On compact homogeneous Kähler manifolds

By ARMAND BOREL in Princeton N.J. and REINHOLD REMMERT in Erlangen

1. Let V denote a connected compact complex manifold. V is called *homogeneous* if for any two points $v_1, v_2 \in V$ there exists a biholomorphic map g of V to itself with $g(v_1) = v_2$. A compact Kähler manifold is called *homogeneous* if it is homogeneous as a complex manifold. The aim of this note is to prove the following:

Theorem I Every connected compact homogeneous Kähler manifold is the direct product of a complex torus and projective rational variety $^{1)}$ $^{1)}$ $^{1)}$.

Special cases of this statement are known. For projective algebraic manifolds, it was already anounced in [\[4\]](#page-11-0) §16; the proof, which is valid for a base field of arbitrary characteristic, shall be presented here. Under the additional assumption that a compact group of holomorphisms acts transitively on the given Kähler manifold, Matsushima [\[10\]](#page-12-0) proved the theorem, and in the case that a complex Lie group of holomorphisms of the same dimension as V acts transitively, Wang [\[15\]](#page-12-1) gave a proof (compare the corollary to Theorem 1).

The proof of Theorem I is prepared in Sections 2 to 5. We show that every compact homogeneous complex manifold V can be fibered in two ways: firstly (Theorem 1), V is a holomorphic fiber bundle over the Albanese torus of V , and secondly, (Theorem 7), in a generalization of a theorem by Goto, V can be canonically represented as a holomorphic fiber bundle over a projective rational homogeneous manifold with a complex parallelisable fiber. In the Kähler case, using the theory of complex Lie groups, we can make additional statements on these two fiber bundles that will yield a simple proof of Theorem I in Section 6.

Lie groups will mostly be denoted by G, H, M, N, \ldots and its connected components of 1 by $G^{\circ}, H^{\circ}, M^{\circ}, N^{\circ}, \ldots; G(V)$ denotes the group of all holomorphisms of V .

¹⁾A compact complex manifold is called *projective rational* if it is projective algebraic and has a rational (over C) field of meromorphic functions. Recall that by Chow's Theorem, an analytic subset of a projective algebraic variety is projective algebraic itself.

2. The Albanese bundle of a homogeneous compact complex manifold. We begin with the following well-known fact (compare [\[1\]](#page-11-1), p. 163):

(a) For every connected compact complex manifold V , there exists a complex torus $A(V)$ and a holomorphic map $\alpha : V \to A(V)$, such that every holomorphic map $\beta : V \to B$ from V to any complex torus B can be written in the form $\beta = \tau \circ \alpha$, where $\tau : A(V) \to B$ is a holomorphic affine map from $A(V)$ to B, uniquely determined by β . It holds that dim_R $A(V) \leq b_1(V)$. If V is Kähler, then $\dim_{\mathbb{R}} A(V) = b_1(V).$

The torus $A(V)$ and the map α are uniquely determined by V, that is, if A' is another torus and $\alpha' : V \to A'$ another holomorphic map with the above universal mapping property, then there is a biholomorphic affine map ι of A' to $A(V)$ such that $\alpha = \iota \circ \alpha'$.

We call $A(V)$ the *Albanese torus* of V and accordingly $\alpha : V \to A(V)$ the *Albanese map.* The number $a(V) := \dim_{\mathbb{C}} A(V)$ is called the *Albanese number* of V. If V is projective algebraic, then $a(V)$ is the irregularity of V.

The group $G(V)$ of all holomorphisms of V can by [\[2\]](#page-11-2) be taken as a complex transformation group of V in a canonical way. If $G(V)$ acts transitively on V, then so does $G(V)^\circ$. By $T(V)$ we will denote the complex Lie group of translations of $A(V)$, and it holds that $T(V) = G(A(V))^{\circ}$. The torus group $T(V)$ is, as a complex manifold, biholomorphically equivalent to $A(V)$. We will make significant use of:

(a') There is a holomorphic homomorphism of groups $\gamma : G(V) \to G(A(V)),$ such that $\alpha \circ g = \gamma(g) \circ \alpha$ for all $g \in G(V)$. Then $\gamma(G(V)^{\circ}) \subset T(V)$ holds. The kernel ker γ is a closed complex Lie subgroup of $G(V)$ that acts holomorphically on every α -fiber. A holomorphism $g \in G(V)^\circ$ belongs to ker γ if and only if there is a point $v_0 \in V$ such that v_0 and $g(v_0)$ lie in the same α -fiber. In particular, if H is a subgroup of $G(V)^\circ$ that acts transitively on V, then $H \cap \ker \gamma$ acts transitively on every α -fiber.

The existence of γ was proven by Blanchard [\[1\]](#page-11-1), Proposition I.2.1. That γ is holomorphic is not explicitely noted in [\[1\]](#page-11-1), but if follows from the definition of γ (cf. $[1]$, p. 165). The remaining statements of (a') can be verified directly.

In this section we wish to prove:

Theorem 1 If V is a connected compact homogeneous complex manifold, then:

(a) The Albanese map $\alpha : V \to A(V)$ and the homomorphism $\gamma : G(V)^\circ \to$

 $T(V)$ are surjective.

(b) V is a holomorphic fiber bundle over $A(V)$ with respect to α . The typical fiber F is a connected compact complex manifold, and homogeneous with respect to ker γ . There is an exact sequence

$$
0 \to \pi_1(F) \to \pi_1(V) \to \pi_1(A(V)) \to 0.
$$

PROOF: (a) For short, we write $G^{\circ} := G(V)^{\circ}$. The group G° acts transitively on V. If $a_0 \in \alpha(V)$ is fixed, then by (a') we have $\alpha(V) = \{t(a_0) \mid t \in \gamma(G^{\circ})\}$. If we take $A(V)$ as a complex torus group with a_0 as identity, then $\alpha(V)$ becomes a subgroup of $A(V)$. Since $\alpha(V)$ is closed in $A(V)$ and is the orbit of a point under a complex transformation group of $A(V)$, $\alpha(V)$ is an analytic set in $A(V)$ (this also follows directly from [\[13\]](#page-12-2), Satz 24). Hence $\alpha(V)$ is even a complex subtorus of $A(V)$. Now this torus $\alpha(V)$ together with the holomorphic map $\alpha' : V \to \alpha(V)$ induced by α evidently has the universal property of the Albanese torus. Hence $\alpha(V) = A(V)$. This further implies $\gamma(G^{\circ}) = T(V)$.

(b) Let M denote the kernel of $\gamma: G^{\circ} \to T(V)$. If H is the stabilizer subgroup in G° of a point $v_0 \in V$, then $H \subset M$ by (a'). Upon identifying V with G°/H and $A(V)$ with G°/M (the latter is possible by (a)), V appears as a holomorphic fiber bundle over $A(V)$ with respect to α , whose typical fiber is the homogeneous compact complex manifold M/H . In order to prove that M/H is connected, we consider the smallest open subgroup M' of M that contains H. Clearly, M' consists precisely of those connected components of M whose intersection with H is non-empty. Thus M'/H is connected. The holomorphic map $\alpha : V \to A(V)$ is now the composition of the holomorphic maps $\alpha_1 : V = G^{\circ}/H \rightarrow G^{\circ}/M'$ and $\alpha_2 : G^{\circ}/M' \to G^{\circ}/M = A(V)$. The compact complex manifold G°/M' is an unramified compact covering of $A(V)$ and hence a complex torus itself. From the universal property of $A(V)$ it follows that α_2 is biholomorphic. This implies $M = M'$, that is, the typical fiber $F = M/H$ of α is connected. We now have the following exact homotopy sequence

$$
\cdots \to \pi_2(A(V)) \to \pi_1(F) \to \pi_1(V) \to \pi_1(A(V)) \to 0.
$$

Since $A(V)$ is a torus, $\pi_2(A(V)) = 0$. Since moreover M acts transitively on each α -fiber by (a'), the proof of Theorem 1 is complete. \diamond

From Theorem [1](#page-1-0) we immediately obtain the following result due to Wang [\[15\]](#page-12-1), Theorem 1 and Corollary 2:

Corollary 1 A complex Lie group G acts holomorphically and transitively on a compact Kähler manifold V of the same dimension if and only if G is a complex torus.

PROOF: Clearly, a complex torus has this property. Conversely, let V be a compact Kähler manifold and G a complex Lie group of the same dimension as V that acts holomorphically and transitively on V . Without loss of generality we may assume G is connected. Then V is equivalent to a complex quotient variety G/H , where H is a discrete subgroup of G. If now $n := \dim_{\mathbb{C}} G$, then there are n linearly independent right-invariant holomorphic differential forms of degree 1 on G (the Maurer-Cartan forms). These forms induce n linear independent holomorphic differential forms on V, as the natural projection $G \rightarrow G/H$ is locally biholomorphic. Since V is Kählerian, $b_1(V) \le 2n$, so that $A(V)$ has at least the same dimension as V. Then $\alpha : V \to A(V)$ is biholomorphic by Theorem [1.](#page-1-0) \diamondsuit

3. Homogeneous projective rational manifolds. The aim of this section is to prove Theorem [4.](#page-4-0) To prepare, we show:

Theorem 2 Every holomorphic map of a homogeneous projective rational manifold Q has a fixed point.

PROOF: By [\[3\]](#page-11-3), Q admits a "analytic cell decomposition": The 2s-dimensional closed cells are all s-dimensional irreducible algebraic sets in Q and form a basis $\{\gamma_1^{2s}, \ldots, \gamma_{j_s}^{2s}\}\$ of the 2sth homology group of Q, for $s = 1, \ldots, \dim_{\mathbb{C}}Q$. From results by Chow [\[7\]](#page-11-4) it follows that every irreducible s-dimensional analytic cycle in Q is homologous to a cycle $\sum_{i=1}^{j_s} n_i \cdot \gamma_i^{2s}$, where all $n_i \geq 0$. Since every holomorphic map τ from Q to itself maps irreducible analytic sets to sets of the same type (compare [\[13\]](#page-12-2), Satz 24), with respect to the bases $\{\gamma_i^{2s}\}\,$, the traces of all homomorphisms induced by τ in the homology groups are non-negative. As the trace in dimension 0 is 1 and all homology groups of odd dimension vanish, the alternating sum over their traces is positive. But then the holomorphic map τ has a fixed point in Q by the Lefschetz-Hopf formula. \diamondsuit

Every complex Lie group of complex dimension n can be interpreted in a natural way as a $2n$ -dimensional real Lie group. We will denote this real Lie group determined by G by G_r . Then:

Lemma 3 Let X be a projective algebraic manifold with $b_1(X) = 0$, and M an

analytic subset of X. Moreover, let H be a solvable connected real Lie subgroup of $G(X)_r$, such that $h(M) = M$ for all $h \in H$. Then there exists at least one point $x_0 \in M$ such that $h(x_0) = x_0$ for all $h \in H$.

PROOF: As $b_1(X) = 0$, by the Théorème Principal I from [\[1\]](#page-11-1), there exists a projective embedding of X into a \mathbb{P}_s , such that $G(X)^\circ$ can be identified with the maximal connected subgroup of $G(\mathbb{P}_s)$ that leaves X invariant. The group H is then a solvable connected real Lie subgroup of $G(\mathbb{P}_{s})_r$. Let H_c denote the connected complex Lie subgroup of $G(\mathbb{P}_s)$ whose Lie algebra is the complexification of the real Lie algebra of H. Then H_c contains H and is solvable. By a clas-sical theorem of Lie^{[2\)](#page-4-1)} there exists a flag $T_0 \subset T_1 \subset \ldots \subset T_{s-1}$, where T_i is an *i*-dimensional analytic plane in \mathbb{P}_s , such that $h(T_i) = T_i$ for all $h \in H$ and $i = 0, \ldots, s - 1$. As M is analytic and as such algebraic in P_s , we can choose the index $j, 0 \le j \le s - 1$, such that $M \cap T_j$ contains at least on isolated point x_0 . Since $H \subset H_c$ is connected and preserves $M \cap T_j$, we obtain $h(x_0) = x_0$ for all $h \in H.$

Remark Instead of H_c , we also consider the smallest algebraic subgroup H' of $G(\mathbb{P}_{s})$ containing H in the preceding proof. It is solvable, connected, leaves M invariant and thus has a fixed point in M by [\[5\]](#page-11-5), p. 64.

It now readily follows:

Theorem 4 If Q is a homogeneous projective rational manifold, then every connected real Lie subgroup U of $G(Q)$ _r that acts transitively on Q is semisimple. Moreover, the centralizer of U in $G(Q)$ contains only the identity.

PROOF: Let R(U) denote the radical³ of U. As $b_1(Q) = 0^4$, the group R(U) has a fixed point on Q by Lemma [3.](#page-3-0) Since $R(U)$ is a normal subgroup of U and U acts transitively on Q, every point of Q is a fixed point of $R(U)$. As U acts effectively, this implies $R(U) = \{1\}$. So $R(U)$ is semisimple.

²⁾Lie's Theorem is stated as follows: Let H be a solvable connected complex Lie group and $\rho: H \to GL(n, \mathbb{C})$ a holomorphic homomorphism. Then there is an element $a \in GL(n, \mathbb{C})$ such that all matrices $a \cdot \varrho(H) \cdot a^{-1}$ are triangular matrices (all coefficients below the diagonal are zero). In our case, this theorem is applied to the complex subgroup of $GL(s + 1, \mathbb{C})$ that is the connected component of 1 of the preimage of H_c under the canonical homomorphism GL(s + 1, C) \rightarrow $G(\mathbb{P}_{s}).$

³⁾The *radical* $R(G)$ of a Lie group G is by definition the largest connected solvabe normal Lie subgroup of G. It is always closed in G.

⁴⁾It is well-known that every projective rational manifold is simply connected, see for example [\[8\]](#page-11-6) and [\[14\]](#page-12-3).

It remains to prove that the identity is the only holomorphism of O that commutes with all $u \in U$. Let $g_0 \in G(Q)$ such that $g_0 \cdot u = u \cdot g_0$ for all $u \in U$. Then U preserves the set F_0 of fixed points of g_0 . By Theorem [2,](#page-3-1) F_0 is not empty, and U acts transitively on Q. It follows that $F_0 = Q$. As $G(Q)$ acts effectively, g_0 is the identity, which proves Theorem [4.](#page-4-0) \Diamond

4. Proof of the triviality of certain fiber bundles. In this section we prove:

Theorem 5 Let Q be a connected projective rational manifold and E a holomorphic vector bundle over a complex torus A with Q as typical fiber. Then E is a homogeneous complex manifold if and only of Q is homogeneous and E is equivalent as a bundle over A to the direct product $A \times Q$.

The proof is based on the following

Lemma 6 Let G be a connected real or complex Lie group and S a connected closed real or complex normal subgroup of G that is semisimple and has trivial center. Suppose the quotient group G/S is solvable. Then G is the direct product of S and the radical $R(G)$. In particular, if G/S is abelian, then $R(G)$ coincides with the center $Z(G)$ of G.

PROOF: By [\[6\]](#page-11-7), Corollaire 3, p. 76, as well as [\[12\]](#page-12-4), Theorem 84, p. 278, the radical R(G) is mapped to the radical of G/S by the canonical projection $G \rightarrow$ G/S , and hence to itself. Therefore, $G = R(G) \cdot S$. The intersection $R(G) \cap S$ is a closed solvable normal subgroup of S and hence, as S is semisimple, discrete. As a discrete normal subgroup, $R(G) \cap S$ is contained in the center of S. It follows that $R(G) \cap S = \{1\}$ and thus $G = R(G) \times S$. If G/S is abelian, it further follows that $R(G) = Z(G)$, since every element of $R(G)$ commutes with every element of S and R(G) is isomorphic to G/S .

PROOF OF THEOREM [5:](#page-5-0) If Q is homogeneous and $E = A \times Q$, then E is homogeneous as well. Conversely, suppose E is homogeneous. We write E in the form G°/H , where $G^{\circ} := G(E)^{\circ}$ and H is the stabilizer subgroup in G° of a point in E. We let $\pi : E \to A$ denote the holomorphic bundle projection and $\alpha : E \to A(E)$ the Albanese map. Since every π -fiber F is projective rational and therefore has a one-pointed Albanese torus, $\alpha|_F$ is always constant. So there exists a holomorphic map $\iota: A \to A(E)$ such that $\alpha = \iota \circ \pi$. By the universal property of $A(E)$, the map ι is necessarily biholomorphic and affine, so that we may identify A with $A(E)$ and π with α . By Theorem [1](#page-1-0) (b), we may further set

 $Q = M/H$, where M is the kernel of $\gamma : G^{\circ} \to T(E)$. The groups M and M° are both closed complex normal Lie subgroups of G, both act transitively on each α -fiber. For every $a \in A$ let $M_a := \{ g \in M \mid g|_{\pi^{-1}(a)} = id \}$ and $M'_a := M_a \cap M^\circ$. The groups M_a and M'_a are normal subgroups of M and M° , respectively, and it holds that $\bigcap_{a \in A} M_a = \{1\}$, as M acts effectively on E. The connected complex Lie group M°/M'_a now acts holomorphically, transitively and effectively on the fiber $\pi^{-1}(a)$. By Theorem [4,](#page-4-0) it therefore follows that M°/M'_a is always semisimple with trivial center. But then M° itself is semisimple with trivial center: The radical and the center of M° are mapped by any homomorphism $M^{\circ} \to M^{\circ}/M'_a$, $a \in A(E)$, to the radical and the center of M°/M'_a , respectively, that is, to $\{1\}$. Radical and center are thus contained in every group M'_a and thus consist only of the identity.

As G°/M° is a connected covering group of the abelian group $T(E)$, it is abelian itself, and it follows from Lemma [6](#page-5-1) that $G^{\circ} = Z \times M^{\circ}$, where Z is the center of G° . In particular, $M = (M \cap Z) \times M^{\circ}$. As $M \cap Z$ is a central complex Lie subgroup of M and M/M_a can be considered as a complex Lie subgroup of $G(\pi^{-1}(a))$ acting transitively and effectively on $\pi^{-1}(a)$, $M \cap Z$ is mapped by $M \to M/M_a$ into the centralizer of M/M_a in $G(\pi^{-1}(a))$, and thus maps onto $\{1\}$ by Theorem [4.](#page-4-0) It follows that $M \cap Z \subset M_a$ for every $a \in A$ and thus $M \cap Z = \{1\}$. This means $M = M^{\circ}$, that is, $G = Z \times M$. As the stabilizer H is contained in M and $Z = G/M$ can be identified with A, it follows that $E = G^{\circ}/H = Z \times (M/H) = A \times$ $Q.$

5. Generalization of a theorem by Goto. In [\[9\]](#page-11-8), Proposition 3, it is proved that every compact homogeneous complex manifold V with finite fundamental group is a holomorphic fiber bundle over a projective rational manifold with a complex torus as fiber. We show here:

Theorem 7 Every compact homogenous complex manifold V is in a canonical way a holomorphic fiber bundle over a projective rational (simply connected) homogeneous manifold B with a connected complex-parallelizable fiber P.

Here, an r-dimensional complex manifold X is called *complex-parallelizable* if there are r holomorphic vector fields on X that are linearly independent at every point of X . It is clear that X is always complex-parallelizable if there exists an r-dimensional complex Lie group that acts holomorphically and transitively on X. By Wang [\[15\]](#page-12-1), the converse also holds if X is connected and compact.

The proof of Theorem [7](#page-6-0) makes use of:

Theorem* Every connected compact homogeneous Kähler manifold with finite fundamental group is projective rational and in particular simply connected.

Compare [\[3\]](#page-11-3) and [\[9\]](#page-11-8). The proof of the first mentioned author for simple connectedness has been expounded in the exposé of a talk by J.P. Serre (Séminaire Bourbaki, May 1954).

For the proof of Theorem [7,](#page-6-0) we let H denote the stabilizer subgroup in $G(V)^\circ$ of a point in V, and N the normalizer of H° in $G(V)^{\circ}$. Then N is a closed complex Lie subgroup of G containing H . Thus there exists a natural holomorphic fiber bundle map from $V = G/H$ onto the compact homogeneous complex manifold $B := G/N$ with typical fiber $P := N/H$. By definition, H° is normal in N, so that furthermore $P = (N/H^{\circ})/(H/H^{\circ})$ holds. As H/H° is discrete in N/H° , the fiber P is complex-parallelisable. To prove that this fiber bundle also has the other properties claimed in Theorem [7,](#page-6-0) it is therefore sufficient to prove that N is connected and B is projective rational. But this follows immediately from

Theorem 7' Let G be a connected complex Lie group and H a closed complex Lie subgroup of G, such that G/H is compact. Then:

- (1) The normalizer N of H° in G contains the radical R(G) of G.^{[5\)](#page-7-0)}
- (2) N is connected and G/N is projective rational.

PROOF: It is clearly enough to prove the theorem for the case that G is simply connected. Let $n := \dim_{\mathbb{C}} G$ and $k := \dim_{\mathbb{C}} H$. We consider the Lie algebra h of H as a point in the Grassmann manifold $M_{n,k}$ of k-dimensional subspaces of the Lie algebra g of G. Via its adjoint representation, G has a natural holomorphic action on $M_{n,k}$, and the stabilzier subgroup of h in G is precisely N. Since $H \subset$ N, there exists a holomorphic map from G/H onto the orbit $B \approx G/N$ of $\mathfrak{h} \in$ $M_{n,k}$ under G. As G/H is compact by assumption, B is an analytic subset in $M_{n,k}$ on which G acts transitively. As $M_{n,k}$ is a projective algebraic manifold with vanishing first Betti number, by Lemma [3,](#page-3-0) $R(G)$ has a fixed point in B. As $R(G)$ is normal in G and G acts transitively on B, it follows that every point of B, in particular h, is a fixed point of R(G). This implies $R(G) \subset N$, which proves claim (1).

By the theorem of Levi-Malcev (compare [\[6\]](#page-11-7), Théorème 5, p. 89, as well as [\[12\]](#page-12-4), Theorem 84, p. 278), G is the semidirect product $R(G) \cdot S$ of $R(G)$ by a closed

⁵⁾The first statement including its proof was communicated to us personally by J. Tits.

semisimple complex (in general not normal) subgroup S of G. If G is simply connected, so are R(G) and S. As R(G) $\subset N^{\circ}$,

$$
N = R(G) \cdot L, \quad N^{\circ} = R(G) \cdot L^{\circ},
$$

where $L := N \cap S$. From this, we obtain the quotient representation $B = S/L$ for $B=G/N$.

As a complex semisimple Lie group, the group S is algebraic, and the representation $x \mapsto \text{Ad}_{\alpha}(x)$ of S induced by the adjoint representation of G is rational (see the remark at the end of the proof). As $L = \{x \in S \mid \text{Ad}_{\alpha}(h) = h\}$ by definition of L , it follows that L is an algebraic subgroup of S . As such, L decomposes into only finitely many connected components, that is, L/L° is a finite group. As $B = S/L$ and S is connected and simply connected, we have $\pi_1(B) \cong L/L^{\circ}$ by the homotopy sequence. Hence the fundamental group of the homogeneous complex manifold B is finite. As was proved above, B lies in the Grassmann manifold $M_{n,k}$ as an analytic subset, and thus B is also projective algebraic. It follows from Theorem* that B is even projective rational. In particular, $L/L^{\circ} = \pi_1(B) = \{1\}$, that is, $L = L^{\circ}$. Since this implies $N = N^{\circ}$, Theorem 7' is proved. \diamond

Remark The property of S used above is well-known; it can be proved as follows. Every connected semisimple complex Lie group G has a faithful holomorphic representation (see Séminaire Sophus Lie, Paris 1954; Exp. 22). As a connected linear complex Lie group whose Lie algebra coincides with its commutator algebra, it is always algebraic (cf. Chevalley: Théorie des groupes de Lie, Vol. 2, Groupes algébriques, Paris 1951, p. 177), and hence G may be identified with an algebraic subgroup of GL (m, \mathbb{C}) if m is large enough. Now let $\varrho : G \to GL(n, \mathbb{C})$ be any holomorphic representation of G. The graph $\Gamma_{\rho} := \{ (g, \rho(g)) \mid g \in G \}$ of ρ is a semisimple complex Lie subgroup of $GL(m, \mathbb{C}) \times GL(n, \mathbb{C})$, and therefore algebraic by the remarks above. The projection of $GL(m, \mathbb{C}) \times GL(n, \mathbb{C})$ onto the first factor induces a bijective rational map from Γ _o onto G. As G and Γ _o are free of singularities, this map $\Gamma_{\rho} \rightarrow G$ is even biholomorphic and birational (for example due to an elementary special case of Zariski's "Main Theorem", cf. Lang: Introduction to algebraic geometry, Interscience Publishers, New York 1958, Chap. V). This implies that ρ itself is a rational map.

Corollary 2 (Goto) If $\pi_1(V)$ is finite, then P is a complex torus.

PROOF: Let G be a universal covering group of $G(V)^\circ$. We keep the notation from the proof of Theorem 7'. Then the fundamental group of V is isomorphic to the group H/H° . By assumption, H/H° is finite. From $P = (N/H^{\circ})/(H/H^{\circ})$ it thus follows that P is compact, that N/H° is a compact complex Lie group and also a complex torus group. But then P is necessarily a complex torus itself. \diamondsuit

Corollary 3 Every connected compact complex manifold V on which a solvable complex Lie group G acts holomorphically and transitively, is complex parallelizable.

PROOF: Without loss of generality we may assume G to be connected and to act effectively on V. If we again set $V = G/H$, then it follows from Theorem 7' that, since G is solvable, H° is a normal subgroup of G. As G acts effectively on V, this implies $H^{\circ} = \{1\}$. Thus V is a quotient of G by a discrete subgroup H and therefore complex-parallelizable. \Diamond

6. Proof of Theorem I and corollaries With the preparations made in Sections 2 to 5, we can now prove Theorem I. For the given compact homogeneous Kähler manifold V , we first consider the natural holomorphic fibration described in The-orem [7.](#page-6-0) As the fiber P is also a Kähler manifold, P is a complex torus according to Corollary 1 of Theorem [1.](#page-1-0) In particular, $\pi_1(P)$ is abelian. From the exact homotopy sequence

$$
\cdots \to \pi_1(P) \to \pi_1(V) \to \pi_1(B) = 0
$$

it then follows that $\pi_1(V)$ is abelian as well. By Theorem [1,](#page-1-0) V is a holomorphic fiber bundle with respect to the Albanese map α over $A(V)$ with a connected typical fiber F . From the exact sequence

$$
0 \to \pi_1(F) \to \pi_1(V) \to \pi_1(A(V)) \to 0
$$

it follows that F also has an abelian fundamental group, and moreover, that the first Betti numbers of V, $A(V)$ and F satisfy $b_1(V) = b_1(A(V)) + b_1(F)$. As V is a Kähler manifold, we also have $b_1(V) = \dim_R A(V) = b_1(A(V))$. Hence $b_1(F) = 0$, which shows that the fundamental group of F is finite. As F is also a homogeneous compact Kähler manifold, F is projective rational by Theorem*. By Theorem [5,](#page-5-0) it follows that $V = A(V) \times F$, which proves Theorem I. \diamond Finally, we note three consequence of Theorem I.

Corollary 1 If V is a connected compact homogeneous Kähler manifold, then $G(V)$ ° is reductive and every maximal compact subgroup of $G(V)$ ° acts transitively on V . In particular, V can be endowed with a Kähler metric such that the groups of all holomorphic isometries acts transitively on V .

The proof is immediate from Theorem I and the fact that on a connected and simply connected compact manifold the maximal compact subgroups of a transitive Lie group of homeomorphisms act transitively themselves (cf. [\[11\]](#page-12-5)).

Corollary 2 Let V be a connected compact Kähler manifold and $H \subset G(V)$ a real Lie group that acts transitively on V . Then:

- (a) If H is solvable, then V is a complex torus.
- (b) If H is semisimple, then V is projective rational.
- (c) If dim_R $H = \dim_{R} V$, then V is a complex torus.

PROOF: According to Theorem I we write $V = A \times F$, where A is the Albenese torus of V and F is projective rational. Then: $G(V)^\circ = G(A)^\circ \times G(F)^\circ$ (cf. [\[1\]](#page-11-1), Corollaire, p. 161). Here, $G(A)^\circ$ is a complex (abelian) torus group and by Theo-rem [4,](#page-4-0) $G(F)$ ° is a semisimple complex Lie group. If $\gamma : G(V)$ ° $\rightarrow G(A)$ ° and δ : $G(V)^\circ \rightarrow G(F)^\circ$ are the canonical holomorphic epimorphisms, then we consider the groups $\gamma(H^{\circ})$ and $\delta(H^{\circ})$. Since H° acts transitively on V as well, $\gamma(H^{\circ})$ and $\delta(H^{\circ})$ act transitively on A and F, respectively. In particular, $\gamma(H^{\circ}) = G(A)^{\circ}.$

If H is solvable, then $\delta(H^{\circ})$ is a connected solvable real Lie subgroup of $G(F)_{r}$. But by Theorem [4,](#page-4-0) $\delta(H^{\circ})$ is also semisimple. Hence $\delta(H^{\circ}) = \{1\}$, that is, F consists of a single point.

If H is semisimple, then $\gamma(H^{\circ}) = G(A)^{\circ}$ is an abelian semisimple real Lie group, which means $G(A)^\circ = \{1\}$, that is, A consists of a single point.

Now assume dim_R $H = \dim_{\mathbb{R}} V$. The real Lie group $N := G(F) \circ \cap H \circ$ is the kernel of $\gamma|_{H^{\circ}} : H^{\circ} \to G(A)^{\circ}$ and hence acts transitively on F. Moreover,

$$
\dim_{\mathbb{R}} N + \dim_{\mathbb{R}} G(A)^{\circ} = \dim_{\mathbb{R}} H^{\circ},
$$

and together with

$$
\dim_{\mathbb{R}} H^{\circ} = \dim_{\mathbb{R}} V = \dim_{\mathbb{R}} A + \dim_{\mathbb{R}} F, \quad \dim_{\mathbb{R}} A = \dim_{\mathbb{R}} G(A)^{\circ}
$$

it follows that N has the same dimension as F. Therefore, F is the quotient of N° by a discrete subgroup. Since F is simply connected and N° is connected, F and N° are topologically equivalent; in particular, N° is a compact real Lie group.

Since F is homogeneous and projective rational, it now follows that the Euler-Poincaré characteristic of F is positive, $\chi(F) > 0$ (compare [\[3,](#page-11-3) [9\]](#page-11-8)). On the other hand, χ vanishes for every connected non-trivial compact real Lie group, since there are fixed point-free homeomorphisms that are homotopic to the identity. From $\chi(F) = \chi(N^{\circ})$ it thus follows that F consists of a single point. \diamond

Corollary 3 Every compact homogeneous Kähler manifold, whose universal covering is a cell, is a complex torus.

PROOF: The universal covering of V is the product of the universal coverings of $A(V)$ and F by Theorem I.

References

- [1] A. Blanchard: *Sur les variétés analytiques complexes*, Annales Scientifiques de l'Ecole Normale Supérieure 73, 157-202 (1956)
- [2] S. Bochner, D. Montgomery: *Groups on analytic manifolds*, Annals of Mathematics 48, 659-669 (1947)
- [3] A. Borel: *Kählerian coset spaces of semisimple Lie groups*, Proceedings of the National Academy of Sciences U.S. 40, 1147-1151 (1954)
- [4] A. Borel: *Topology of Lie groups and characteristic classes*, Bulletin of the American Mathematical Society 61, 397-432 (1955)
- [5] A. Borel: *Groupes linéaires algébriques*, Annales of Mathematis 64, 20-82 (1956)
- [6] N. Bourbaki: *Groupes et Algèbres de Lie*, Chapitre I, Paris: Hermann 1960
- [7] W.L. Chow: *Algebraic varieties with rational dissections*, Proceedings of the National Academy of Sciences U.S. 42, 116-119 (1956)
- [8] C. Ehresmann: *Sur la topologie de certains espaces homogènes*, Annals of Mathematics 35, 396-443 (1934)
- [9] M. Goto: *On algebraic homogeneous spaces*, American Journal of Mathematics 76, 811-818 (1954)
- [10] Y. Matsushima: *Sur les espaces homogènes Kähleriens d'un groupe de Lie reductif*, Nagoya Mathematical Journal 11, 53-60 (1957)
- [11] D. Montgomery: *Simply connected homogeneous spaces*, Proceedings of the American Mathematical Society 1, 467-469 (1950)
- [12] L. Pontrjagin: *Topological Groups*, Princeton University Press 1946
- [13] R. Remmert: *Holomorphe und meromorphe Abbildungen komplexer Räume*, Mathematische Annalen 133, 328-370 (1957)
- [14] J.P. Serre: *On the fundamental group of a unirational variety*, Journal of the London Mathematical Society 34, 481-484 (1959)
- [15] H.C. Wang: *Complex parallelisable manifolds*, Proceedings of the American Mathematical Society 5, 771-776 (1954)

Original: *Über kompakte homogene Kählersche Mannigfaltigkeiten*, Mathematische Annalen 145, 1962, 429-439

Translation by Wolfgang Globke, Version of May 25, 2020.