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Part I

Generalities and groups with infinite
fundamental domain

Introduction

The groups of motions in two- and three-dimensional Euclidean space have been
the subject of many studies. The first mainly because the complex analytic interest
they offer, the latter because of their relevance to crystallography.1) In both cases a
theorem was found stating that only finitely many groups of motions with a finite
fundamental domain exist.

Hilbert was the first to point to the relevance of this fact by suspecting in it a
general property of Euclidean spaces. He thus posed the investigation of this
question as a problem in his talk on mathematical problems given at the Paris
Congress 1900.2)

The present article, instigated by Hilbert, aims to develop the details of the proof
of Hilbert’s aforementioned theorem, whose main ideas I already sketched in a
note in the Göttinger Nachrichten 1910.

The proof is similar in spirit to the aforementioned proof in the three-dimensional
case due to Schoenflies, in the sense that here at first the existence of a transla-
tion subgroup consisting of n linear independent translations is proved, a fact on
which the rest of the proof relies. Also, the use of finite groups of orthogonal sub-
stitutions is taken from the aforementioned proof. A new element is introduced
only through the consistent use of finite groups of integral linear orthogonal sub-
stitutions and the related theory of positive quadratic forms. This theory proved
to be a valuable tool which allows to essentially reduce the proof of finiteness to
a theorem of Minkowski from the theory of positive quadratic forms, namely the
theorem stating there are only finitely many unimodular substitutions with inte-
gral coefficients which are capable of transforming positive reduced forms again

1)For details and references I refer to: Schoenflies, Krystallsysteme und Krystallstruktur
(Leipzig 1891).

2)Hilbert, Mathematische Probleme; talk given at the second international mathematical
congress Paris 1900. First published in Göttinger Nachrichten 1900.
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into positive reduced forms.3)

The first part presents general facts and treats the groups with infinite fundamen-
tal domain. It prepares the treatment of groups with finite fundamental domain
in that the existence of the aforementioned translations subgroup with n linear
independent translations is proven (Theorem XV, §10).

The main results on groups with infinite fundamental domain are contained in
§§9, 10, 11. According to them, a group of motions with infinite fundamental
domain is either homogeneous or finite, or it is decomposable (see the beginning
of §8).

1 Euclidean motions and orthogonal substitutions

A Euclidean motion or motion of the n-dimensional Euclidean space is a linear
substitution

x0i D

nX
kD1

aikxk C ˛i .i D 1; : : : ; n/ (1.1)

which transforms the line element

ds2 D
nX
kD1

dx2k (1.2)

into itself. For this it is necessary and sufficient that the following relations hold
for the coefficients aik:

nX
iD1

a2ik D 1 .k D 1; : : : ; n/;

nX
iD1

aihaik D 0 .h ¤ k/:

(1.3)

If we let A denote the substitution obtained from (1.1) by setting the ˛k to 0, that
is, the substitution

x0i D

nX
kD1

aikxk .i D 1; : : : ; n/; (1.4)

3)Minkowski, Diskontinuitätsbereich für arithmetische Äquivalenz; J. f. Math. 129 (1905).
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then this is an orthogonal substitution. We call A the orthogonal part of the mo-
tion. For short, we write

A D .aik/ or D

0B@a11 � � � a1n
:::

: : :
:::

an1 � � � ann

1CA ;
denote the determinant of A by �A D jaikj and set

DA.%/ D

ˇ̌̌̌
ˇ̌̌a11 � % � � � a1n

:::
: : :

:::

an1 � � � ann � %

ˇ̌̌̌
ˇ̌̌ :

If A�1 denotes the inverse operation to A, and A1 the transpose, so that A1 D
.aki/, then A�1 D A1 by the relation (1.3). But A�1 also transforms the differen-
tial form (1.2) into itself. So the following relations hold, which are a consquence
of (1.3) and which conversely imply (1.3):

nX
kD1

a2ik D 1 .i D 1; : : : ; n/;

nX
kD1

aikahk D 0 .h ¤ i/:

(1.5)

The determinant jaikj coincides with the determinant jaki j. Now, A1A D 1 (here
and in the following, this equation expresses that the operation obtained by first
applying A and then A1 equals the identity operation). Hence �A D C1 or
�A D �1. If �A D C1, then A is a proper motion or operation of the first kind.
If �A D �1, then A is an operation of the second kind.

2 Representations of orthogonal substitutions by skew-
symmetric matrices

I will now assume DA.1/ ¤ 0, �A D C1 and want to derive Cayley’s rational
parameter representation for this class of orthogonal subsitutions. Let

x0˛ D

nX
ˇD1

a˛ˇxˇ .˛ D 1; : : : ; n/
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be an orthogonal substitution. Then the z˛ obtained by setting

2z˛ D x˛ C x
0
˛

are linearly independent, because we assumed DA.1/ ¤ 0. Then conversely

x˛ D

nX
ˇD1

�˛ˇzˇ .˛ D 1; : : : ; n/;

where the �˛ˇ are suitable constants. Among these there exist certain relations
which we want to derive now. It holds that

nX
˛D1

.x0˛/
2
D

nX
˛D1

x2˛:

But
x0˛ D 2z˛ � x˛;

so that

4

nX
˛D1

z2˛ � 4

nX
˛D1

z˛x˛ C

nX
˛D1

x2˛ D

nX
˛D1

x2˛;

or
nX
˛D1

z2˛ D

nX
˛D1

z˛

� nX
ˇD1

�˛ˇzˇ

�
:

This implies
�˛˛ D C1; �˛ˇ D ��ˇ˛;

that is, the matrix of the �˛ˇ in

x˛ �

nX
ˇD1

�˛ˇzˇ

is skew-symmetric, and so is the matrix of the �˛ˇ in

x0˛ D

nX
ˇD1

�˛ˇzˇ ;

because x0˛ D 2z˛ � x˛. Moreover, the matrix of the �˛ˇ is the transpose of the
matrix of the �˛ˇ , that is, it is obtained from the latter by exchanging rows and
columns.
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3 Canonical forms of orthogonal substitutions

We consider all real orthogonal substitutions arising from a given one, A, by
means of transformation by real orthogonal subsitutions, that is, those of the form
BAB�1. Among these, we are looking for a particular one with a very simple
system of coefficients. I will prove the following theorem:

I For a given real orthogonal substitutionO D .oik/ one can always find another
real orthogonal substitution P such that Q D POP �1 D .qik/ has the following
matrix:

(a) �0 D C1, n even: Q D Q1jQ2j : : : jQn
2
,

(b) �0 D C1, n odd: Q D Q1jQ2j : : : jQn�1
2
j1,

(c) �0 D �1, n even: Q D Q1jQ2j : : : jQn�2
2
j
�
1 0
0 �1

�
,

(d) �0 D 1, n odd: Q D Q1jQ2j : : : jQn�2
2
j � 1.

Here, Q1jQ2j : : : jQk denotes a matrix of the following form:0BBB@
Q1 0 � � � 0

0 Q2 0
:::

: : :
:::

0 0 � � � Qk

1CCCA I
here,

Qi D

�
cos.#i2�/ � sin.#i2�/
sin.#i2�/ cos.#i2�/

�
and 0 denotes the matrix with all entries 0. This form of an orthogonal substitution
is called the normal form, and the #i are called the orthogonal substitution’s angles
of rotation.

This theorem is proved in the theory of elementary divisors.4) Different proofs
were given by Schläfli5) and Goursat6) (n D 4). I want to give a proof based on
Cayley’s representation of orthogonal substitutions by skew-symmetric matrices
and on the reality of the roots of the characteristic equation, because the train of
thoughts on which this proof is based will be useful later on.

4)Muth, Theorie und Anwendung der Elementarteiler (Leipzig 1899), p. 176.
5)Schläfli, J. f. Math. 65 (1866), p. 185.
6)Goursat, Ann. éc. norm. sup. (3) 6 (1889).

8



First, I want to reduce the case (b) to the case (a). So let n be odd and �0 D C1.
Then there always exist points other than x1 D : : : D xn D 0 which are fixed by
the application of the orthogonal transformation. For this to hold, it is necessary
and sufficient thatD0.1/ D 0. By multiplying this determinant with that of A, we
get �0D0.1/ D �D0.1/; but as �0 D C1, it follows that D0.1/ D 0.

So in this case one can always apply a real linear transformation to ensure that

o1n D : : : D on�1;n D 0

and
on1 D : : : D on;n�1 D 0; onn D C1

hold. For if we pick a point fixed by O other than x1 D : : : D xn D 0, then
we now have to pick P as an orthogonal substitution transforming this point to a
point on the xn-axis, that is, into a point x1 D : : : D xn�1 D 0.

Then the elements on the last column of the matrix POP �1 D Q except for qnn
are all 0. But according to §1, qnn D C1, because a point on the xn-axis is fixed.
This implies again by §1 that the remaining elements in the last row vanish.

We have thus reduced the case (b) of our theorem to case (a). By an analoguous
argument which I omit here we can reduce the cases (c) and (d) of Theorem I to
case (a).

The following idea will lead us to the proof of case (a) of the theorem: In general,
one cannot find a point other than 0 fixed by the orthogonal substitution. So we
look for the planes stabilised by the orthogonal substitution. Once we have found
one of these, it is always possible to move this one into the plane x1 D x2 D 0 by
means of an orthogonal transformation. Then the proof of the theorem is reduced
to the analogous theorem for orthogonal substitutions in n� 2 variables. Now the
proof of the theorem follows by induction.

So what we need to investigate is whether we can determine the Ai , Bi in

nX
iD1

Aixi � A;

nX
iD1

Bixi � B

(3.1)
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in such a way that these two linear forms are transformed among each other by
the orthogonal transformation. Let

O � x0˛ D

nX
iD1

o˛ˇxˇ .˛ D 1; : : : ; n/

the orthogonal transformation. The system (3.1) is transformed into

nX
iD1

Ai

� nX
ˇD1

oiˇxˇ

�
� A0;

nX
iD1

Bi

� nX
ˇD1

oiˇxˇ

�
� B 0

If A and B are linear forms of the kind we are looking for, then there exist real
numbers �1; �1; �2; �2 such that

A0 D �1AC �1B;

B 0 D �2AC �2B
(3.2)

holds identically in the xi . The condition (3.2) implies certain linear equations for
the Ai , Bi . I will label the coefficients of A0 by A0i and those of B 0 by B 0i . Then

A0ˇ D

nX
iD1

Aioiˇ ; B 0ˇ D

nX
iD1

Bioiˇ .ˇ D 1; : : : ; n/: (3.3)

Now we turn to the skew-symmetric form:

A0˛ D

nX
ˇD1

�˛ˇzˇ ; B 0˛ D

nX
ˇD1

�˛ˇz
0
ˇ ;

A0ˇ D

nX
˛D1

�˛ˇz˛; B 0ˇ D

nX
˛D1

�˛ˇz
0
˛

where �˛˛ D 1 and �˛ˇ D ��ˇ˛ for ˛ ¤ ˇ. We rewrite this by multiplying these
equations with inderterminates and adding them:

A0 D S1.z/; B 0 D S1.z
0/;

A D S.z/; B D S.z0/:
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Now it follows from (3.2) that

S1.z/ D �1S.z/C �1S.z
0/;

S1.z
0/ D �2S.z/C �2S.z

0/:

We need to prove that there exist real �1; �1; �2; �2 such that these 2n linear
equations can be solved for the 2n unknowns z; z0. These in turn will yield the
Ai ; Bi . At first, I somewhat manipulate the system of equations. I compute S.z/
from the first equation and plug it into the second equation:

S1.z/ D �
0
1S.z/ � �

0
1S.z

0/;

S1.z/ D ��
0
2S1.z/C �

0
2S.z

0/:

This system of equations is equivalent to the original one, and the �01; �
0
1; �
0
2; �

0
2

arise from the �1; �1; �2; �2 by a real substitution. For existence of �01; �
0
1; �
0
2; �

0
2

allowing to solve the equations for z; z0, the �01; �
0
1; �
0
2; �

0
2 must satisfy the equa-

tion obtained by setting the determinant to 0. This is:ˇ̌̌̌
ˇ̌̌̌
ˇ̌

1��01 ��12.1C�
0
1/ ��� ��1n.1C�

0
1/ �01 �01�12 ��� �01�1n

:::
:::

:::
:::

:::
�1n.1C�

0
1/ �2n.1C�

0
1/ ��� 1��01 ��01�1n ��� �01

�02 ��02�12 ��� ��02�1n 1��02 ��12.1C�
0
2/ ��� ��1n.1C�

0
2/

:::
:::

:::
:::

�02�1n ��� �02 �1n.1C�
0
2/ ��� 1��02

ˇ̌̌̌
ˇ̌̌̌
ˇ̌ D 0:

Now, we make the ansatz �01 D �1, �02 D �1. Then the equation becomesˇ̌̌̌
ˇ̌̌̌
ˇ̌

2 0 ��� 0 �01 �01�12 ��� �
0
1�1n

:::
:::

:::
:::

:::
0 0 ��� 2 ��01�1n ��� �01
�02 ��02�12 ��� ��

0
2�1n 2 0 ��� 0

:::
:::

:::
:::

:::
�02�1n ��� �02 0 0 ��� 2

ˇ̌̌̌
ˇ̌̌̌
ˇ̌ D 0:

Moreover, we require �01 D �
0
2. Then, if we write x D 1

�01
,ˇ̌̌̌

ˇ̌̌̌
ˇ̌̌̌
ˇ

2x 0 � � � 0 1 �12 � � � �1n
:::

:::
:::

:::
:::

0 0 � � � 2x ��1n � � � 1

1 ��12 � � � ��1n 2x 0 � � � 0
:::

:::
:::

:::
:::

�1n �2n � � � 1 0 0 � � � 2x

ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌̌
ˇ
D 0:
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But this is a characteristic equation, and as we know it has only real roots. So
we learn from our ansatz that there exist real numbers �01, �

0
1, �

0
2, �

0
2 allowing

to solve the 2n equations for z, z0. The �1, �1, �2, �2 depend on the �0i , �
0
i as

follows:

�1 D �
0
1; �1 D ��

0
1; �2 D ��

0
2�
0
1; �2 D �

0
1�
0
1 C �

0
2:

We assumed:
�01 D �1; �02 D �1; �01 D �

0
2:

This implies

�1 D �1; �1 D ��
0
1; �2 D ��

0
1; �2 D .�

0
2/
2
� 1:

For these �i , �i we have solutions Ai , Bi of our linear equations. There are two
possible cases. Either the associated linear forms A, B are linearly independent or
not. If they are linearly independent, then we can always assume that the following
relations between the Ai , Bi hold:X

A2i D 1;
X

B2i D 1;
X

AiBi D 0:

Then the following relations between the A0i , B
0
i hold:X

.A0i/
2
D 1;

X
.B 0i/

2
D 1;

X
A0iB

0
i D 0;

and the �i , �i are coefficients of a linear orthogonal transformation (if these rela-
tions do not hold to begin with, we can achieve it via a linear combination of the
A, B). One can always state an orthogonal substitution whose last rows comprise
theAi , Bi . If we transform our original matrix with this one, it takes the following
form:

An�2

ˇ̌̌�
�1 �1
�2 �2

�
:

But this is just what we wanted to prove.

If A and B are not linearly independent, then A D bB identically in the x. We
may assume:

P
A2i D 1,

P
B2i D 1. So b D ˙1. Because of the equations (3.3),

A0ˇ D

nX
iD1

Aioiˇ ; B 0ˇ D

nX
iD1

Bioiˇ .ˇ D 1; : : : ; n/;

it also holds that
A0 D bB 0: (3.4)
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But now

A0 D �1AC �1B D �A � �
0
1B;

B 0 D �2AC �2B D �
0
1AC ..�

0
1/
2
� 1/B;

(3.5)

so that either
�bB � �01B D b.�

0
1b C ..�

0
1/
2
� 1/B

or
��01 D b

2�01 C b.�
0
1/
2: (3.6)

Here, two cases have to be distinguished. Either �01 D 0 or �01 ¤ 0:

(a) �01 D 0: By (3.5), A0 D �A, B 0 D �B . Choose the Ai as the last row of an
otherwise arbitrary orthogonal transformation and transformO with it. The
the transform of Q becomes

Q D Q0j � 1:

Q0 now has an uneven number of rows and a negative determinant. Then
Q0 D Q00j � 1 by §3, and O can thus be transformed into the form

Q00
ˇ̌̌�
�1 0

0 �1

�
:

We have thus reduced the proof of our theorem for matrices with n rows to
the case of matrices with n � 2 rows.

(b) �01 ¤ 0: By (3.6): �1 D b2 C b�01. For this to be satisfied by a b D ˙1,
�01 D ˙2 has to hold. Then b D �1 and by (3.5) in both cases A0 D A,
B 0 D B . This means, because of equation (3.3), that there exist points fixed
by our orthogonal transformationO . SoO can be transformed into the form
O 0j1, and as O 0 has an uneven number of rows and positive determinant, O
can be transformed into

O 00
ˇ̌̌�
1 0

0 1

�
:

Now we have reached our goal and proved Theorem I in general, as it clearly
holds for binary orthogonal substitutions.
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4 Commuting orthogonal substitutions

We now wish to continue the investigations of §3 for orthogonal substitutions with
positive determinant. First, I will prove a theorem of the theory of elementary
divisors by following the preceding procedure.

II The absolute values of the angles of rotation #i are invariants of the orthogonal
transform, that is, in whatever way the transformation is brought into its normal
form, there will always be the same absolute values of the angles of rotation, and
their respective multiplicities are the same in every normal form.

To prove this theorem, I will apply the procedure of §3 to an orthogonal transfor-
mation in normal form. So the task is to find pairs of linear form

nX
iD1

Aixi � A;
X

A2i D 1;

nX
iD1

Bixi � B;
X

B2i D 1;

X
AiBi D 0;

which transform into each other under the subsitution which was brought into
normal form. Let the orthogonal transformation of positive determinant be

C D C
.1/
2 jC

.2/
2 j : : : jC

.k/
2 j1h .2k C h D n/;

where

C
.i/
2 D

�
cos.2�#i/ � sin.2�#i/
sin.2�#i/ cos.2�#i/

�
:

(Here and in the following, the lower index indicates the number of rows in a
matrix. 1h is the identical transform of h elements.) C transforms our linear
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forms .A;B/ into

A0 �

kX
iD1

�
.A2i�1 cos.2�#i/C A2i sin.2�#i//x2i�1

C .�A2i�1 sin.2�#i/C A2i cos.2�#i/x2i
�
C

hX
�D1

A2kC�x2kC�;

B 0 �

kX
iD1

�
.B2i�1 cos.2�#i/C B2i sin.2�#i//x2i�1

C .�B2i�1 sin.2�#i/C B2i cos.2�#i/x2i
�
C

hX
�D1

B2kC�x2kC�:

As in §3, there exists a real ' such that

A0 D A cos.2�'/ � B sin.2�'/

B 0 D A sin.2�'/C B cos.2�'/

are identical in x1; x2; : : : ; xn. From this the following system of linear equation
follows:

A2i�1 cos.2�#i/C A2i sin.2�#i/ D A2i�1 cos.2�'/ � B2i�1 sin.2�'/;

�A2i�1 sin.2�#i/C A2i cos.2�#i/ D A2i cos.2�'/ � B2i sin.2�'/;

B2i�1 cos.2�#i/C B2i sin.2�#i/ D A2i�1 sin.2�'/C B2i�1 cos.2�'/;

�B2i�1 sin.2�#i/C B2i cos.2�#i/ D A2i sin.2�'/C B2i cos.2�'/;

.for i D 1; 2; : : : ; n/

A2kC� D A2kC� cos.2�'/ � B2kC� sin.2�'/;

B2kC� D A2kC� sin.2�'/C B2kC� cos.2�'/;

.for � D 1; 2; : : : ; h/:

The questions is now, for which values of ' there exist Ai , Bi , not all vanishing,
such that this system of equation is satisfied? I will show that only the values
above, ' D ˙#i , 0, satisfy this requirement. The unknowns Ai , Bi fall into
distinct systems of four and two unknowns, respectively, which satisfy certain
linear equations among themselves, as given above. It is therefore sufficient to
consider a single one of these systems, for if not all Ai , Bi are to vanish, then at
least one of these system has solutions other than 0.
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For example, if we consider the system i D l , then .A2l�1; A2l ; B2l�1; B2l/ ¤
.0; 0; 0; 0/ if and only if the determinant of this system vanishes. This determinant
is

r D

ˇ̌̌̌
ˇ cos.2�#l /�cos.2�'/ sin.2�#l / sin.2�'/ 0

sin.2�#l / cos.2�#l /�cos.2�'/ 0 sin.2�'/
� sin.2�'/ 0 cos.2�#l /�cos.2�'/ sin.2�#l /

0 � sin.2�#l / � sin.2�#l / cos.2�#l /�cos.2�'/

ˇ̌̌̌
ˇ :

If I set ˛ D cos.2�#l/ � cos.2�'/, this becomes

r D ˛4 C 2˛2.sin.2�#l/2 C sin.2�'/2/C .sin.2�'/2 � sin.2�#l/2/2;

a sum of squares. Every term must vanish on its own, and in particular ˛ D
cos.2�#l/ � cos.2�'/ D 0. Hence

' D ˙#l :

If this is the case, then also
r D 0:

Next consider � D l . For

.A2kCl ; B2kCl/ ¤ .0; 0/

to hold, it is required thatˇ̌̌̌
cos.2�'/ � 1 � sin.2�'/

sin.2�'/ cos.2�'/ � 1

ˇ̌̌̌
D 0:

But this is the case if and only if ' D 0. This proves Theorem II. In a normal
form, only those angles can appear for which the equations above are solvable.

Our investigation immediately yield the correctness of the following theorem:

III Except for those linear subspaces distinguished by the normal form, the or-
thogonal subsitution preserves other linear subspaces if and only if one or more
of the #i have the same absolute value.

For if the conditions of the theorem are not satisfied, then only one quadruple of
equations is solvable for a given '. We obtain the following equations for a fixed
plane:

A1x1 C A2x2 D 0;

�A2x1 C A1x2 D 0
or

A1x1 C A2x2 D 0;

A2x1 � A1x2 D 0:
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This implies x1 D x2 D 0, a linear subspace already distinguished by the normal
form. But if some of the #i have the same absolute value, then some systems
of equations are simultaneously solvable, and then there exist additional planes
that are preserved by the orthogonal transformation. For example, if n D 4 and
#1 D #2, then the first two quadruples of equations are solvable. We obtain
equations for a preserved linear subspace such as the following:

A1x1 C A2x2 C A3x3 C A4x4 D 0;

�A2x1 C A1x2 � A4x3 C A3x4 D 0;

where
P
A2i D 1. It is easy to see that the Ai can be determined such that this

plane coincides either with x1 D x2 D 0 or x3 D x4 D 0. If we choose these
coefficients to be the last two rows of an orthogonal transformation and we choose
other coefficients of the same form for the first two rows, then this transformation
commutes with the normal form and we obtain a new transformation of into the
normal form. I will not continue these investigations here, but rather directly state
the theorem they are leading up to. Suppose the orthogonal transformation A is
brought into normal form, such that the angles of rotation are ordered by their
absolute values. I write

A D A2˛1jA2˛2j : : : jA2˛k j1�;

where the angles of rotation of A2˛i all have the same absolute value and are dis-
tinct in absolute value from those of A2˛j , j ¤ i , and from 0. The the following
theorem holds:

IV If A and B commute, the B is necessarily of the following form:

B D B2˛1jB2˛2j : : : jB2˛k jB�;

Our method allows us to determine the sufficient form of the coefficients. As this
is not used in the following, it shall be omitted here.

I will now prove the following theorem:

V If and A and B have positive determinant and commute, then A and B can be
simultaneously brought into the following form:

A D A2ˇ1jA2ˇ2j : : : jA2ˇ� j1�;

B D B2ˇ1jB2ˇ2j : : : jB2ˇ� jB�;
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where the absolute values of the angles of rotation of an A2ˇi and a B2ˇi are
identical, and moreover B is in normal form.

Note that it is sufficient to prove the special case of this theorem in which all
angles of A have the same absolute value. Then apply a transformation to A and
B simultaneously that brings B into a normal form, such that its angles of rotation
are ordered by absolute value. It now follow from Theorem IV that A is of the
form claimed in Theorem V.

5 A theorem on motions

Every motion the first or second kind can be brought into the following form:

A D A2k

ˇ̌̌0B@1 � � � 0 T1
:::
: : :

:::
:::

0 � � � 1 Th

1CA ;
where A2k does not fix any point other than x1 D x2 D : : : D x2k D 0. We then
have the following theorem:

VI It is a necessary condition for BAB�1 to take the given form for A simulta-
neously with A is that B is of the following form:

B D B2k

ˇ̌̌0B@b11 � � � b1h T 01
:::

: : :
:::

:::

bh1 � � � bhh T 0
h

1CA :
That the orthogonal part of B must be of the given form follows from the fact
that B maps all the points which are fixed by orthogonal part of A to themselves,
because the orthogonal part of BAB�1 fixes the same points as A does.

That the first 2k translational components of B vanish can be proved as follows:
I assume the first 2k translational components to be

b1; b2; : : : ; b2k:

Moreover, let
A2k D .˛ik/; B2k D .ˇik/:
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Then those 2k translational components of BAB�1 that are assumed to vanish
become

2kX
gD1

ˇg�

2kX
iD1

˛gibi �

2kX
gD1

ˇg�bg .� D 1; 2; : : : ; 2k/:

As the determinant of the ˇg� is different from 0, these 2k expressions can vanish
only if

2kX
iD1

˛gibi � bg D 0 .g D 1; 2; : : : ; 2k/:

As A2k fixes no point other than 0, these equations can hold only if

bg D 0 .g D 1; 2; : : : ; 2k/:

But this is just what we wanted to prove.

6 Fundamental domains and infinitesimal operations

In this work we investigate groups of motions which have a fundamental domain.
This means the following: We call two points equivalent if they can be mapped
to one another by a motion of the group. A fundamental domain of a group is a
connected domain, that is, a part of space of non-vanishing size, which contains
precisely one equivalent point to every point of a domain into which it is trans-
formed by the group. If a group has a fundamental domain, then for each of its
points it is possible to find a domain around it which contains no two equivalent
points; conversely, if there is any point contained in a domain that does not contain
any two equivalent points, then the group has a fundamental domain. Firstly, it is
clear that every point equivalent to the first one is contained in a domain with the
same property, and this domain is obtained from the original domain by a motion
in the group. We can the let these domains grow simultaneously such that they
congruent to each other and never overlap. As soon as two domains touch each
other, we stop. As all domains are congruent, there can never be an accumula-
tion of them in the infinite. Through this procedure we obtain a division of the
whole space into congruent parts which arise from each other by motions in the
group. Every such domain contains precisely one equivalent point for every point
in space. Such a domain is called a fundamental domain of the group.

To prove the existence of a fundamental domain, it is thus sufficient to know of
only one point at which not equivalent points accumulate; for as soon as such
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a point is known, we can distinguish a domain around it which contains no two
equivalent points. As the given point is not a point of accumulation of equivalent
points, there exists a closest equivalent point to it. If I now consider a sphere
around this point whose radius is less than half the distance to the closest equiv-
alent point, then this is such a domain containing no two equivalent points. If
I apply the motions of the group to this sphere, then I obtain congruent sphere
which have no point in common with the original sphere, which would have to be
the case of there were two equivalent points in the first sphere.

When I say a group contains infinitesimal operations, then it means that it is pos-
sible to find a sequence of operations A1; : : : ; Am; : : : in the group such that for
every given " there is some index m such that the coefficients of Ai (for i > m)
deviate from the identity matrix by less than ".

It is clear that a group with fundamental domain can contain no infinitesimal op-
erations, for otherwise there would be an equivalent point arbitrarily close to any
given point. But the converse is also true, for the following theorem holds:

VII A group of motions without infinitesimal operations has a fundamental do-
main.

Note first that a motion in n-dimensional Euclidean space is uniquely determined
if nC 1 points Q0; : : : ;Qn are known, into which nC 1 given points P0; : : : ; Pn
are transformed by the motion, given that not all points belong to a space of di-
mension less than n. If the group does not have a fundamental domain, then every
point in space is an accumulation point of its equivalent points. For if there was
even one point for which this was not true, then we could conclude as above that
the group has a fundamental domain and thus does not contain any infinitesimal
transformations, contradicting our assumption. Hence P0 has to be such an ac-
cumulation point. Choose a sequence of equivalent points accumulating at this
point, Q.1/

0 ; : : : ;Q
.n/
0 ; : : :. Moreover, choose any motion B.i/ out of all motions

mapping P0 to Q.i/
0 . This way we obtain a sequence B.1/; : : : ; B.n/; : : : of mo-

tions. I will show that this leads to infinitesimal transformations. First, pick a
transformation T .i/ mapping Q.i/

0 to P0. Then B.i/T .i/ D � .i/ is an orthogonal
transformation, and the sequence of the T .i/ leads to infinitesimal transforma-
tions. Now assume P1; : : : ; Pn are mapped to Q.i/

1 ; : : : ;Q
.i/
n by � .i/. Then there

are two possibilities: Either the Q.i/

k
coincide with the Pi from a certain index i

on. In this case, � .i/ is the identity from this index on, so B.i/ D .T .i//�1 from
then on. So then our sequence leads to an infinitesimal operation. Or there are ar-
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bitrarily large indices i for which .Q.i/
1 ; : : : ;Q

.i/
n / is different from .P1; : : : ; Pm/.

Then we can pick a sequence, again denoted by .Q.i/
1 ; : : : ;Q

.i/
n /, such that Q.i/

1

converges to P1,Q
.i/
2 converges to P2, . . . , andQ.i/

n converges to Pn. Let # .i/
k

de-
note the angle .Q.i/

k
P0Pk/. Then limk!1 #

.i/

k
D 0. We may now assume that the

pointsP1; : : : ; Pn are situated on the axes of a right-angled coordinate system with
origin P0 and distance 1 from P0. Mapping .P1; : : : ; Pn/ to .Q.i/

1 ; : : : ;Q
.i/
n / cor-

responds to a change of coordinates. Let .x01; : : : ; x
0
n/ be the coordinate system as-

sociated to .Q.i/
1 ; : : : ;Q

.i/
n /, and .x1; : : : ; xn/ the one associated to .P1; : : : ; Pn/.

Then

x0h D

nX
kD1

a
.i/

hk
xk .h D 1; 2; : : : ; n/:

But here is ahh D cos.# .i/
h
/. Hence limk!1 a

.i/

hh
D 1 and therefore limk!1 a

.i/

kh
D

0 for k ¤ h by the relations given in §1. Therefore the sequence � .i/ and hence
B.i/ leads to infinitesimal transformations. So if the group does not have a funda-
mental domain, then it contains infinitesimal transformations. From this Theorem
VII follows.

7 Proof of two lemmas

In this paragraph I want to prove two lemmas to be used in the next paragraph.
The first one is:

VIII Let A and B be two commuting orthogonal operations of even row number.
Suppose the angles of rotation of A are all irrational, those of B either irrational
or 0, and both cases occur. Then there exist two exponents !1 > 0 and !2 > 0

such that the angles of rotation of A!1B!2 are all irrational.

Proof: By Theorem V in §4 we may assume that

A D A1jA2j : : : jAn;

B D B1jB2j : : : jBn;

where each Bi or Ah only has angles of rotation of the same absolute value. Let
ki denote half of the line number of Ai or Bi , respectively. Our assumption is that

Bn��1 D Bn��1C1 D : : : D Bn D 1 .�1 > 0/:
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Then
AB D C1j : : : jCn��1�1jAn��1j : : : jAn;

soAB has at least kn��1Ckn��1C1C: : :Ckn irrational angles of rotation. If there
are only irrational angles of rotation in the Ci , then we are done. Otherwise, there
is a positive constant a1 such that .AB/a1 D Aa1Ba1 has 0 as the only rational
angle of rotation. Then we can transform A and B simultaneously by a transfor-
mation of 2.k1 C k2 C : : :C kn��1C1/ rows such that ˛A˛�1 and ˛.AB/a1˛�1

take the following form:

A01jA
0
2j : : : jA

0
n

C 01jC
0
2j : : : jC

0
n��1�1

jAa1n��1j : : : jA
a1
n ;

where again A0i and C 0
h

have only angles of rotation of the same absolute value,
and C 0n��1 D Cn��1C1 D : : : D Cn��1�1 D 1. Let 2�i be the number of rows in
C 0i and A0i . Then

˛Aa1C1Ba1˛�1 D D1jD2j : : : jDn��2�1jA
0
n��2
j : : : jA0n��1jA

a1C1
n��2
j : : : jAa1C1n

and hence Aa1C1Ba1 has at least

�n��2 C : : : �n��1�1 C kn��1 C : : :C kn

irrational angles of rotation, a number which is certainly greater than the minimal
number of irrational angles of rotation in AB . If Aa1C1Ba1 still has some ratio-
nal angles of rotation, then we can again determine a positive exponent a2 such
that Aa2.a1C1/Ba1a2 has only irrational angles of rotation except for 0. As before
we can conclude that Aa2.a1C1/C1Ba1a2 certainly has more irrational angles than
Aa1C1Ba1 . We continue in this way until after finitely many steps we find an op-
eration A!1B!2 , !1; !2 > 0, which has only irrational angles of rotation, because
in every step in which there are still rational angles left, the number of irrational
angles grows and eventually has to coincide with half the line number of A. This
proves the first lemma.

Now I turn to the second lemma I want to prove in this paragraph:

IX Let ˇ1; ˇ2; : : : ; ˇn; : : : be a sequence of orthogonal operations leading to in-
finitesimal substitutions (§6). Then there exists a number k such that no ˇi (for
i > k) can map a point of the space

xhC1 D xhC2 D : : : D xn D 0
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to a point of the orthogonal space

x1 D x2 D : : : D xh D 0:

Proof: Let ˇ be an orthogonal substitution0B@1 � ˇ11 � � � ˇ1n
:::

: : :
:::

ˇn1 � � � 1 � ˇnn

1CA :
If this is to transform a point

xhC1 D xhC2 D : : : D xn D 0

to a point
x1 D x2 D : : : D xh D 0;

then the equations

.1 � ˇ11/x1 C ˇ2x2 C : : :C ˇ1hxh D 0

:::

ˇh1x1 C ˇh2x2 C : : :C .1 � ˇhh/xh D 0

hold. It should be possible to satsify it with x1; x2; : : : ; xh different from 0. Then
the determinant should beˇ̌̌̌

ˇ̌̌1 � ˇ11 � � � ˇ1n
:::

: : :
:::

ˇn1 � � � 1 � ˇnn

ˇ̌̌̌
ˇ̌̌ D 0:

If we think about this determinant as an polynomial function of the ˇik, then it is
of the form 1C

Pm
iD1 Pi.ˇ/, where Pi.ˇ/ is a product of at most h < n of the ˇik

with coefficient 1, and m the number of these products. As all jˇikj < 1
m2

, also
each jPi.ˇ/j < 1

m2
, hence 1C

Pm
iD1 Pi.ˇ/ <

1
m
< 1. But then 1C

Pm
iD1 Pi.ˇ/

cannot vanish, since otherwise j
Pm
iD1 Pi.ˇ/j D 1. Now I determine an index k

such that in the sequence ˇ1; : : : ; ˇn; : : : the coefficients ˇi (for i > k) deviate
from those of the identity transformation by less than 1

m2
. This index k satisfies

the conditions of our theorem, which is thereby proven.

23



8 Groups with irrational angles of rotation

A group of motions all of which operations can be simultaneously brought into
the form �

A2k 0 0

0 Ah Th

�
;

where k and h are independent of the individual motion and Th denotes the trans-
lational component, is called decomposable.

Then the following theorem holds:

X A group of motions that contains operations with an irrational angle of rotation
and does not contain infinitesimal operations is decomposable.

We prove this theorem by showing: Every group of motions containing opera-
tions with irrational angles of rotation and which is not decomposable contains
infinitesimal operations.

So assume the group is not decomposable. Further, let A an operation with irra-
tional angle of rotation. We can assume that all non-zero angles of rotation are
irrational. In a suitable coordinate system, the motion is represented as

A D A1jA2j : : : jAkj

�
1h�1 0h�1 0h�1
0 1 T

�
;

where

Ai D

�
cos.2�#i/ � sin.2�#i/
sin.2�#i/ cos.2�#i/

�
:

Now we can find a sequence of operations starting at A whose orthogonal parts
lead to infinitesimal operations: Let � be number of angles of rotation with differ-
ent absolute values. By a theorem of Minkowski7) � irrational numbers #i can be
approximated simultaneously to arbitrary precision by rational numbers xi

n
with

common denominator n, such thatˇ̌̌xi
n
� #i

ˇ̌̌
<

1

n �
p
n

.i D 1; 2; : : : ; �/:

Let n1 < n2 < : : : < nm < : : : be a infinite sequence of integer numbers
satisfying this condition. The angles of rotation of Anmi is nm#i and we have
jnm#i � xi j <

1
�
p
nm

.

7)Minkowski, Geometrie der Zahlen (Leipzig 1897-1910), p. 108. Diophantische Approxima-
tionen (Leipzig 1907), p. 8.
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nm can be chosen such that the angles of rotation deviate from a rational number
by an arbitrarily small amount, so that the coefficients of Anm , for m sufficiently
large, deviate from those of the identity matrix by no more than an arbitrary given
amount �. They deviate by less than "m D 1

�
p
nm

. The translational compo-
nents of Anm are nmTi . Hence they grow unboundedly with m in such a way that
"�mTi D Ti . We agree on the following convenient convention: We say the coef-
ficients approach those of the identity transformation like ", and the translational
components approach infinity like "��.

The case in which Ti D 0 (i D 1; : : : ; h) is included in the preceding arguments,
and we may further assume:

T1 D : : : D Th�1 D 0; Th ¤ 0:

Now everything depends on constructing from the sequence

�1 D .A
n1; : : : ; Anm; : : :/

in an indecomposable group a new one which becomes infinitesimal also in its
translational part. To this end, we choose among all oprations in the group the
one with the greatest number of irrational angles of rotation. This is brought
into the above normal form, and construct the sequence �1 by taking powers. In
the following I will operate with the product of two sequences. This means the
following: Let

C1 D .A0; A1; : : : ; An; : : :/;

C2 D .B0; B1; : : : ; Bn; : : :/

be two sequences, then their product is

C1C2 D .A0B0; A1B1; : : : ; AnBn; : : :/:

Now we can always assume that there exists an operation 0 in the group which is
not of the form �

G2k 0 0

0 Gh T 0
h

�
;

where k is the number of irrational angles of rotation occurring in A. Otherwise,
the group would be indecomposable. With such a sequence we construct the se-
quence

�0 D .0; 0; : : : ; 0; : : :/:
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Then construct the sequences

�2 D �0�1�
�1
0 � �11 ;

�3 D �2�1�
�1
2 � �11 ;

�4 D �3�1�
�1
3 � �11 ;

:::

Note first the dependence of the coefficients of these sequences on ". First, con-
sider �2. Write the coefficients of an element of �1 as:0B@1C ˛11 ˛12 � � � ˛1n 0

:::
: : :

:::
:::

˛n1 ˛n2 � � � 1C ˛nn "��T

1CA ;
where the ˛ik converge to 0 for decreasing " like " itself (or are 0 themselves) and
T is finite, that is, it does not grow beyond a certain boundary independent of the
particular element of the sequence. How do the coefficients of the term �2 depend
on the ˛ik? They are polynomial functions of the ˛ik. If we let them tend to 0 in
any way, then by definition of �2, the coefficients of the orthogonal part of each
term in this sequence converge to the corresponding coefficients of the identity
transformation. So if we write the a term of �2 as0B@1C ˇ11 � � � ˇ1n B1

::: � � �
:::

:::

ˇn1 � � � 1C ˇnn Bn

1CA ;
then the ˇik are polynomial functions of the ˛ik in which no term independent
of the ˛ik appears. The ˇik thus conerge to 0 like ", but the B evidently do not
tend to infinity faster than "�2, as no to terms tending to infinity are multiplied in
forming the Bi and the number of terms used in forming them is independent of
the particular element of the sequence.

Consider an element of �3,0B@1C 11 � � � 1n C1
::: � � �

:::
:::

n1 � � � 1C nn Cn

1CA :
The ik are polynomial functions of the ˛ik and ˇik . If we let one of of these two
systems converge to 0, then the ik converge to 0 as well. The ik, as rational
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functions in the ˛, ˇ, do not contain a term independent of the ˛ and ˇ. Hence
the ik converge to 0 like "2. Consider the Ci . They are polynomial functions of
the ˛, ˇ, "�2T , Bi . We let ˛ and ˇ converge to 0 simultaneously. Then the Ci
also converge to 0. This implies that Ci contains no term independent of both ˛
and ˇ. Hence the Ci tend to infinity like "��C1. Now consider an element of �4,0B@1C ı11 � � � ı1n D1

::: � � �
:::

:::

ın1 � � � 1C ınn Dn

1CA :
As before it follows that the ıik converge to 0 like "2. What about the Di? Rea-
soning as for the Ci above would not yield anything new, so we need to apply a
different argument. Let only the ik converge to 0. Then

�4 D

0B@1C 11 � � � 1n C1
::: � � �

:::
:::

n1 � � � 1C nn Cn

1CA �
0B@1C ˛11 � � � ˛1n 0

::: � � �
:::

:::

˛n1 � � � 1C ˛nn "�1T

1CA
�

0B@1C 11 � � � 1n �C1 �
P
k1Ck

::: � � �
:::

:::

n1 � � � 1C nn �Cn �
P
knCk

1CA �
0B@1C ˛11 � � � ˛1n 0

::: � � �
:::

:::

˛n1 � � � 1C ˛nn �"
�1T

1CA :
Let ."%/ denote a term that behaves like "%. If ik D 0, then

D1 D �C1 � ."/."
��C1/C C1;

:::

Dn D �Cn � "
��T � ."/."��C1/C "��T C Cn;

or
Di D ."

��C1/:

If the ik are not 0, then additional terms appear that behave like "��C2, since the
ik behave like "2. So be setting them to 0, we only lose terms that behave like
"��C2. Hence the Di behave like "��C2. In the same way we can conclude that
the "ik for �5 behave like "4, the Ei like "��C3. Finally, we arrive at the result
that in �n, the �ik behave like "n�1 and the Ni like "��Cn�2.

So if in ��C3 not all elements from a certain one onwards equal the identity, then
��C3 leads to infinitesimal substitutions.
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But if the latter situation occurs for one �i , then for all consecutive �k , k > i , the
same terms in the sequence equal the identity, so that our procedure does not lead
to the desired outcome. This case will have to be treated seperately.

First, we will see that among the terms of �2 and �3, the identity cannot occur.
Assume to the contrary that the identity occurs in �2, say � .h/

2 is an element for
which this occurs, � .h/

2 D 1. Then, by definition of �2,

�
.h/
1 D 0�

.h/
1 �10 :

So the element 0 of �0 would have to transform the element � .h/
1 into itself. But

we chose the 0 above precisely such that this is not the case ($ 5). Hence �2
cannot contain the identity.

Now assume that �3 contains the identity. Let � .h/
3 D 1. Then

�
.h/
2 �

.h/
1 .�

.h/
2 /�1 D �

.h/
1 :

Then by §5,

�
.h/
2 D

�
P2k 0 0

0 Qh T 00
h

�
:

But from Theorem VIII in §7 it follows that Qh D 1. Namely, � .h/
2 and � .h/

1

commute. Now suppose Qh ¤ 1. Then � .h/
2 D 0�

.h/
1 �10 .�

.h/
1 /�1, hence

�
.h/
2 �

.h/
1 is a transform of � .h/

1 and

�
.h/
2 �

.h/
1 D

�
R2k 0 0

0 Qh T 000
h

�
:

So if Qh contained angles of rotation other than 0, then they would equal angles
that appear for � .h/

1 , and would thus be irrational. In R2k , the angle 0 would have
to appear just as often as a non-zero one appears in Qh. If

�
.h/
1 D

�
A2k 0 0

0 1 Th

�
;

thenA2k andR2k commute. Hence all prerequisites of Theorem VIII are satisfied.
There would be an operation

˛ D

�
˛2k 0 0

0 ˇh Th

�
in the group such that all angles of rotation of ˛2k are irrational (and non-zero).
Moreover, ˇh, which is a power of Qh, would contain non-zero irrational angles
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of rotation. Hence ˛ would contain more irrational angles than the operation A
from which �1 is constructed. But above we choseA as that operation in the group
with the maximal number of irrational rotation angles. Our assumption thatQh is
different from the identity thus leads to a contradiction. Hence Qh D 1. But now

�
.h/
2 �

.h/
1 D 0�

.a/
1 �10 :

But then, again by Theorem VI (§5), 0 is of the following form:�
F2k 0 0

0 Gh Th

�
:

But we chose 0 precisely such that this is not the case. So our assumption that
�3 contains the identity leads to a contradiction. Hence �3 cannot contain the
identity.

In general, we cannot conclude in an analogous manner that �n, n > 3, does not
contain the identity. We have to slightly modify our reasoning.

First, assume that �k , k � 6, leads to the identity, that is, from a certain term
onward, all terms of �k equal the identity. Further, assume no �i with i < k leads
to the identity. To express that �k leads to the identity, we shall write �k D 1. We
claim that in this case, �k�1� �1k�2 leads to infinitesimal operations. Namely,

1 D �k D �k�1�1�
�1
k�1�

�1
1 :

This implies that all elements of �k�1 are of the following form:

�k�1 D

�
P2k 0 0

0 Qh Th

�
;

and with Theorem VIII (§7) it follows by an argument similar to the one for �3
above, that Qh D 1. It also follows that �k�2 is of the form just given (where Qh

is not necessarily the identity). But now

�k�1 D �k�2�1�
�1
k�2�

�1
1

and
�k�2 D �k�3�1�

�1
k�3�

�1
1 :

So �k�1�1 and �k�2�1 are transforms of �1, and thus of each other. Namely,

�k�1�1 D �k�2�
�1
k�3.�k�2�1/�k�3�

�1
k�2: (�)
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Now �k�2�
�1
k�3

evidently leads to infinitesimal operations in its orthogonal part,
because this is the case for �k�2 and �k�3. But �k�1�1 is of the form�

P2k 0 0

0 1 T

�
:

Therefore, after omitting certain initial terms in our sequence, application of The-
orem IX (§7) yields that �k�2�1 is also of the given form for �k�1�1. For, in
regard to the given form of �k�2, clearly �k�2�1 is of the form�

P2k 0 0

0 Qh Th

�
:

If Qh contained any angles of rotation other than 0, then they would have to
occur in �1 as well, in light of (�). Accordingly, �k�2� �1k�3 would transform
certain points in the space x2kC1 D : : : D xn D 0 into points in the space
x1 D : : : D x2k D 0. But this is impossible by Theorem IX. So Qh in �k�2 must
equal the identity. Considering the definition of �k�2 it would follow that �k�3 is
of the form �

P2k 0 0

0 Qh Th

�
:

If k � 6, we can apply the same reasoning here and prove that Qh D 1. In sum-
mary: It has been shown that �k�1�1, �k�2�1, �k�2, �k�3, and thus �k�2� �1k�3
are all of the form �

P2k 0 0

0 1 T

�
:

But this implies that the translational components of �k�1�1 and �k�2�1 must
coincide by (�). Hence the sequence

�k�1�1 � �
�1
1 � �1k�2 D �k�1�

�1
k�2

consists of pure rotations. It leads to an infinitesimal operation as soon as we
know that �k�1 ¤ �k�2. Now,

�k�1�1 D �k�2�1�
�1
k�2:

So if we assume �k�1 D �k�2, then �k�2 D 1 follows. But we made the as-
sumption that no �i D 1 for i < k. Hence �k�1 D �k�2 is impossible, and thus
�k�1�

�1
k�2

leads to infinitesimal operations.
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Now it remains to investigate the two case �4 D 1 and �5 D 1. First, consider
�4 D 1. Then form

� 04 D �3�1�2 � �
�1
3 � �

�1
3 � �11 � �12 :

We claim that if �2 and �3 do not commute, then � 04�2�1�
�1
2 � �11 is infinitesimal.

�1 and �3 are of the form �
P2k 0 0

0 0 Th

�
;

and �2 is of the form �
P2k 0 0

0 Qh Th

�
:

Hence

� 04�2�1 D

�
P 0
2k

0 0

0 Qh Th

�
and

�1�2 D

�
P 00
2k

0 0

0 Qh Th

�
;

as both arise from transformations of �3 from one another and have identical Qh

and Th. Hence

� 04�2�1�
�1
2 � �11 D

�
P 000
2k

0 0

0 1 0

�
is a pure rotation and infinitesimal if it is not the identity. But if we assume

� 04�2�1 D �1�2;

then by
� 04�2�1 D �3�1�2�

�1
3 ;

�3 would transform the sequence �1�2 into itself, so that

�3�1�2�
�1
3 D �1�3�2�

�1
3 D �1�2;

as �1 and �3 commute due to �4 D 1. But then �2 and �3 commute, as claimed.
But if �2 and �3, as well as �1 and �3, commute, then �3, which never equals the
identity, is already infinitesimal. To demonstrate this, first transform the whole
group, in particular �2, �3, �1, such that �2 assumes normal form. If we only
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write the last h columns that only contain translations and we denote the sequences
of the thus truncated substitutions by � 02, � 03, � 01, then:

� 02 D A1jA2j : : : jA�j

0BBB@
1 � � � 0 0 0
:::
: : :

:::
:::

:::

0 � � � 1 0 0

0 � � � 0 1 A

1CCCA
� 03 D

0B@1 � � � 0 B1
:::
: : :

:::
:::

0 � � � 1 Bh

1CA ;
� 01 D

0B@1 � � � 0 C1
:::
: : :

:::
:::

0 � � � 1 Ch

1CA :
Now � 02 is assumed to commute with � 03. The Ai merely contain irrational angles
of rotation, as �2�1 is a transform of �1. This implies (Theorem VI, §5)

B1 D : : : D B2� D 0:

Now assume further that � 02 transforms the sequence � 01 into the sequence � 03�
0
1.

But � 03�
0
1 is a translation with components

C1; : : : ; C2�; C2�C1 C B2�C1; : : : ; Ch C Bh;

whereas the translation components of � 01 are

C1; : : : ; C2�; C2�C1; : : : ; Ch:

Upon forming � 02�
0
1.�

0
2/
�1 and denoting the angles of rotation of the Ai by #i ,

the translation components become

C1 cos.#i2�/�C1 sin.#i2�/; : : : ; C2��1 sin.#i2�/CC� cos.#i2�/; C2�C1; : : : ; Ch:

If these components are supposed to equal those of � 01, then it follows that

C1 D : : : D C2� D 0:

Then �3 is a rotation and infinitesimal, as it cannot be the identity. This settles the
case �4 D 1.
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We now consider the case �5 D 1. So suppose �5 D 1. We have

�4 D �3�1�
�1
3 � �11 ;

�3 D �2�1�
�1
2 � �11 ;

�2 D �0�1�
�1
0 � �11 :

If we form
� 05 D �3 � �4�1�

�1
3 � �11 � �14 ;

then this sequence is infinitesimal: It cannot be that � 05 D 1, for then

�3�4�1 D �4�1�3:

Now
�4�1�3 D �3�1;

so
�3�4�1 D �3�1

and therefore
�4 D 1:

But this case has already been settled. We may thus assume � 05 ¤ 1. Now � 05�4�1
is a transform of �4�1 via �3. But � 05�4�1 and �4�1 as well as �3 are of the form�

P2k 0 0

0 1 Th

�
:

Namely, �4�1 is a transform of �1 via �3. As �4 commutes with �1, it is of the
form �

P2k 0 0

0 Qh Th

�
:

Hence �4�1 is of this form as well. By this is a transform of �1 by �3. Therefore,
by Theorem IX (§7), since �3 is infinitesimal in its orthogonal part, �4�1 is of the
form �

P2k 0 0

0 1 Th

�
and thus �3 (Theorem VI, §5) is of the form�

P2k 0 0

0 Qh Th

�
:
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But �3�1 is a transform of �1 by �2. As �2 is infinitesimal in its orthogonal part,
again by Theorem IX, �3 is of the form�

P2k 0 0

0 1 Th

�
:

Then, by definition of � 05, the sequence � 05�4�1 and the sequence �4�1 are both
of the form �

P2k 0 0

0 1 Th

�
:

As �3 is of this form as well, and as � 05�4�1 arises by transformation with �3
from �4�1, the translation parts of � 05�4�1 and �4�1 coincide. Therefore,

� 05�4�1�
�1
1 � �14 D � 05

is infinitesimal, since, as we just saw, �5 ¤ 1.

In this way we have also shown that in case �5 ¤, the group contains infinitesimal
operations if it is indecomposable. We have thus proved the theorem that a group
of motions with fundamental domain that contains operations with irrational an-
gles of rotation is necessarily decomposable.

9 Groups of orthogonal substitutions

Our next goal is to prove the theorem stating that infinite groups with infinite
fundamental domain are alwys decomposable, and vice versa. To get there, we
will first prove an auxiliary theorem here. We wish to investigate those groups
of motions containing only orthogonal substitutions, that is, motions with a fixed
point. If there is a point fixed by all operations in the group, then this group can
be written as a homogeneous group of orthogonal substitutions. If it is finite, then
it is easy to see that it contains infinitesimal operations. This follows readily from
the fact that in this situation all coefficients lie between �1 and C1 and thus the
group must contain two arbitrarily close operations. Their composition leads to
infinitesimal operations. Now the next theorem is:

XI Every finite group of motions can be written as a homogeneous group, that
is, it can be transformed into this form by suitable linear subsitutions.

34



There is no problem is adding an nC 1st column to the operations in our group,
so that it can be written as0BBB@

˛
.h/
11 � � � ˛

.h/
1n A

.h/
1

:::
: : :

:::
:::

˛
.h/
n1 � � � ˛

.h/
nn A

.h/
n

0 � � � 0 1

1CCCA .h D 1; : : : ;H/

where H is the order of the group. By a theorem of Maschke,8) our group can be
brought into the form 0BBB@

˛
.h/
11 � � � ˛

.h/
1n 0

:::
: : :

:::
:::

˛
.h/
n1 � � � ˛

.h/
nn 0

0 � � � 0 1

1CCCA
by a transformation of the form �

Bn Tn
0 1

�
:

So now there are points x1 D : : : D xn D 0 mapped to themselves by all op-
erations in the group. Therefore, the operations in the original group also map
certain points to themselves. But then this group can be written homogeneously.
This proves Theorem XI.

Now we come to the next theorem:

XII An infinite group G consisting of orthogonal substitutions contains infini-
tesimal operations.

The case of a homogeneous group was treated before. To prove the theorem for
an inhomogeneous group, we first assume the following auxiliary theorem. Let

A D

0B@1C ˛11 � � � ˛1n 0
:::

: : :
:::

:::

˛n1 � � � 1C ˛nn 0

1CA
be an orthogonal substitution and

B D

0B@1C ˇ11 � � � ˇ1n B1
:::

: : :
:::

:::

ˇn1 � � � 1C ˇnn Bn

1CA
8)Maschke, Math. Ann. 52, p. 363.
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a motion with
P
B2i D b. Let

C1; : : : ; Cn

denote the components of the translation part of C D BAB�1A�1. Then there
exists a number � < 1 such that

Pn
iD1 C

2
i < b as soon as all j˛ikj < �, and a

number � such that the orthogonal part of C is � times closer to the identity than
the orthogonal part of A as soon as jˇikj < �, that is, that the largest jikj of C is
smaller than the �-fold multiple of the largest j˛ikj.

Namely,
nX
iD1

C 2i D

nX
hD1

� nX
iD1

˛ih

nX
kD1

ˇikBk

�2
:

Let all j˛ikj < ", where a suitable " will be chosen later. Then
nX
iD1

C 2i < n"
2
� nX
iD1

nX
kD1

ˇikBk

�2
If m is the number of terms in this square, then

P
C 2i < nm"2b. If we choose

" < 1
p
nmb

, then
P
C 2i < b.

The second part of the auxiliary theorem has a very similar proof, which we omit
here.

Using this auxiliary theorem, we will prove Theorem XII. As the group is infinite,
we can find at least one operation in it whose coefficients in the orthogonal part
all differ by less than � above from the identity substitution. Consider the totality
� of operations of this kind. Different cases are possible now:

I. The points fixed by A are invariant under all operations in the group. Then all
operations are of the form �

P2k 0 0

0 Qh Th

�
:

If the group is supposed to be infinite, then either the group formed by the first k
rows is infinite and the group formed by the last h rows is finite, or the first one
is finite and the second one is infinite, or both are infinite. In the first case we can
immediately deduce the existence of infinitesimal operations, in the second and
third case we can do so if we assume our theorem proved for the case of less than
n variables. For binary groups it can be proved by repeating our argument and
if at last there are only translation parts in the last column left, we can immedi-
ately deduce the existence of translations of screw-motions. This contradicts our
assumptions.
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II. There are operations in � that do not preserve the points fixed by A.

1. For every B with sum of squares
P
B2i D 1 there exists an operation with

smaller sum of squares. Then there is a sequence of operations such that
the sums of squares of its translation parts converge to a certain value. But
then there must exist pairs of operations in the group all of whose coeffi-
cients differ by an arbitrarily small quantity. This means the group contains
infinitesimal transformations.

2. Among all operations of � that do not preserve the points fixed by A, there
is one, say B , for which

P
B2i assumes the smallest possible value b. By

our auxiliary theorem there exists an operation C .1/ with
P
C 2i < b. But

this can only be 0. If now (a) C .1/ D 1, then it follows from Theorem VI
(§5) that B preserves the points fixed by A, in contradiction to our assump-
tion. Hence (b) C .1/ ¤ 1 and it is � times as close to the identity as A. We
proceed with C .1/ exactly as with A above and return to case I or II 1. or to
an operation C .2/ that is �2 times as close to the identity as A. Continuing
this way eventually leads to infinitesimal operations.

From Theorem XII it follows immediately:

XIII An infinite group of motions with fundamental domain that does not contain
any operation with an irrational angle of rotation necessarily contains translations.

For all angles of rotations are rational and the group cannot consist of rotations
alone, so that by taking powers of suitable operations we obtain pure translations.

This Theorem XIII forms the foundation of all further investigations and of the
second treatise.

10 Distinction of the groups with infinite fundamen-
tal domain from those with a finite one

By Theorem X (§8) it is proved that every group containing operations with irra-
tional angles of rotations is decomposable. By Theorems XI, XII and XIII (§9) it
is proved that every group of motions without infinitesimal operations that consists
only of orthogonal substitutions is finite and homogeneous, that is, every infinite
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group of motions without irrational angles of rotations has translations among its
operations.

The translations contained in a group of motions form a distinguished subgroup.
If all translations transform the space x1 D : : : xk D 0 into itself, then it readily
follows that the group formed by the orthogonal parts of our group also transforms
this space into itself. All operations in the group are thus of the form�

Ak 0 Tk
0 Bh Th

�
:

But the following theorem holds, by which the Tk are zero:

XIV If all translations in a group of motions of n-dimensional space are con-
tained in a linear subspace Rk, k < n, then the group is decomposable.

If operations with irrational angles of rotation appear in the group, then by Theo-
rem X (§8) the proof of this theorem can be reduced to the proof of the analogous
theorem for groups in less than n variables consisting only of operations with ra-
tional angles of rotation. We may thus restrict ourselves to groups of the latter
type to begin with.

If the group of the first k rows is finite, then Theorem XIV follows from Theorem
X. We may thus assume that it is infinite.

To prove the theorem, we distinguish several cases. Consider the totality of op-
erations that equal the identity in their last h rows. Those form a group � . It
thus contains no translations. If it was infinite, then it would contain infinitesimal
operations by Theorem XII. But then our original group would contain infinitesi-
mal operations. Therefore, � has to be finite. By a suitable transformation of the
whole group, we may thus achieve, by Theorem XI, that its translational compo-
nents are all 0. But the group � is a distinguished subgroup in our original group.
Depending on its type we distinguish several cases. Either, the only point fixed
by � in its first k rows is the origin. Then all other operations in the group must
fix this point, and Theorem XIV is proved. Or there are other points fixed by � .
Then our theorem is reduced to the analogous theorem in less than n dimensions,
where � does not consist of the identity alone (Theorem VI, §5). Namely, in the
case just considered, all operations in the group are of the form0@Ak�� 0 0 0

0 A� 0 T�
0 0 Ah Th

1A :
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The last �C h rows form a group. If we show, that the impossibility to write this
latter group such that all T� vanish implies the existence of infinitesimal opera-
tions, then clearly our original group contains infinitesimal operations. We may
thus apply the same reasoning to the group formed by the last hC� rows as before
for the group in n variables. This works until we find a group for which it holds
that if one element equals the identity in the last h rows, all other rows equal the
identity. This last case still needs to be investigated.

If then A.1/ is an element of the first kind in the group whose last h rows equal the
identity, and A.0/ is an arbitrary element in the group, then

A.3/ D A.2/A.1/A.2/�1A.1/�1;

with A.2/ D A.0/A.1/A.0/�1A.1/�1, equals the identity in the last h rows. There-
fore, in the case under consideration,A.3/ D 1 for every elementA.0/ in the group.
We will now draw a conclusion from this. Let

A.1/ D

0@Ak�� 0 0 0

0 1� 0 0

0 0 1h Th

1A ;
where Ak�� has no fixed points other than x1 D : : : D xk�� D 0. Then since
A.3/ D 1 by Theorem VI (§5), A.2/ is of the form

A.2/ D

0@Bk�� 0 0 0

0 C� 0 T 0�
0 0 Dh T 00

h

1A : (�)

But now A.2/A.1/ is a transform of A.1/. Hence the angles of rotation appearing in
C� are angles that also appear in A.2/. If we choose A.0/ such that the coefficients
of its orthogonal part in the first k rows differs from the those of the identity by
less than the quantity stated in Theorem IX (§7), then C� D 1 by this theorem,
and hence T 0� D 0, since otherwise the rationality of the angles of rotation would
imply the existence of translations not contained in the subspace x1 D : : : D

xk D 0. But then A.0/ must be of the form for A.2/ given in (�). So we see that
there is a number � such that all operations in the group whose orthogonal parts
in the first k rows differ from the identity by less than � must be of the given
form. Consider now all operations of the group that have this form. These form a
subgroup ˚ . Consider the group ˚ 0 formed by the last hC� rows. If infinitesimal
transformations appear here, then the original group also contains infinitesimal
transformations. Now we can apply the same reasoning to ˚ 0. This leads to the
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result that all operations in the group whose coefficients in the orthogonal parts in
the first k rows differ from the identity by less than � have the following form:�

Ak 0 0

0 Rh Th

�
:

Now we can choose a second quantity �0 < � small enough such that all oper-
ations in the group obtained by transformations from an operation in the group,
whose coefficients in the orthogonal part all differ from the identity by less than
�0, are themselves contained in the set of substitutions belonging to �, that is,
all of their cofficients differ by less than � from the identity matrix. We observe
that such a quantity �0 exists and depends only on � and n. Now consider the
substitutions formed by the first k rows of the set belonging to �0. If all of these
substitutions fix only the point x1 D : : : D xk D 0, then all operations in the
group have form given above for the set belonging to �. Then Theorem XIV
is proved. But if all of them fix additional points, then by a common argument
and due to Theorem VI (§5) the proof of the theorem is reduced to the proof of
the analogous theorem for groups in less than n variables. For if the manifold
x1 D : : : D xk�� D 0 is fixed pointwise, then we only need to consider the group
formed by the last h C � rows. If in the latter we can identify a sequence lead-
ing to infinitesimal operations, then also the original group contains infinitesimal
operations, since the first h rows do not have a translational component and all
coefficients lie between �1 and C1, so that all operations whose coefficients in
the first h rows differ by arbitrarily small amounts appear in the sequence. Thus
follows the existence of infinitesimal operations.

We can the apply the same reasoning to the group in less than n variables, until
either the first k rows are exhausted or until a finite group appears, which can be
transformed into a homogeneous one by Theorem XI (§8). This concludes the
proof of Theorem XIV.

From Theorem XIV we draw an important conclusion:

XV Given a group without infinitesimal operations, a necessary and sufficient
condition for the existence of a finite fundamental domain is that the group is not
decomposable. By Theorem XIV a group with finite fundamental domain always
contains a translation subgroup whose operations do not all transform a linear
subspace of dimension less than n into itself.

First, we show that the fundamental domain of a decomposable group necessarily
extends to infinity. Namely, the projection of a point in our space onto the linear
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space xkC1 D : : : D xn D 0 has constant distance from the origin for all opera-
tions in our group (the length of this projection is

Pk
iD1 x

2
i ). But since by §6, the

fundamental domain must contain an equivalent point for each point in space, the
fundamental domain contains points whose projection onto said space can have
arbitrarily large distance from the origin. Hence the fundamental domain must
extend to infinity. So the condition in the theorem is necessary. It is also suffi-
cient: If a group has a finite fundamental domain, then, firstly, it cannot contain
irrational angles of rotation, for it is decomposable (Theorem X, §8). Secondly,
it cannot consist only of orthogonal subsititions, since then it is finite and homo-
geneous and thus has infinite fundamental domain. Thirdly, it cannot contain a
subgroup of translations with fewer than n linearly independent translations, for
then it would be decomposable (Theorem XIV). Hence it must contain a subgroup
of translations with n linearly independent translations. But such a subgroup has
finite fundamental domain. This we see immediately if we think of n linearly in-
dependent directions of translations as coordinate axes. For then every point in
space has an equivalent one contained in the parallelepiped whose edge lengths
are the lengths of the shortest translations in the directions of these coordinate
axes. This proves Theorem XV.

11 Concluding remarks on groups with infinite fun-
damental domain

The result of our investigations can be summarized as the infinite groups with infi-
nite fundamental domain being necessarily decomposable, and the decomposable
groups, if they do not contain infinitesimal operations, having infinite fundamen-
tal domain. We wish to further characterize this decomposability. First, consider
the groups whose operations only have rational angles of rotation. We saw that
these groups always contain a subgroup of translations with i linearly independent
translations, and that they can be brought into the form�

Al 0 0

0 Ai Ti

�
:

Those groups whose operations also contain irrational angles of rotation do not
always contain a subgroup of translations. But if the maximal number of irrational
angles of rotation appearing in one operation is k

2
, then, as we have seen, the group
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can be brought into the following form:�
Ak 0 0

0 Ah Th

�
:

The group generated by the last h rows is necessarily infinite. Otherwise, it could
be transformed into a homogeneous group. Then the whole group would be of the
form �

Al 0 0

0 Ah 0

�
:

But then it would contain infinitesimal operations due to the existence of irrational
angles of rotation. Thus the group formed by the last h rows must be infinite. But
it cannot contain infinitesimal operations, since then we could once more deduce
the existence of infinitesimal operations in the original group. We may assume that
it does not contain any operations with irrational angles of rotations; otherwise,
we can apply Theorem X repeatedly until this is the case. The group formed
by the last h rows is thus a group of translations of, say, i linearly independent
translations. So the whole group can be brought into the following form:�

Al 0 0

0 Ai Ti

�
:

This is as much as we wish to say on the form of decomposability. Now we turn
our attention to the necessary and sufficient conditions for the existence of a fun-
damental domain. In addition to the above form that the group can be transformed
into, these are the following:

1. The group formed by the last i rows is a group with finite fundamental
domain.

The second condition is obtained if we take into account that the two groups re-
spectively formed by the first n� i rows and the last i rows are isomorphic. Then:

2. The subgroup of the first group corresponding to the identity element of the
second group is a finite group.

In the introductory remarks in this paragraph we already explained that the first
condition is necessary. That the second condition is necessary follows from the
fact that the group mentioned in it has a fundamental domain, being a subgroup of
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a group with fundamental domain, and as the group is homogeneous, this is only
possible if the group is finite.

We will now show that the given conditions are sufficient. For this, we only need
to show that under these conditions, no infinitesimal operations can appear in the
group. This can be seen as follows: Consider an arbitrary point. Then accu-
mulations will occur among the coordinates x1; : : : ; xl of the equivalent points.
But only a finite number among them correspond to the same xlC1; : : : ; xn. On
the other hand, among the xlC1; : : : ; xn alone there are no accumulations, as the
group has finite fundamental domain here. So the projection of the distance of two
equivalent points to the linear space x2 D : : : D xl D 0 has a lower bound greater
than 0. So accumulations can only occur among points whose xlC1; : : : ; xn co-
incide. But this is impossible, since to any given xlC1; : : : ; xn correspond only
finitely many x1; : : : ; xl . This concludes our investigations.
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Part II

Groups with finite fundamental
domain

1 Introduction

This article continues the investigations on groups of motions in Euclidean space,
part I, that appeared in volume 70 of the Mathematische Annalen. In the mean-
time, those results were derived in a simplified manner by Frobenius in a work on
indecomposable discrete groups of motions that appeared in the Sitzungsberichte
der Berliner Akademie, 1911. The following pages are concerned exclusively
with groups of motions with finite fundamental domain. As already suggested in
part I of this treatise and explained in Frobenius’s work, only finitely many of such
groups exist.

By a motion of n-dimensional Euclidean space we mean a real linear subsitution
of n variables,

x0i D

nX
kD1

aikxk C Ai .i D 1; : : : ; n/;

where the homogeneous linear substitution obtained by setting Ai to 0 is an or-
thogonal substitution, which, following Frobenius, we shall call the rotational
part of the motion. The substitution

x0i D xi C Ai .i D 1; : : : ; n/

represents the translational part of the motion. If R denotes the rotational and T

the translational part of a motion B, then in matrix calculus we can represent the
latter as the product B D TR. A motion that coincides with its rotational part
is called a rotation, a motion that coincides with its translational part is called a
translation. A group composed of such motions is called a group of motions. The
requirement that this group has a fundamental domain is equivalent to the require-
ment that it does not contain infinitesimal operations. We observed this in §6 in
the first part of this treatise. Depending on whether the fundamental domain of
the group extends to infinity or not, two types of groups of motions can be distin-
guished. The groups with infinite fundamental domain are always decomposable,
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and all decomposable groups have infinite fundamental domain, provided they
have an at all. Here, we called a group decomposable if for a suitable choice of
coordinates its elements take the form

x0i D

hX
kD1

a
.�/

ik
xk .i D 1; : : : ; h/;

x0� D

nX
�DhC1

a.�/�� x� C A� .� D hC 1; : : : ; n/:

We further observed that the groups with finite fundamental domain always con-
tain translations. It is easy to see that these translations form a distinguished
subgroup of the group of motions. Namely, of T is a translation and B an arbi-
trary motion, then BTB�1 is a translation. If the fundamental domain is finite,
then the group contains n linearly independent translations, that is, there are n
translations

Ti � x0i D xi C A
.�/
i .i; � D 1; : : : ; n/

in the group, such that there are no numbers a1; : : : ; an (other than 0) satisfying
the relations (Math. Ann. 70, p. 333)

nX
�D1

a�A
.�/
i .i D 1; : : : ; n/:

These results from the first treatise form the basis for the following.

Two groups of motions are considered distinct if they are not equivalent. Two
groups are called equivalent, if they arise from one another by a linear change of
coordinates. Then, as we will show, the following theorem holds:

There are only finitely many distinct groups of motions with finite fundamental
domain.

This notion of equivalence is alreadu suggested by crystallography and the theo-
rem was also proved in this form by Frobenius. In my own note in the Göttinger
Nachrichten I considered two groups identical if they are isomorphic. In fact, this
amounts to the same. The theorem holds (which was not stated back then) that in
the sense of the above definition, two isomorphic groups are equivalent.

Our proof makes use of methods that extend ideas used by Gauß and Dirich-
let in the theory of ternary forms, and by Minkowski in the theory of positive
quadratic forms in n variables. In order to give a self-contained presentation and
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to emphasize the relation to Minkowski’s theory, we will in some places discuss
some well-known facts anew. The idea of the proof was sketched in the Göttinger
Nachrichten 1910.

2 The translation subgroup

As we saw before, the distinguished subgroup of translations always contains n
linearly independent translations. Let these be

Ai � x0k D xk C A
.k/

k
.k; i D 1; : : : ; n/;

then there are no non-zero numbers a1; : : : ; an such that the following relations
hold:

nX
iD1

aiA
.i/

k
D 0 .k D 1; : : : ; n/:

Translation groups of this type are evidently obtained by choosing any n linearly
independent translations T1; : : : ;Tn and forming a group by taking any linear
combination of them. But now we wish to prove that in any translation group, we
can find n linearly independent translations T1; : : : ;Tn such that the group can
be generated by them in this manner, so that every other translation T is of the
form

T D T t1
1 � � �T

tn
n ;

where the t1; : : : ; tn are integer numbers. This can be seen as follows (cf. for
example Minkowski, Geometrie der Zahlen, p. 172): Let A1; : : : ;An be any n
linearly independent translations in the group. Then the components T1; : : : ; Tn
of any translation T can be represented as

Ti D t1A
.1/
i C : : :C tnA

.n/
i .i D 1; : : : ; n/:

Symbolically, we write
T D At1

1 � � �A
tn
n :

Here, in general the ti are not integers. This is only the case if the Ai are generators
of the group. Of the two translations

T1 D Aa1
1 � � �A

an
n

and
T2 D Ab1

1 � � �A
bn
n
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we call the first one smaller than the the second one if the first non-vanishing
difference among an � bn, an�1 � bn�1, . . . , a1 � b1 is negative. Moreover, we
consider the totality of all translations T in the group for which in the represen-
tation

T D At1
1 � � �A

tn
n

all numbers t1; : : : ; tn are positive and less or equal to 1. There are at least n such
translations, as the Ai themselves belong to them. But there are also only finitely
many such translations, since otherwise the group would contain infinitesimal op-
erations. So there is a smallest one among these translations. We will call it T1.
It is necessarily of the form At11

1 . Among all translations that are not of the form
Aa1
1 , there again exists a smallest one. We will call it T2, and it is necessarily of

the form At12
1 At22

2 . Among all translations that are not of the form Aa1
1 Aa2

2 , there
again exists a smallest one. We will call it T3, and it is necessarily of the form
At13
1 At23

2 At33
3 . Continuing in this way, we evidently obtain n linearly independent

translations:

T1 D At11
1 ; T2 D At12

1 At22
2 ; : : : ; Tn D At1n

1 � � �A
tnn
n :

With these we can now represent any other translation

B D Ab1
1 � � �A

bn
n

in the form T
ˇ1
1 � � �T

ˇn
n , where the ˇ1; : : : ; ˇn are integers: The integers ˇ1; : : : ; ˇn

can be determined such that

B �T
�ˇ1
1 � � �T�ˇnn D C D Ac1

1 � � �A
cn
n ;

where c1 D b1�ˇ1t11, c2 D b2�ˇ1t12�ˇ2t22, . . . , cn D bn�ˇ1t1n�: : :�ˇntnn.
The number c1 is smaller than the corresponding number t11 in T1, the number
c2 is smaller than the corresponding number t22 in T2, and so on, and finally the
number cn is smaller than the corresponding number tnn in Tn. This translation
C is therefore smaller than Tn and thus cn D 0, it is smaller than Tn�1 and thus
cn�1 D 0, and finally it is smaller than T1 and thus c1 D 0. Hence C is the
identity and so every translation B in the group os of the form

B D T
ˇ1
1 � � �T

ˇn
n

with integers ˇ1; : : : ; ˇn.
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We have thereby identified n generating translations in the group. These are not
the only ones of this kind. For if T1; : : : ;Tn are generating translations, so are
the n translations

T 0i D T
c1i
1 � � �T

cni
n ;

if the determinant of the integer .cik/ equals˙1. Conversely, any system of gene-
rating translations can be obtained in this way from any other.

One can think of the n translations T1; : : : ;Tn as vectors drawn from the origin,
and these vectors as unit segments of a new skew coordinate system. Analytically,
if

Ti � x0k D xk C A
.i/

k
.i; k D 1; : : : ; n/

are the n translations, we can introduce new variables �i via

xi D

nX
kD1

A
.k/
i �k .i D 1; : : : ; n/:

If all translations in the group are taken as vectors in this new coordinate system,
then the totality of their endpoints comprises all points with integer coordinates in
the new coordinate system. Analytically, if we introduce new coordinates via the
given substitution, then in the new coordinate system the translations are written
again in the form

� 0k D �k C A
.i/

k
.i; k D 1; : : : ; n/:

But now the coefficients A.i/
k

are integer numbers. In particular, the n generating
translations used to introduce the �i become

� 0k D �k C A
.i/

k
; A

.i/

k
D

�
1; i D k

0; i ¤ k
.i; k D 1; : : : ; n/:

The aforementioned unimodular integer substitutions (integer substitutions with
determinant ˙1) connecting the different systems of generating translations now
also provide the transition between different coordinate systems, in which the
translations can be expressed in this manner with integer coefficients.

The totality of integral points in a certain coordinate system is called a lattice.
It is the concept of a lattice that gives Minkowski’s theory of quadratic forms
its transparent form. We are also lead to this concept via the translation groups.
The close connection is geometrically based on this. The only thing required is to
establish the analytic expression for the squared distance with respect to one of our
skew coordinate systems in which the translation group is represented by integers.
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Then we obtain one of the infinitely many positive quadratic forms associated
to our lattice. As the transitions between the different coordinate systems are
effected by unimodular matrices, all these quadratic forms arise from one another
by unimodular transformations of their variables.

3 The group of rotational parts

The rotational part of a motion

x0i D

nX
kD1

bikxk C Bi .i D 1; : : : ; n/

is the orthogonal substitution

x0i D

nX
kD1

bikxk .i D 1; : : : ; n/:

It is easy to see that the rotational parts of the motions in a group of motions form
a group themselves. As we will show now, this group of rotational parts is a finite
group. To see this, we represent the whole group of motions, and thus also the
group of rotational parts, in a coordinate system of the previous paragraph, which
is characterized by the translations being integer transformations. Once such vari-
ables have been introduced, we find that the rotational parts also have integer
coefficients. This follows from the fact that for every motion B with rotational
part B and any translation T in the group, BTB�1 D BTB�1 is also a transla-
tion in the group. If we apply this, in particular, to the generating translations Ti ,
in which only one component is different from 0, namely 1, say

Ti �
x0i D xi C 1;

x0
k
D xk .k ¤ i/;

then for the rotational part

B � x0i D

nX
kD1

bikxk .i D 1; : : : ; n/

the translation becomes

BTB�1 � x0k D xk C bki .k D 1; : : : ; n/:
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The components of this translation must be integer numbers. But this means that
the coefficients in the i -th column of the rotational part are integers, and thus
also in all other columns. The determinant of these integer subsitutions is ˙1, as
it was obtained from changing the variables of an orthogonal substitution. The
integral group of rotational parts preserves a positive quadratic form, for the very
reason that it was obtained from a group of orthogonal substitutions for which the
sum of squares of the variables is invariant. (Geometrically we would say: As
the rotational parts are motions they must preserve the quadratic form that is the
analytic expression of distance with respect to the skew coordinate system.) From
this fact, that the group of rotational parts preserves a positive quadratic form, its
finiteness follows from a well-known theorem. It is even possible to give an upper
bound for the order of this group, depending on the number of variables.

For completeness, we will sketch the basic idea of a proof for this theorem in a
geometric guise (although we could also refer to theorem used in §4), cf. Min-
kowski, Geometrie der Zahlen, p. 176. From the rotations in the group of ro-
tational parts, we obtain from a first system of n generating translations of the
translation subgroup further such systems of generating translations. Let l be the
largest lengths among the T1; : : : ;Tn. Then all translations obtained in this way
via rotations from the Ti are shorter than l . But there are only finitely many
translations shorter than l (since otherwise the group would contain infinitesimal
operations). These finitely many translations can be combined in only finitely
many ways to systems of n generators. As the substitution that effects the co-
ordinate transformation between the two such generating systems is completely
determined by the two systems, only finitely many substitutions can appear as
rotational parts. Hence the group of rotational parts is finite.

In order to establish the existence of an upper bound for the order only depending
on n, it is convenient to use a system of n linearly independent translations other
than the aforementioned system of n linearly independent translations. Let T1

denote the shortest translation in the group, T2 the shortest one that cannot be
represented in the form Ta

1 , T3 the shortest one that cannot be represented in the
form Ta

1T b
2 , and so on, and let Tn be the shortest translation that cannot be rep-

resented in the form Ta1
1 � � �T

an�1
n�1 (here, the numbers ai need not be integers, as

the thus obtained system of translations is not necessarily a system of generators).
Through rotations by the rotational parts of the group we only obtain finitely many
new ones from these, and as before we can conclude the finiteness of the group of
rotational parts. But now we can also show that the number of translations that can
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be obtained from via rotations from these n is bounded by a number depending
only on n, and thus prove this fact also for the group of rotational parts. Namely,
from the shortest T1 we only get finitely many translations whose number can-
not surpass a certain bound depending on n, for if l1 is the length of T1, then all
translations obtained by rotations from it lie on a sphere of radius l1. They form
a system of points in which no two points have distance less than l1 from one
another. So their number is less than a certain number s D .2

p
nC1/n depending

only on n. Now let l2 be the length of T2. Then all translations obtained from T2

by rotations lie on a sphere of radius l2, so they form a system of points in which
at a distance l1 from any point, there are at most s other points of the system. It
follows that the number of these points is at most s2. This reasoning is repeated
for all translations and thus the theorem is established. This is the basic idea used
by implicitely Minkowski, which has the advantage of yielding sharper results.
He considers the remainders modulo 2 of the coordinates of the lattice points just
constructed with respect to a suitable coordinate system. It turns out that these
systems of remainders are all distinct. This yields the known bound .2nC1 � 2/n

for the order of the group of rotational parts.

4 Preparing the proof of finiteness

Based in the results of the two preceding paragraphs, we now wish to show that
two isomorphic groups of motions always arise from one another by a change
of variables. So if A1; A2; : : : are the elements of one group of motions and
B1; B2; : : : are the elements of another group of motions, such that any two mo-
tions with the same index correspond to one another under an isomorphism, then
we will show that there exists a substitution S , independent of the index i , such
that SAiS�1 D Bi for all indices i . To see this, we first note that in under an iso-
morphism, the translations of one group necessarily correspond to the translations
of the other group. A translation A in the first group corresponds to a motion B
in the second group such that all BiBB�1i commute with B . If we take n linearly
independent translations for the Bi , then by arguments we used several times in
the first part of this treatise (e.g. part I, §5) it follows that B is a translation. Since
now the translation subgroups correspond to one another under the isomorphism,
on the basis of the results of the preceding paragraphs, we choose the coordinate,
we choose for both groups variables such that the translations are integral sub-
stitutions, and such that the corresponding translations in both groups coincide.
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All we need to do is to introduce in both groups the corresponding systems of n
generating translations as unit lengths in the new coordinate systems. Once we do
this, the by now integral rotational parts of two corresponding motions in the two
groups become identical. Namely, if

A � x0i D

nX
kD1

aikxk C Ai .i � 1; : : : ; n/

and

B � x0i D

nX
kD1

bikxk C Bi .i D 1; : : : ; n/

are two corresponding motions in the two groups, and Ti the generating transla-
tions occuring in both groups,

Ti � x0i D xi C 1; x0k D xk .k ¤ i/;

then
x0k D xk C aik .i; k D 1; : : : ; n/

and
x0k D xk C bik .i; k D 1; : : : ; n/

are now corresponding translations and must thus coincide. But this also means
that the i -th columns of the rotational parts coincide. As this holds for all columns,
it follows that the rotational parts of any two corresponding motions coincide. So
now let

Ah � x0i D

nX
kD1

a
.h/

ik
xk C A

.h/
i

and

Bh � x0i D

nX
kD1

a
.h/

ik
xk C B

.h/
i

be the motions in both groups, then we form the motion

Ch � x0i D

nX
kD1

a
.h/

ik
xk C A

.h/
i � B

.h/
i :

Evidently, these form a group themselves. This group of motion is finite, as only
finitely many rotational parts appear and it contains no translations (for, if C1 and
C2 are two motions in this group with coinciding rotational parts, then C�11 C2 is

52



a translation and thus the identity, as the group contains no translations). But then
by a theorem of Maschke (compare also §9 in part I) there is a translation

T � x0i D xi C Ti ;

such that TChT
�1 DDh becomes the following homogeneous substitution:

Dh � x0i D

nX
kD1

a
.h/

ik
xk:

If we apply this translation to the group of motions A1;A2; : : :, so that we ob-
tain a group of motions TA1T

�1;TA2T
�1; : : :, then the corresponding motions

TAhT
�1 D A0

h
and Bh are fully identical. Namely,

A0h � x0i D
X
kD1

a
.h/

ik
xk C A

0
i ;

where

A0i D Ti �

nX
kD1

aikTk C Ai ;

and we obtain

Dh � x0i D

nX
kD1

a
.h/

ik
xk CDi ;

where

Di D Ti D

nX
kD1

aikTk C Ai � Bi :

But here Di D 0. Hence A0i D Bi , and this was just our claim.

So isomorphic groups of motions arise from one another by suitable changes of
variables. To prove that there only finitely many groups of motions that do not
arise from another by changes of variables, as we set out to do in §1, we just need
to prove that there are only finitely many non-isomorphic groups of motions.

To this end, we henceforth choose the variables such that the translations have
integral coefficients. This can be achieved in different ways for each group, de-
pending on the system of n linearly independent translation that is used to intro-
duce the skew coordinate system. For this different ways, the groups of rotational
parts are transformed into each other by introducing new variables via a suitable
unimodular substitution (compare §§2, 3). So if two groups of motions are iso-
morphic, then the groups of rotational parts arise from one another via an integral
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unimodular substitution, since, as we just saw, they become identical for a suitable
choice of a skew coordinate system. So if we wish to prove that there only finitely
many non-isomorphic groups of motions in n variables, we have to show at first
that there are only finitely many distinct finite groups of integral substitutions in
n variables that do not arise from one another by integral unimodular transfor-
mations. (One readily checks that every finite group of integral substitutions can
appear as the group of rotational parts for a suitable group of motions.) This is
the content of a deep theorem proved in the reduction theory of positive quadratic
forms.

Said theorem has been discoverd by Jordan9) and he proved it by using a method
of reduction due to Korkine and Zolotarev.10) Another proof similar to Jordan’s
was given by Minkowski based on his improved version of Hermite’s method of
reduction.11) A third proof was published by myself in the Göttinger Nachrichten,
also based in Minkowski’s theory of reduction.12) It would lead too far to study
these proofs here. Therefore, we refer to the aforementioned sources, as well as to
a soon to be published work on the reduction of quadratic forms published jointly
by the author and Schur.

5 Proof of finiteness

Now we first summarize how the current state of our proof of finiteness. If we
write the groups of motions with respect to a suitable skew coordinate system, we
fix the translation subgroup. It it is the group generated by the n translations

Ti � x0i D xi C 1; x0k D xk .i ¤ k/:

Furthermore, we know from the last paragraph that there are only finitely many
possibilities for the group of rotational parts. But so far we do not know anything
about the translational parts of those motions that are not translations themselves.
So now we will collect all groups of motions that coincide in their group of rota-
tional parts into one class (out of finitely many classes) and then show that also

9)In the first part of this treatise I erroneously ascribed this theorem to Minkowski.
10)C. Jordan, Journal de l’École Polytechnique cah. 48.
11)H. Minkowski, Diskontinuitätsbereich für arithmetische Äquivalenz, Journal für Mathematik

129.
12)L. Bieberbach, Über die Minkowskische Reduktion der positiven quadratischen Formen, Göt-

tinger Nachrichten 1912.
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for the translational parts of these motions there only finitely many possibilities.
By §4, two groups are to be considered identical if they are isomorphic. Then we
may argue as follows.13)

Let B be a motion and T a translation in the group. Then all motions TB have
the same rotational part, and conversely all motions with the same rotational part
arise from one another in this way. We collect them in one out of finitely many
classes T �B of motions. By a suitable choice of T , we can always ensure that
the motion

TB � x0i D

nX
kD1

bikxk C Bi

satisfies 0 � Bi < 1. In each class of motions TB there is precisely one such
motion. We call it the reduced motion in the class. If B1 and B2 are reduced
motions with product B1B2, and if B3 is the reduced motion in the class T �

B1B2, then for a suitable choice of T we have B1B2 D TB3. We now show
that for given B1, B2, only finitely many possibilities for T occur. Let b1, b2
denote the rotational parts of B1 and B2, respectively, that is, B1 D t1b1 and
B2 D t2b2. Let further b3 denote the rotational part of B3, that is, B3 D t3b3,
and hence

B1B2 D T � t3b3 D T � t3b1b2:

Then
B1B2 D t1b1t2b2 D t1 � b1t2b

�1
1 � b1b2

and as b3 D b1b2,
T t3 D t1 � b1t2b

�1
1 :

The components of t1; t2; t3 are all less than 1, the coefficients of b1 are fixed,
and thus the components of b1t2b�11 are bounded by some identifiable number.
Hence all components of T must be bounded by some identifiable number and it
follows that there are only finitely many possibilities for T , as it is a translation in
the group (with integer components). We can repeat this argument for all finitely
many products of reduced motions, and if for now we consider two groups as
equal if for any two products of reduced motions those translations coincide, by
which the product differs from the reduced motion of the product, then we obtain
only finitely many of such groups. The point is now that two such groups, for

13)Frobenius gives a different, perhaps somewhat simpler argument in the aforementioned work.
The main difference is that Frobenius removes the remaining arbitrariness in the translational
parts by the choice of a suitable coordinate system, and then, other than our argument here, uses a
computation involving congruences.
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which all these translations coincide, are isomorphic. To see this, we only need to
assign in both groups the identical translations and the respective reduced motions
with identical rotational parts to each other, in order to obtain an isomorphism of
the groups. This proves our theorem.
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