On the Riemannian manifolds with holonomy group G_2 or Spin(7)

By EDMOND BONAN

1. Let $(1, e_i)$, i = 1, ..., 7, be a basis of Cayley's octave algebra: Each triplet

$$(e_i, e_{i+1}, e_{i+3})$$

forms a system of quaternions.

Let the group SO(7) act on \mathbb{R}^7 ,

$$\mathbb{R}^7 = \bigoplus_{i=1}^7 \mathbb{R}e_i.$$

Let G_2 denote the maximal subgroup of SO(7) preserving the multiplication table T, which is in fact a vector-valued two-form,

$$x, y \in \mathbb{R}^7 \mapsto T(x, y) = x \cdot y \in \mathbb{R}^7, \quad x \cdot y = -y \cdot x.$$

On the other hand, \mathbb{R}^7 is equipped with a canonical scalar product

$$x, y \in \mathbb{R}^7 \mapsto (x, y) = \sum_{i=1}^7 x^i y^i.$$

We then construct the trilinear form α ,

$$x, y, z \in \mathbb{R}^7 \mapsto \alpha(x, y, z) = (x, y \cdot z),$$

which is clearly alternating.

If we let (ω^i) denote the dual basis of (e_i) , then it follows immediately that

$$\alpha = \sum_{i=1}^{7} \omega^{i} \wedge \omega^{i+1} \wedge \omega^{i+3}. \tag{1}$$

We deduce the four-form β that is adjoint to the three-form α :

$$\beta = \star \alpha = \sum_{i=1}^{7} \omega^{i} \wedge \omega^{i+1} \wedge \omega^{i+2} \wedge \omega^{i+5}.$$
 (2)

Proposition 1 G_2 preserves α and β .

We show by direct calculation that for all two-forms φ_2 :

$$\alpha \wedge \varphi_2 = 0 \quad \Leftrightarrow \quad \varphi_2 = 0.$$

If we let φ_p denote any p-form, then:

Proposition 2 Suppose $p \le 2$, then $\alpha \wedge \varphi_p = 0$ implies $\varphi_p = 0$.

Corollary For $p \le 5$, all p-forms φ_p have a unique decomposition of the form

$$\varphi_p = (\alpha \wedge \mu_{p-3}) + \mu_p$$
, where $\alpha \wedge (\star \mu) = 0$.

The Lie algebra of G_2 can be realized as the set of 7×7 -matrices $A = (a_{ij})$ satisfying the relations

$$a_{ij} + a_{ji} = 0, \quad a_{i+1,i+3} + a_{i+4,i+5} + a_{i+2,i+6} = 0.$$
 (3)

We remark that the three triplets

$$(e_i, e_{i+1}, e_{i+3}), (e_{i+4}, e_{i+5}, e_i), (e_{i+6}, e_i, e_{i+2})$$

each form a system of quaternions.

2. Let Spin(7) \subset SO(8) act on \mathbb{R}^8 ,

$$\mathbb{R}^8 = \mathbb{R}e_{7'} \oplus \bigoplus_{i=1}^7 \mathbb{R}e_i.$$

The group G_2 is the isotropy group of the vector $e_{7'}$ and acts on the seven-plane of the equation $\omega^{7'} = 0$ if by (ω^k) we denote the dual basis of (e_k) , where $k \in \{7'\} \cup \{1, \ldots, 7\}$.

The Lie algebra of Spin(7) can be realized as the set of matrices $A = (a_{ij})$ satisfying the relations

$$a_{ij} + a_{ji} = 0, \quad a_{7'i} + a_{i+1,i+3} + a_{i+4,i+5} + a_{i+2,i+6} = 0.$$
 (4)

We construct the four-form γ ,

$$\gamma = \omega^{7'} \wedge \alpha' + \beta'$$

where α' and β' are the evident extensions of α and β to \mathbb{R}^8 ,

$$\alpha' = \alpha \circ P, \quad \beta' = \beta \circ P,$$

where P denotes the orthogonal projection on \mathbb{R}^7 . Then

$$\gamma = \sum_{i+1}^{7} \omega^{7'} \wedge \omega^{i} \wedge \omega^{i+1} \wedge \omega^{i+3} + \sum_{i=1}^{7} \omega^{i} \wedge \omega^{i+1} \wedge \omega^{i+2} \wedge \omega^{i+5}.$$
 (5)

Proposition 3 Spin(7) preserves γ .

Proposition 4 Suppose $p \le 2$, then $\gamma \wedge \varphi_p = 0$ implies $\varphi_p = 0$.

Corollary For $p \le 6$, all p-forms φ_p have a unique decomposition

$$\varphi_p = (\gamma \wedge \mu_{p-6}) + \mu_p$$
, where $\gamma \wedge (\star \mu) = 0$.

3. Let G be a closed subgroup of the orthogonal group O(d).

Definition A Riemannian manifold V_d of dimension d is called a G-manifold if the homogeneous holonomy group is a subgroup of G. The fiber space of orthonormal tangent frames $E[V_d, O(d)]$ admits a subfibration $E^a[V_d, O(d)]$.

The preceding results then apply at every point $x \in V_d$; in particular:

Proposition 5 All G_2 -manifolds V_7 admit a global three-form and a global four-form with vanishing covariant derivative.

Proposition 6 All Spin(7)-manifolds V_8 admit a global four-form with vanishing covariant derivative.

The decompositions established in Propositions 2 and 4 are clearly global.

By manipulations of the Betti numbers $b_k(V_d)$, we find that under the assumptions of Propositions 5 and 6, and assuming that V_d is compact:

$$b_3(V_7) \neq 0$$
, $b_3(V_7) \geq b_1(V_7)$, $b_4(V_8) \neq 0$, $b_4(V_8) \geq b_1(V_8)$.

Let now R_{ijkl} denote the curvature tensor of the Riemannian connection of V_7 . With respect to the frames in $E^a[V_7, G_2]$, it satisfies the following relations, among others:

$$R_{i+1,i+3,kl} + R_{i+4,i+5,kl} + R_{i+2,i+6,kl} = 0 (6)$$

for all $k, l, i \in \{1, ..., 7\}$.

We compute the Ricci tensor,

$$R_{ij} = \sum_{l=1}^{7} R_{iljl}.$$

It is enough to have R_{00} and R_{10} :

$$R_{00} = R_{0101} + R_{0202} + R_{0303} + R_{0404} + R_{0505} + R_{0606},$$

$$R_{01} = R_{0212} + R_{0343} + R_{0414} + R_{0515} + R_{0616}.$$

Using relation (6), we obtain

$$R_{00} = R_{0125} + R_{0164} + R_{0243} + R_{0251} + R_{0324} + R_{0356}$$

$$+ R_{0416} + R_{0432} + R_{0512} + R_{0563} + R_{0635} + R_{0641},$$

$$R_{01} = R_{0205} + R_{0236} + R_{0354} + R_{0362} + R_{0435}$$

$$+ R_{0460} + R_{0543} + R_{0520} + R_{0623} + R_{0604}.$$

These expressions are zero by virtue of the Ricci identities.

Proposition 7 Every G_2 -manifold V_7 has zero Ricci curvature.

Proposition 8 Every Spin(7)-manifold V_8 has zero Ricci curvature.

4. Remarks:

- From Kostant's results in [4], one obtains the existence of a four-form for, in particular, the groups G₂ and Spin(7).
- The three-form α has been previously constructed by Chevalley in [3].
- The present work extends [7], [2] and [6].

References

- [1] M. Berger, Sur les groupes d'holonomie homogénes des variét'es à connexion affine et des variétés riemanniennes, Bulletin de la Société Mathématique de France 83, 1955, 279-330.
- [2] S.S. Chern, *On a generalization of Kähler geometry*, Algebraic geometry and topology. A symposium in honor of S. Lefschetz, 103-121, Princeton University Press, 1957.
- [3] C. Chevalley, *Algebraic theory of spinors*, Columbia University Press, 1954.
- [4] B. Kostant, *On invariant skew tensors*, Proceedings of the National Academy of Sciences 42, 1956, 148-151.
- [5] A. Lichnerowicz, *Théorie globale des connexions et des groupes d'holonomie*, Edizione Cremonese, 1957.
- [6] A. Weil, *Théorème fondamental de Chern en géométrie riemannienne*, Séminaire Bourbaki 239, 1961-1962.
- [7] A. Lichnerowicz, *Généralisation de la géométrie kählerienne globale*, Colloque de Géométrie Différentielle, Louvain, 1951, 99-122.

Original: *Sur des variétés riemanniennes à groupe d'holonomie* G₂ *ou* Spin(7), Comptes Rendus Hedomadaires des Séances de l'Académie des Sciences, Series A et B, 262, 1966.

Translation by Wolfgang Globke, Version of February 26, 2020.