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1. Let V denote a connected compact complex manifold. V is called homo-
geneous if for any two points v1; v2 2 V there exists a biholomorphic map g of
V to itself with g.v1/ D v2. A compact Kähler manifold is called homogeneous
if it is homogeneous as a complex manifold. The aim of this note is to prove the
following:

Theorem I Every connected compact homogeneous Kähler manifold is the direct
product of a complex torus and projective rational variety1).

Special cases of this statement are known. For projective algebraic manifolds, it
was already anounced in [4] §16; the proof, which is valid for a base field of arbi-
trary characteristic, shall be presented here. Under the additional assumption that
a compact group of holomorphisms acts transitively on the given Kähler manifold,
Matsushima [10] proved the theorem, and in the case that a complex Lie group of
holomorphisms of the same dimension as V acts transitively, Wang [15] gave a
proof (compare the corollary to Theorem 1).

The proof of Theorem I is prepared in Sections 2 to 5. We show that every compact
homogeneous complex manifold V can be fibered in two ways: firstly (Theorem
1), V is a holomorphic fiber bundle over the Albanese torus of V , and secondly,
(Theorem 7), in a generalization of a theorem by Goto, V can be canonically
represented as a holomorphic fiber bundle over a projective rational homogeneous
manifold with a complex parallelisable fiber. In the Kähler case, using the theory
of complex Lie groups, we can make additional statements on these two fiber
bundles that will yield a simple proof of Theorem I in Section 6.

Lie groups will mostly be denoted by G, H , M , N ,. . . and its connected compo-
nents of 1 byGı,H ı,M ı,N ı,. . . ; G.V / denotes the group of all holomorphisms
of V .

1)A compact complex manifold is called projective rational if it is projective algebraic and has
a rational (over C) field of meromorphic functions. Recall that by Chow’s Theorem, an analytic
subset of a projective algebraic variety is projective algebraic itself.
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2. The Albanese bundle of a homogeneous compact complex manifold. We
begin with the following well-known fact (compare [1], p. 163):

(a) For every connected compact complex manifold V , there exists a complex
torus A.V / and a holomorphic map ˛ W V ! A.V /, such that every holomorphic
map ˇ W V ! B from V to any complex torus B can be written in the form
ˇ D � ı ˛, where � W A.V / ! B is a holomorphic affine map from A.V / to B ,
uniquely determined by ˇ. It holds that dimRA.V / � b1.V /. If V is Kähler, then
dimRA.V / D b1.V /.

The torus A.V / and the map ˛ are uniquely determined by V , that is, if A0 is
another torus and ˛0 W V ! A0 another holomorphic map with the above universal
mapping property, then there is a biholomorphic affine map � of A0 to A.V / such
that ˛ D � ı ˛0.

We call A.V / the Albanese torus of V and accordingly ˛ W V ! A.V / the
Albanese map. The number a.V / WD dimCA.V / is called the Albanese number
of V . If V is projective algebraic, then a.V / is the irregularity of V .

The group G.V / of all holomorphisms of V can by [2] be taken as a complex
transformation group of V in a canonical way. If G.V / acts transitively on V ,
then so does G.V /ı. By T .V / we will denote the complex Lie group of trans-
lations of A.V /, and it holds that T .V / D G.A.V //ı. The torus group T .V /
is, as a complex manifold, biholomorphically equivalent to A.V /. We will make
significant use of:

(a0) There is a holomorphic homomorphism of groups 
 W G.V / ! G.A.V //,
such that˛ ı g D 
.g/ ı ˛ for all g 2 G.V /. Then 
.G.V /ı/ � T .V / holds. The
kernel ker 
 is a closed complex Lie subgroup of G.V / that acts holomorphically
on every ˛-fiber. A holomorphism g 2 G.V /ı belongs to ker 
 if and only if there
is a point v0 2 V such that v0 and g.v0/ lie in the same ˛-fiber. In particular, ifH
is a subgroup ofG.V /ı that acts transitively on V , thenH \ker 
 acts transitively
on every ˛-fiber.

The existence of 
 was proven by Blanchard [1], Proposition I.2.1. That 
 is
holomorphic is not explicitely noted in [1], but if follows from the definition of 

(cf. [1], p. 165). The remaining statements of (a0) can be verified directly.

In this section we wish to prove:

Theorem 1 If V is a connected compact homogeneous complex manifold, then:

(a) The Albanese map ˛ W V ! A.V / and the homomorphism 
 W G.V /ı !
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T .V / are surjective.

(b) V is a holomorphic fiber bundle over A.V / with respect to ˛. The typical
fiber F is a connected compact complex manifold, and homogeneous with
respect to ker 
 . There is an exact sequence

0! �1.F /! �1.V /! �1.A.V //! 0:

PROOF: (a) For short, we write Gı WD G.V /ı. The group Gı acts transitively on
V . If a0 2 ˛.V / is fixed, then by (a0) we have ˛.V / D ft .a0/ j t 2 
.Gı/g. If
we take A.V / as a complex torus group with a0 as identity, then ˛.V / becomes a
subgroup ofA.V /. Since ˛.V / is closed inA.V / and is the orbit of a point under a
complex transformation group of A.V /, ˛.V / is an analytic set in A.V / (this also
follows directly from [13], Satz 24). Hence ˛.V / is even a complex subtorus of
A.V /. Now this torus ˛.V / together with the holomorphic map ˛0 W V ! ˛.V /

induced by ˛ evidently has the universal property of the Albanese torus. Hence
˛.V / D A.V /. This further implies 
.Gı/ D T .V /.

(b) Let M denote the kernel of 
 W Gı ! T .V /. If H is the stabilizer subgroup
in Gı of a point v0 2 V , then H � M by (a0). Upon identifying V with Gı=H
and A.V / with Gı=M (the latter is possible by (a)), V appears as a holomorphic
fiber bundle over A.V / with respect to ˛, whose typical fiber is the homogeneous
compact complex manifold M=H . In order to prove that M=H is connected,
we consider the smallest open subgroup M 0 of M that contains H . Clearly, M 0

consists precisely of those connected components of M whose intersection with
H is non-empty. ThusM 0=H is connected. The holomorphic map ˛ W V ! A.V /

is now the composition of the holomorphic maps ˛1 W V D Gı=H ! Gı=M 0

and ˛2 W Gı=M 0 ! Gı=M D A.V /. The compact complex manifold Gı=M 0 is
an unramified compact covering of A.V / and hence a complex torus itself. From
the universal property of A.V / it follows that ˛2 is biholomorphic. This implies
M D M 0, that is, the typical fiber F D M=H of ˛ is connected. We now have
the following exact homotopy sequence

� � � ! �2.A.V //! �1.F /! �1.V /! �1.A.V //! 0:

Since A.V / is a torus, �2.A.V // D 0. Since moreover M acts transitively on
each ˛-fiber by (a0), the proof of Theorem 1 is complete. }

From Theorem 1 we immediately obtain the following result due to Wang [15],
Theorem 1 and Corollary 2:
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Corollary 1 A complex Lie group G acts holomorphically and transitively on a
compact Kähler manifold V of the same dimension if and only if G is a complex
torus.

PROOF: Clearly, a complex torus has this property. Conversely, let V be a
compact Kähler manifold and G a complex Lie group of the same dimension as
V that acts holomorphically and transitively on V . Without loss of generality we
may assume G is connected. Then V is equivalent to a complex quotient variety
G=H , where H is a discrete subgroup of G. If now n WD dimCG, then there are
n linearly independent right-invariant holomorphic differential forms of degree
1 on G (the Maurer-Cartan forms). These forms induce n linear independent
holomorphic differential forms on V , as the natural projection G ! G=H is
locally biholomorphic. Since V is Kählerian, b1.V / � 2n, so that A.V / has
at least the same dimension as V . Then ˛ W V ! A.V / is biholomorphic by
Theorem 1. }

3. Homogeneous projective rational manifolds. The aim of this section is to
prove Theorem 4. To prepare, we show:

Theorem 2 Every holomorphic map of a homogeneous projective rational mani-
fold Q has a fixed point.

PROOF: By [3], Q admits a “analytic cell decomposition”: The 2s-dimensional
closed cells are all s-dimensional irreducible algebraic sets in Q and form a basis
f
2s1 ; : : : ; 


2s
js
g of the 2sth homology group of Q, for s D 1; : : : ; dimCQ. From

results by Chow [7] it follows that every irreducible s-dimensional analytic cycle
in Q is homologous to a cycle

Pjs

iD1 ni � 

2s
i , where all ni � 0. Since every

holomorphic map � from Q to itself maps irreducible analytic sets to sets of the
same type (compare [13], Satz 24), with respect to the bases f
2si g, the traces of
all homomorphisms induced by � in the homology groups are non-negative. As
the trace in dimension 0 is 1 and all homology groups of odd dimension vanish,
the alternating sum over their traces is positive. But then the holomorphic map �
has a fixed point in Q by the Lefschetz-Hopf formula. }

Every complex Lie group of complex dimension n can be interpreted in a natu-
ral way as a 2n-dimensional real Lie group. We will denote this real Lie group
determined by G by Gr. Then:

Lemma 3 Let X be a projective algebraic manifold with b1.X/ D 0, and M an
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analytic subset of X . Moreover, let H be a solvable connected real Lie subgroup
of G.X/r, such that h.M/ D M for all h 2 H . Then there exists at least one
point x0 2M such that h.x0/ D x0 for all h 2 H .

PROOF: As b1.X/ D 0, by the Théorème Principal I from [1], there exists a
projective embedding of X into a Ps, such that G.X/ı can be identified with the
maximal connected subgroup of G.Ps/ that leaves X invariant. The group H is
then a solvable connected real Lie subgroup of G.Ps/r. Let Hc denote the con-
nected complex Lie subgroup of G.Ps/ whose Lie algebra is the complexification
of the real Lie algebra of H . Then Hc contains H and is solvable. By a clas-
sical theorem of Lie2) there exists a flag T0 � T1 � : : : � Ts�1, where Ti is
an i -dimensional analytic plane in Ps, such that h.Ti/ D Ti for all h 2 H and
i D 0; : : : ; s�1. AsM is analytic and as such algebraic in Ps, we can choose the
index j , 0 � j � s � 1, such that M \ Tj contains at least on isolated point x0.
Since H � Hc is connected and preserves M \ Tj , we obtain h.x0/ D x0 for all
h 2 H . }

Remark Instead of Hc, we also consider the smallest algebraic subgroup H 0 of
G.Ps/ containing H in the preceding proof. It is solvable, connected, leaves M
invariant and thus has a fixed point in M by [5], p. 64.

It now readily follows:

Theorem 4 If Q is a homogeneous projective rational manifold, then every con-
nected real Lie subgroup U of G.Q/r that acts transitively on Q is semisimple.
Moreover, the centralizer of U in G.Q/ contains only the identity.

PROOF: Let R.U / denote the radical3) of U . As b1.Q/ D 04), the group R.U /
has a fixed point on Q by Lemma 3. Since R.U / is a normal subgroup of U and
U acts transitively on Q, every point of Q is a fixed point of R.U /. As U acts
effectively, this implies R.U / D f1g. So R.U / is semisimple.

2)Lie’s Theorem is stated as follows: Let H be a solvable connected complex Lie group and
% W H ! GL.n;C/ a holomorphic homomorphism. Then there is an element a 2 GL.n;C/ such
that all matrices a �%.H/ �a�1 are triangular matrices (all coefficients below the diagonal are zero).
In our case, this theorem is applied to the complex subgroup of GL.sC 1;C/ that is the connected
component of 1 of the preimage of Hc under the canonical homomorphism GL.s C 1;C/ !

G.Ps/.
3)The radical R.G/ of a Lie group G is by definition the largest connected solvabe normal Lie

subgroup of G. It is always closed in G.
4)It is well-known that every projective rational manifold is simply connected, see for example

[8] and [14].
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It remains to prove that the identity is the only holomorphism ofQ that commutes
with all u 2 U . Let g0 2 G.Q/ such that g0 � u D u � g0 for all u 2 U . Then
U preserves the set F0 of fixed points of g0. By Theorem 2, F0 is not empty, and
U acts transitively on Q. It follows that F0 D Q. As G.Q/ acts effectively, g0 is
the identity, which proves Theorem 4. }

4. Proof of the triviality of certain fiber bundles. In this section we prove:

Theorem 5 Let Q be a connected projective rational manifold and E a holomor-
phic vector bundle over a complex torus A with Q as typical fiber. Then E is
a homogeneous complex manifold if and only of Q is homogeneous and E is
equivalent as a bundle over A to the direct product A �Q.

The proof is based on the following

Lemma 6 Let G be a connected real or complex Lie group and S a connected
closed real or complex normal subgroup of G that is semisimple and has trivial
center. Suppose the quotient group G=S is solvable. Then G is the direct product
of S and the radical R.G/. In particular, if G=S is abelian, then R.G/ coincides
with the center Z.G/ of G.

PROOF: By [6], Corollaire 3, p. 76, as well as [12], Theorem 84, p. 278, the
radical R.G/ is mapped to the radical of G=S by the canonical projection G !
G=S , and hence to itself. Therefore,G D R.G/�S . The intersection R.G/\S is a
closed solvable normal subgroup of S and hence, as S is semisimple, discrete. As
a discrete normal subgroup, R.G/ \ S is contained in the center of S . It follows
that R.G/\S D f1g and thusG D R.G/�S . IfG=S is abelian, it further follows
that R.G/ D Z.G/, since every element of R.G/ commutes with every element
of S and R.G/ is isomorphic to G=S . }

PROOF OF THEOREM 5: If Q is homogeneous and E D A � Q, then E is
homogeneous as well. Conversely, suppose E is homogeneous. We write E in
the form Gı=H , where Gı WD G.E/ı and H is the stabilizer subgroup in Gı of
a point in E. We let � W E ! A denote the holomorphic bundle projection and
˛ W E ! A.E/ the Albanese map. Since every �-fiber F is projective rational
and therefore has a one-pointed Albanese torus, ˛jF is always constant. So there
exists a holomorphic map � W A ! A.E/ such that ˛ D � ı � . By the universal
property of A.E/, the map � is necessarily biholomorphic and affine, so that we
may identify A with A.E/ and � with ˛. By Theorem 1 (b), we may further set
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Q D M=H , where M is the kernel of 
 W Gı ! T .E/. The groups M and
M ı are both closed complex normal Lie subgroups of G, both act transitively
on each ˛-fiber. For every a 2 A let Ma WD fg 2 M j gj��1.a/ D idg and
M 0a WD Ma \M

ı. The groups Ma and M 0a are normal subgroups of M and M ı,
respectively, and it holds that

T
a2AMa D f1g, as M acts effectively on E. The

connected complex Lie groupM ı=M 0a now acts holomorphically, transitively and
effectively on the fiber ��1.a/. By Theorem 4, it therefore follows thatM ı=M 0a is
always semisimple with trivial center. But thenM ı itself is semisimple with trivial
center: The radical and the center of M ı are mapped by any homomorphism
M ı !M ı=M 0a, a 2 A.E/, to the radical and the center ofM ı=M 0a, respectively,
that is, to f1g. Radical and center are thus contained in every group M 0a and thus
consist only of the identity.

As Gı=M ı is a connected covering group of the abelian group T .E/, it is abelian
itself, and it follows from Lemma 6 that Gı D Z �M ı, where Z is the center
of Gı. In particular, M D .M \ Z/ � M ı. As M \ Z is a central complex
Lie subgroup of M and M=Ma can be considered as a complex Lie subgroup of
G.��1.a// acting transitively and effectively on ��1.a/, M \ Z is mapped by
M ! M=Ma into the centralizer of M=Ma in G.��1.a//, and thus maps onto
f1g by Theorem 4. It follows that M \ Z � Ma for every a 2 A and thus
M \ Z D f1g. This means M D M ı, that is, G D Z �M . As the stabilizer
H is contained in M and Z D G=M can be identified with A, it follows that
E D Gı=H D Z � .M=H/ D A �Q. }

5. Generalization of a theorem by Goto. In [9], Proposition 3, it is proved that
every compact homogeneous complex manifold V with finite fundamental group
is a holomorphic fiber bundle over a projective rational manifold with a complex
torus as fiber. We show here:

Theorem 7 Every compact homogenous complex manifold V is in a canonical
way a holomorphic fiber bundle over a projective rational (simply connected) ho-
mogeneous manifold B with a connected complex-parallelizable fiber P .

Here, an r-dimensional complex manifold X is called complex-parallelizable if
there are r holomorphic vector fields on X that are linearly independent at every
point of X . It is clear that X is always complex-parallelizable if there exists an
r-dimensional complex Lie group that acts holomorphically and transitively on
X . By Wang [15], the converse also holds if X is connected and compact.
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The proof of Theorem 7 makes use of:

Theorem* Every connected compact homogeneous Kähler manifold with finite
fundamental group is projective rational and in particular simply connected.

Compare [3] and [9]. The proof of the first mentioned author for simple con-
nectedness has been expounded in the exposé of a talk by J.P. Serre (Séminaire
Bourbaki, May 1954).

For the proof of Theorem 7, we let H denote the stabilizer subgroup in G.V /ı of
a point in V , and N the normalizer of H ı in G.V /ı. Then N is a closed complex
Lie subgroup of G containing H . Thus there exists a natural holomorphic fiber
bundle map from V D G=H onto the compact homogeneous complex manifold
B WD G=N with typical fiber P WD N=H . By definition, H ı is normal in N , so
that furthermore P D .N=H ı/=.H=H ı/ holds. As H=H ı is discrete in N=H ı,
the fiber P is complex-parallelisable. To prove that this fiber bundle also has the
other properties claimed in Theorem 7, it is therefore sufficient to prove that N is
connected and B is projective rational. But this follows immediately from

Theorem 70 Let G be a connected complex Lie group and H a closed complex
Lie subgroup of G, such that G=H is compact. Then:

(1) The normalizer N of H ı in G contains the radical R.G/ of G.5)

(2) N is connected and G=N is projective rational.

PROOF: It is clearly enough to prove the theorem for the case that G is simply
connected. Let n WD dimCG and k WD dimCH . We consider the Lie algebra h of
H as a point in the Grassmann manifold Mn;k of k-dimensional subspaces of the
Lie algebra g of G. Via its adjoint representation, G has a natural holomorphic
action on Mn;k, and the stabilzier subgroup of h in G is precisely N . Since H �
N , there exists a holomorphic map from G=H onto the orbit B � G=N of h 2

Mn;k under G. As G=H is compact by assumption, B is an analytic subset in
Mn;k on which G acts transitively. As Mn;k is a projective algebraic manifold
with vanishing first Betti number, by Lemma 3, R.G/ has a fixed point in B . As
R.G/ is normal inG andG acts transitively on B , it follows that every point of B ,
in particular h, is a fixed point of R.G/. This implies R.G/ � N , which proves
claim (1).

By the theorem of Levi-Malcev (compare [6], Théorème 5, p. 89, as well as [12],
Theorem 84, p. 278), G is the semidirect product R.G/ � S of R.G/ by a closed

5)The first statement including its proof was communicated to us personally by J. Tits.
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semisimple complex (in general not normal) subgroup S of G. If G is simply
connected, so are R.G/ and S . As R.G/ � N ı,

N D R.G/ � L; N ı D R.G/ � Lı;

where L WD N \ S . From this, we obtain the quotient representation B D S=L

for B D G=N .

As a complex semisimple Lie group, the group S is algebraic, and the representa-
tion x 7! Adg.x/ of S induced by the adjoint representation of G is rational (see
the remark at the end of the proof). As L D fx 2 S j Adg.h/ D hg by definition
of L, it follows that L is an algebraic subgroup of S . As such, L decomposes
into only finitely many connected components, that is, L=Lı is a finite group. As
B D S=L and S is connected and simply connected, we have �1.B/ Š L=Lı by
the homotopy sequence. Hence the fundamental group of the homogeneous com-
plex manifold B is finite. As was proved above, B lies in the Grassmann manifold
Mn;k as an analytic subset, and thus B is also projective algebraic. It follows from
Theorem* that B is even projective rational. In particular, L=Lı D �1.B/ D f1g,
that is, L D Lı. Since this implies N D N ı, Theorem 70 is proved. }

Remark The property of S used above is well-known; it can be proved as follows.
Every connected semisimple complex Lie groupG has a faithful holomorphic rep-
resentation (see Séminaire Sophus Lie, Paris 1954; Exp. 22). As a connected lin-
ear complex Lie group whose Lie algebra coincides with its commutator algebra,
it is always algebraic (cf. Chevalley: Théorie des groupes de Lie, Vol. 2, Groupes
algébriques, Paris 1951, p. 177), and hence G may be identified with an algebraic
subgroup of GL.m;C/ if m is large enough. Now let % W G ! GL.n;C/ be any
holomorphic representation of G. The graph �% WD f.g; %.g// j g 2 Gg of % is a
semisimple complex Lie subgroup of GL.m;C/ � GL.n;C/, and therefore alge-
braic by the remarks above. The projection of GL.m;C/�GL.n;C/ onto the first
factor induces a bijective rational map from �% onto G. As G and �% are free of
singularities, this map �% ! G is even biholomorphic and birational (for example
due to an elementary special case of Zariski’s “Main Theorem”, cf. Lang: Intro-
duction to algebraic geometry, Interscience Publishers, New York 1958, Chap. V).
This implies that % itself is a rational map.

Corollary 2 (Goto) If �1.V / is finite, then P is a complex torus.

PROOF: Let G be a universal covering group of G.V /ı. We keep the notation
from the proof of Theorem 70. Then the fundamental group of V is isomorphic to
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the group H=H ı. By assumption, H=H ı is finite. From P D .N=H ı/=.H=H ı/

it thus follows that P is compact, that N=H ı is a compact complex Lie group and
also a complex torus group. But then P is necessarily a complex torus itself. }

Corollary 3 Every connected compact complex manifold V on which a solvable
complex Lie group G acts holomorphically and transitively, is complex paralle-
lizable.

PROOF: Without loss of generality we may assume G to be connected and to act
effectively on V . If we again set V D G=H , then it follows from Theorem 70 that,
since G is solvable, H ı is a normal subgroup of G. As G acts effectively on V ,
this implies H ı D f1g. Thus V is a quotient of G by a discrete subgroup H and
therefore complex-parallelizable. }

6. Proof of Theorem I and corollaries With the preparations made in Sections
2 to 5, we can now prove Theorem I. For the given compact homogeneous Kähler
manifold V , we first consider the natural holomorphic fibration described in The-
orem 7. As the fiber P is also a Kähler manifold, P is a complex torus according
to Corollary 1 of Theorem 1. In particular, �1.P / is abelian. From the exact
homotopy sequence

� � � ! �1.P /! �1.V /! �1.B/ D 0

it then follows that �1.V / is abelian as well. By Theorem 1, V is a holomorphic
fiber bundle with respect to the Albanese map ˛ over A.V / with a connected
typical fiber F . From the exact sequence

0! �1.F /! �1.V /! �1.A.V //! 0

it follows that F also has an abelian fundamental group, and moreover, that the
first Betti numbers of V , A.V / and F satisfy b1.V / D b1.A.V // C b1.F /. As
V is a Kähler manifold, we also have b1.V / D dimRA.V / D b1.A.V //. Hence
b1.F / D 0, which shows that the fundamental group of F is finite. As F is also
a homogeneous compact Kähler manifold, F is projective rational by Theorem*.
By Theorem 5, it follows that V D A.V / � F , which proves Theorem I. }

Finally, we note three consequence of Theorem I.

Corollary 1 If V is a connected compact homogeneous Kähler manifold, then
G.V /ı is reductive and every maximal compact subgroup of G.V /ı acts transi-
tively on V . In particular, V can be endowed with a Kähler metric such that the
groups of all holomorphic isometries acts transitively on V .
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The proof is immediate from Theorem I and the fact that on a connected and sim-
ply connected compact manifold the maximal compact subgroups of a transitive
Lie group of homeomorphisms act transitively themselves (cf. [11]).

Corollary 2 Let V be a connected compact Kähler manifold and H � G.V /r a
real Lie group that acts transitively on V . Then:

(a) If H is solvable, then V is a complex torus.

(b) If H is semisimple, then V is projective rational.

(c) If dimRH D dimR V , then V is a complex torus.

PROOF: According to Theorem I we write V D A�F , where A is the Albenese
torus of V and F is projective rational. Then: G.V /ı D G.A/ı �G.F /ı (cf. [1],
Corollaire, p. 161). Here, G.A/ı is a complex (abelian) torus group and by Theo-
rem 4, G.F /ı is a semisimple complex Lie group. If 
 W G.V /ı ! G.A/ı

and ı W G.V /ı ! G.F /ı are the canonical holomorphic epimorphisms, then
we consider the groups 
.H ı/ and ı.H ı/. Since H ı acts transitively on V as
well, 
.H ı/ and ı.H ı/ act transitively on A and F , respectively. In particular,

.H ı/ D G.A/ı.

If H is solvable, then ı.H ı/ is a connected solvable real Lie subgroup of G.F /r.
But by Theorem 4, ı.H ı/ is also semisimple. Hence ı.H ı/ D f1g, that is, F
consists of a single point.

IfH is semisimple, then 
.H ı/ D G.A/ı is an abelian semisimple real Lie group,
which means G.A/ı D f1g, that is, A consists of a single point.

Now assume dimRH D dimR V . The real Lie group N WD G.F /ı \H ı is the
kernel of 
 jHı W H ı ! G.A/ı and hence acts transitively on F . Moreover,

dimRN C dimRG.A/
ı
D dimRH

ı;

and together with

dimRH
ı
D dimR V D dimRAC dimR F; dimRA D dimRG.A/

ı

it follows thatN has the same dimension as F . Therefore, F is the quotient ofN ı

by a discrete subgroup. Since F is simply connected and N ı is connected, F and
N ı are topologically equivalent; in particular, N ı is a compact real Lie group.
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Since F is homogeneous and projective rational, it now follows that the Euler-
Poincaré characteristic of F is positive, �.F / > 0 (compare [3, 9]). On the other
hand, � vanishes for every connected non-trivial compact real Lie group, since
there are fixed point-free homeomorphisms that are homotopic to the identity.
From �.F / D �.N ı/ it thus follows that F consists of a single point. }

Corollary 3 Every compact homogeneous Kähler manifold, whose universal cov-
ering is a cell, is a complex torus.

PROOF: The universal covering of V is the product of the universal coverings of
A.V / and F by Theorem I. }
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