL B

dP(T>)?

1
P(T»)? R
(T2)* + — Re ar

nv

1 1 = =
(AuTl” (F’(Tz)2 + 71 )) + njBﬂ(”, T\, T, Ty, Tz)) ,

(6.17)

where Bo7(n, Ty, T»;T1,T,) is a uniformly bounded function for n > 1 and
{T1,T,} € W. Then there exists a T independent of {Z, Z,} and n, such that for
alln > ny, the bicylinder

Z
(5 (—1, Zz) .
n

with center in {f—}, Z,} liesin 3.

Zy
b=

T
<—, |L—-2Z<< (6.18)
npb

PROOF: J,(z; = y) is a star-shaped domain whose boundary is given by the
equation

R =n"(y.0) = h(f = 5 () /LI, (6.19)

y = rel?, 9,(y) = arc( £, (y)) (6.46[). We now wish to show that there exists an
ro = ro(a, v) independent of 6 and ¢, such that for r < min(ry, % cos(a)),

M <0, y=re®,0<6<2n (6.20)
r
holds.
We have
dh* ,9 d v / dﬁv
TGO o -9, o 9,00 PP 1. 620
r dr dr
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We will now obtain some estimates for 4/ 5r(y)| and dﬁgr(y), where we at first assume
that r < (3)2".

By the formulas derived on p. 619 and p. 620 in article A and by (2.44),

fole) = 1= 4,27 = Gy(2), (6.22)
where
r (l + L) 1 © [/ 1 1 ik
G4(2) = 2 Ty St 5~ 5 | 23
4(2) re)rG-x) ;; K Py (6.23)
Since now
éz F(%+%) _l+o i _%_% Zik <|Z|K
VTG v vz )’ K K+ 1=k’
v 2 2v .

there exist constants L, M independent of v (L < 1 + ¢, with lim,_, &, = 0),

such that )
dG4(re'?)

dr

< =

M
=

| L
1G4(re'?)| < Zr'tv, 2, (6.24)
V V

from which also

< =

=

r
dr v

‘d|G4(rei‘/’)| M

follows. On the other hand,

sin (%) D +Im G4+Re Gy.

(6.25)

l—Avr% cos (g)—|G4| < |fv(rei“’)| < 1_Avr% (cos (f) _
v v

From (6.24) and (6.23) we deduce that | £, (re'?)| > %, and moreover,

Re fv(’,ei(p) = 1_Avr% COS (f)—I—Re G4, Im fv(l"ei(p) = —Avr% sin (f)_l_lm G4’
v v
(6.26)

| fo]2 = 1=2r7 A, cos (8>+A§r%+2 Re G4+|Gy|?+2r7 |Gyl cos (f — arc(G4))
v v
(6.27)
which implies
d| fo] 24, cos (£
214l = - ()

_1
dr Url v

+ Ki(v,r), (6.28)
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Where@

2 A? dRe G d|G 2Av G
Ki(v,r)y=——5+2 ° + 2|Gy| l 4| | 14| c s(g—arc(G4)>
Vpl-t dr vriv v
d|G darc(G
+ 2A,,r%M Ccos (2 — arc(G4)> 24, rv sin (2 — arc(G4)> |G4|M
dr v v
From (6.24)) it follows that
242 2Mrv  2LMr'tv  2A4,Lrv  4A,Mrv
|Ki(v,r)| = >+ + + +
prl-2 v V2 V2 v
1 2LMr? 2A,L
- (2A§+2Mr1—5 ik Wi 4Aer)
vri=v v v
1 *
= ——B*(.
vrl=h
(6.29)
where B*(r) is a uniformly bounded function for r < (%)2". Hence
d| f, 2A cos
211 |f| - G )<1+rvK(r u)) (6.30)
vrl_v
where K (r,v) = vr!i™v Kl(r v),and |K(r,v)| < B*(r) forv > 1,r < ( )2V,
For ‘%‘ we obtain, using (6.24) and (6.23)),
av,(rey| _ [darctan () | [Re £ 25|+ [ £, S5 BRI
dr dr = (Re f,)? =\ e v

d
L A, sin L A, 1 M

<4 ((1 Ay + —r1+5) ( G) + M. ) + (Avrll» sin (2) + —r1+5) (—" — + —ri))
v v opl-3 v v v Vv opl=y v

E(Av sin(%)  242rv sin(2) ) LA, sin(%) N LA,
Vv

IA

1 1 1 1
ri=v ri=v ri=v vri=v

+ Mrv (1 + Avr% + 2£r1+% + A,,rl% sin (g))>
v v

44, sin(% L Lrite M L
O (14 2ard ¢ Bt g L) M (1+Av,g+2_,1+5+Av,$sin(g)) '
vri=v v vsin(}) Ay sin(3) v v
(6.31)

<

53)|G4|darfi(rG4) < |G4| dloi(rG4) .

dGy
dr
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v

b1 e 1 ﬁ (%)
L o s NI <
As we may assume o > 4’ we have v s1n(v) > 3> and as moreover sin(%) sin(‘]’}‘)

is uniformly bounded for v > 1, we reach the result that

44, sin(&
< Sml(“)(1+riB**(r)) (6.32)
vri=v

dd, (re'?)
dr

where B**(r) is a uniformly bounded function for r < (%)2”.
From (6.30)) it follows that % < 0 for sufficiently small r, and as % <|fil <1,
it follows from (6.21)), (6.30) and (6.32)) that

dh*(y, 0) Ay cos(3) 4BA, sin(%) [
ST ) bt (1 VB (r))
< _

< v:iv—; ((a cos (%) — 4B sin (%)) + r%BT(r)) ,

where B(r) is a uniformly bounded function for sufficiently small r (see p. for
a and B). From (6.1)) and (6.33) we further conclude that there exists a positive
rg = rg (o, v) = min | ro(a, v), (%)”,%cos(a)) such that for every r < rg and
every ¢, |¢| < «, the inequality holds.

We now turn to proving the claim made in II. The boundary curve of ¥,(z; = y)
is given by (6.19)), where for every ¢ with |¢| < «,

(1 v BY(r)

(6.33)

lim | f,(re®)| =1, lim ¥,(re¥) =0 (6.34)
V—>00 V—>00

holds (compare also formulas (6.14f*) and (14) in article A). As the set of points
Z ém), m — oo, converges to an interior point of $2, there exists a 7, > 0 such that
for sufficiently large m the circle [¢, — ZY™| < 215 lies in $2. On the other hand,
by (6-33) we can determine a positive 2/ < rg ((% + %, v) such that for every
Z and ¢, |¢| < 2 4+ Z, the circle |§; — ZI| < 1, lies in 8,(z1 = 2/e¥).
Moreover, there exists 7; > 0 such that in the angular domain QBlZa: ro< 1,
lp| < «, the circle |{; — anl < - about the point an lies completely in the

: 2 : @ T
angular domain 523321’%+%. r <2l lp| <3+ %. Since

) o torr <2l ol <% 4 T
orr s < — —,
dr Pr=57"%

for every r; < r, < 2l we have: 3,(z; = r1e'%) C 3,(z1 = r,e'%). Hence, for
y € 5133%1 « , = and every m, the circle |Cr — Zém)| < 1, liesin 3,(z; = ).
°2 4
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Every bicylinder (6.18) with t = min(ty, 72) thus lies in 3.

III. We now turn to the actual proof of Theorem IV and set

h(z1,z25t1, 1) = f(21,22:t1, 1) — Mg, (21, 223 11, 12). (6.35)
By Lemma II, it follows from (6.3), (I.TT}*) and (6.12)) that
T, 2 C1
€3, h Z1, 22, —, T2 do < T (636)
n n2+i

holds, with

P T\ 2 o dP(Ty)?
1L =T (T1+T1) + (C+2Re <(ﬁ) (P(Tz) +T2d—Tz)))

If now {Z,, Z,} € U, then for {nZ—;, Z,} € 3, for sufficiently large n, and since
f is regular on the bicylinder (ﬁ(f—,l Z,), it follows from (4.10) tha

Z T, —
h( 1,22; laTZ)
n? n

f@(,%,Zz) |h|2da)
\ VOlE(Z, Z,))

f3U|h|2dw <\/ 1 C1 C2

\ Vol (Z, Z2) -

[A

[A

- ’
n2=2p+s w23 i-p—o

(6.37)
that is, for every {Z,, Z,} € U,
Z T
n*72? |h (—1, Z; —, Tz) < C—zl (6.38)
np np np—l+ﬁ
holds.
From (6.35)), (6.11) and (6.38) it now follows that
Z T
Msl, (—1, Zs; —1, Tz)
n? n
—\2
w(Za) (B + 1) (= (T P2 B
= -1+ — (6.39)
nv

— 2 —_
(% + %) (1 —w(Zy)w(Ty))

_(Ty +Ty)*n?2r

Tz, + I

nl=»,

B
Mg2(Z2, T2) (1 + 1) ;
nv

9By c; we again denote constants independent of n and {Z1, Z,}.
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which implies (6.4) and (6.5)). This concludes the proof of Theorem IV.
The minimal function Mg (z1, z2; t1, 1) of B satisfies (6.2)) by definition, and by
(L.I1f*), (I.12}*) and the inequality (6.3)). Hence the following holds:

Corollary. The limit relations given for f(zy,z,;t1,t,) in (6.4) and (6.5) hold
for the minimal function M (21, z5; 11, 1) under a p-coupled A -approach of the
pair of points {zy, z5, t1,t2} — {0,a,,0, by }.
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comparison domain

inner, [T8} [69]
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generalized square-integrable functions, [§]
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image radius, [76]
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Jacobian reduction, [61} [62]

& -domain,

Ks (kernel function), ]
kernel function, []

xl’ XH, /—\m’ 7V (upper order)
AL AT AT AY (ower order),
limit

lower, [T1]

order, [T1]

upper, [T]]

lower order, [T1]

mapping radius, 21]
Mg (minimal function), 4]
measure factor, [13]

minimal function, @] 57}

normal coordinates, [10] 59}

£2 (uniformly convergent), [68]

order, [TT]
attainable, [T1]

lower, [T1]
upper, [TT]

outer comparison domain, [T8] [69]

p-coupled approach, 8] O8]
p-coupled pair, [8T]

P(y) (mapping radius),
primal space, [58]

replacement domain, [T3]

canonical, [T6} [68]

8 (sector),
sector, 2]

square-integrable functions, ]
generalized, 3]

unit vector, [I]
upper order, [TT]
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