
OCTAVES, EXCEPTIONAL GROUPS AND OCTAVE GEOMETRY

HANS FREUDENTHAL

INTRODUCTION

Besides the large classes of simple Lie groups1 it is well-known that there exist the
exceptional groups

G2;F4;E6;E7;E8;
which, in the way they were determined algebraically by E. Cartan [2], are not very im-
pressive or descriptive. E. Cartan himself remarked later and without proof [4] that G2

is the group of automorphisms of the octaves (the Graves-Cayley numbers). The octaves
in their relation to the peculiarities of D4 were also studied by Cartan [5]. From a more
algebraic perspective the study of octaves was taken up again by N. Jacobson [10, 11] with
a view towards Lie rings, where he relied on investigations of alternating fields by M. Zorn
[15].

A recent major advancement was achieved by C. Chevalley and R.D. Schafer [6]. They
discovered that F4 can be identified with the automorphism group of the so-called Jordan
algebra J consisting of the Hermitian 3 � 3-matrices X with octave coefficients and the
ring product X ı Y D 1

2
.XY C YX/. They further showed that these automorphisms (and

thus F4 as their totality) can be charaterised by the property that they leave invariant the
quadratic and cubic form

�.X ıX/ and �.X ıX ıX/:

In a certain way everything necessary for this discovery is implicitely contained in E. Car-
tan [2], who mysteriously missed the cubic form, even though he is aware of an analogous
form related to E6; but the relationship between F4 and E6 is also missing in Cartan’s
work. In Chevalley’s and Schafer’s work one also finds an interpretation of E6 in relation
to the algebra J, but in which the relation to a cubic invariant is missing.

Here, we take up all these problems once more and give a more holistic impression of
them. Except for some basics on Lie’s theory of continuous groups and the Cartan-Weyl
theory of semisimple groups [2, 14] we do not assume any previous knowledge and rely on
the literature as little as possible. Also, we did not employ the theory of alternative fields
(unknown to us while writing this article) or Albert’s Jordan algebras.

We develop the theory of octaves from the very basics and give a simple proof of Hur-
witz’ Theorem which uncovers a remarkable relation between the division algebras and the
projective geometries of dimensions �1, 0, 1, 2 in characteristic 2.

Afterwards we investigate D4 and B3 in their relationship to the octaves C, and confirm a
wealth of properties, in particular the triality; some methods of proof are perhaps interesing
in their own right.

The next subject is G2, arising as the automorphism group of C. (We confirm this
assertion – as done analogously later – directly by giving the root system.)

1Often we denote a group and one of its representations by the same letter if it is clear from the context which
representation is meant.
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During the investigation of the algebra J (see above) we noticed that the infinitesimal
automorphisms of J are generated by the operations

X 7! QAX D ŒA;X�

whereA is skew-symmetric, �.A/ D 0. These operations, together with the automorphisms
of C, form a basis of the automorphism group of J. The reader should look up further re-
sults in this work, like the coincidence of this group with F4, by himself.

We want to mention the Principal Axis Theorem for J: The elements of J can be diag-
onalised by the transformations of the group F4.

We were able the characterise E6 as the group of linear maps from J to itself leaving
det.X/ invariant; the Chevalley-Schafer characterisation follows from this.

J, F4 and E6 are related to the projective octave plane. That the trivial incidence axioms
of projective geometry must be satisfied by an octave geometry is plausible since the work
of R. Moufang [12, 13]; she specified an affine octave geometry. G. Hirsch [9] constructed
a plane projective geometry with 8-spheres for straight lines by topological means. We
have now completed the same task algebraically.

Points and lines in our geometry are given by irreducible idempotents in the algebra J,
and the incidence relation is X ı Y D 0. The automorphism group of this geometry is E6.
The subgroup F4 is the one of octave geometry. The lines are (as point sets) 8-spheres:
when restricted to a line, the automorphism group of this geometry reduces to D5, the
projective group of the 8-sphere; when restricted to elliptic geometries to B4, the rotation
group of the 8-sphere. The validity of the theorem on the quadriliteral is obtained easily in
octave geometry; the Desargue Theorem is known not to hold here.

As we are mainly concerned with the relations to Lie groups we did not strive for the
greatest algebraic generality and thus only considered octaves with the real numbers as a
base field. For some of our proofs and results this is indispensable.

At the end we list some open problems.
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given a representation of the octave plane by idempotents of the ring J without proof (Abh.
Math. Sem. Hamburg 16 (1949), 74-76). Both works were unknown to me.

NOTATION

Bn D .2nC 1/-dimensional rotation group
Dn D 2n-dimensional rotation group
G2;F4;E6;E7;E8 exceptional groups
C D algebra of octaves (real base field);

.x; y/ inner product; e0; : : : ; e7 basis elements
U 1.6
Gij ; Fij 2.1
�;K; �; �; �1 2.2
triality (2.3.6), (2.4.5), 7.10
Mn;M

C
n ;M

�
n 4.1-4.4

X ı Y; .X; Y /; .X; Y;Z/ (4.5.9)-(4.5.11)
J (Albert algebra) (4.5.9)
QA;R (4.5.12)-(4.5.13)
ı 4.6
E1;2;3; F

a
i ; ıi ; Ap 4.7

ıij ;M3 4.9
principal matrix 5.1
characteristic equation (5.2.4)
det.X/ (5.2.5)
˘ (system of irreducible idempotents of J) 5.3
P (plane projective geometry) 6.1
P;L 6.2
P .C/ (octave geometry) 7.1
X _ Y 7.5
det.X; Y;Z/ 7.11
real line 7.12
˘ ] 7.12
prospective group 7.13
T 8.1
A 9.3

1. C

1.1. The hypercomplex system C has the following properties:

1.1.1. C is a finite-dimensional linear space (elements: lower case Latin letters) with
the real number field (elements: lower case Greek letters) as field of coefficients and
endowed with a (positive definite) inner product .x; y/, hence also with a vector length
jxj D

p
.x; x/.

1.1.2. In C a distributive, not neccessarily associative multiplication is defined,

x; y 2 C ) xy 2 CI

.a � b/.x � y/ D ax � bx � ay C byI

a.˛x/ D ˛.ax/I

1.1.3. with a unit element,
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1.1.4. satisfying jxyj D jxjjyj.

1.2. From 1.1.2 it follows: The left-multiplication

Lax D ax

and the right-multiplication
Rax D xa

are linear maps. From (1.1.4) it follows that they are isometries for jaj D 1, that is,
orthogonal maps. Thus they leave invariant the inner products (jaj D 1):�

La.�x C �y/;La.�x C �y/
�
D .�x C �y; �x C �y/;

that is

�2.Lax;Lax/C 2��.Lax;Lay/C�
2.Lay;Lay/ D �

2.x; x/C 2��.x; y/C�2.y; y/;

and from this it follows by comparing coefficients that

.Lax;Lay/ D .x; y/ for jaj D 1:

Similar for Ra.
The trick employed here when replacing x by �xC�y is called ‘polarisation’ in allusion

to a practice from invariant theory. In the following we shall omit the explicit computation
when using it.

We have shown:
.ax; ay/ D .x; y/ for jaj D 1:

Hence �
a

jaj
x;

a

jaj
y

�
D .x; y/ for a ¤ 0

1.2.1. and moreover
.ax; ay/ D .a; a/.x; y/;

which also holds for a D 0. Also,

1.2.2.
.xa; ya/ D .a; a/.x; y/:

Polarisation of (1.2.1) with respect to a yields

1.2.3.
.ax; by/C .bx; ay/ D 2.a; b/.x; y/:

1.3. Let e0 denote the unit element of C. The adjoint of a linear map A of C is denoted
by A0, that is

.Ax; y/ D .x; A0y/:

It follows from (1.2.3) with b D e0 and .a; e0/ D 0:

.ax; y/C .x; ay/ D 0;

that is
La C L

0
a D 0 for .a; e0/ D 0:

Moreover,
Le0 D L

0
e0
:

If we define a to be a function of a such that

a is linear in a



OCTAVES, EXCEPTIONAL GROUPS AND OCTAVE GEOMETRY 5

and
a D �a for a D e0;

then we have
L0a D La;

that is

1.3.1.
.ax; y/ D .x; ay/:

We also can take this equation as the definition of a. Similarly we have

1.3.2.
.xa; y/ D .x; ya/:

Applying (1.3.1) and (1.3.2) repeatedly yields:

.ax; y/ D .x; ay/ D .xy; a/ D .y; x a/;

from which it follows firstly that

1.3.3.
.x; y/ D .x; y/

and secondly
.ax; y/ D .x a; y/;

that is

1.3.4.
xy D y x:

We define

Re.x/ D
1

2
.x C x/; Ve.x/ D

1

2
.x � x/;

that is,

Re.x/ D .x; e0/e0
x D Re.x/C Ve.x/

x D Re.x/ � Ve.x/:

Because of (1.3.1) with x D e0 one has

.a; y/e0 D .e0; ay/e0 D Re.ay/;

that is
.x; y/e0 D Re.xy/ D Re.yx/

and because of (1.3.1) to (1.3.4)

.x; y/e0 D Re.xy/ D Re.yx/:

Hence

1.3.5.
.x; y/e0 D Re.xy/ D Re.xy/ D Re.yx/ D Re.yx/:

From (1.3.1) follows Re..ax/y/ D Re.x.ya// D Re..ya/x/, that is

1.3.6.
Re..ab/c/ D Re..bc/a/ D Re..c:a/b/
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1.4. From (1.2.3), using (1.3.1), one deduces:

.b.ax/; y/C .a.bx/; y/ D 2.a; b/.x; y/:

This holds for all y. Hence

1.4.1.
b.ax/C a.bx/ D 2.a; b/x D .ba/x C .ab/x:

For a D b this is

1.4.2.
a.ax/ D .aa/x:

As Re.a/.ax/ D .Re.a/a/x (because Re.a/ D ae0), we also have

1.4.3.
a.ax/ D a2x:

By polarisation:

1.4.4.
a.bx/C b.ax/ D .ab/x C .ba/x:

Analogously,

1.4.5.
.xa/b C .xb/a D 2.a; b/x;

1.4.6.
.xa/a D x.aa/;

1.4.7.
.xa/a D xa2;

1.4.8.
.xa/b C .xb/a D x.ab/C x.ba/:

If we replace b by x and x by y in (1.4.4), and a by y and b by a in (1.4.8), we find:

1.4.9.
.ax/y C x.ya/ D a.xy/C .xy/a:

Now it follows for y D a, considering (1.4.7), that:

1.4.10.
.ax/a D a.xa/:

Polarisation:

1.4.11.
.ax/b C .bx/a D a.xb/C b.xa/:

From (1.4.10) it also follows that

1.4.12.
.ax/a D a.xa/

and by polarisation

1.4.13.
.ax/b C .bx/a D a.xb/C b.xa/:

For (1.4.9) we can also write
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1.4.14.
.Lax/y D x.Ray/ D .La CRa/.xy/I

if we replace either x by Lax or y by Ray and add up the two equations, we obtain

.L2ax/y C 2.Lax/.Ray/C x.R
2
ay/ D .La CRa/..Lax/y C x.Ray//

and because of (1.4.10) this equals

.La CRa/
2.xy/:

With a2 instead of a in (1.4.14) and considering

L2a D La2 ; R2a D Ra2 ; LaRa D RaLa

(because of (1.4.3), (1.4.7), (1.4.10)) we obtain

.Lax/.Ray/ D LaRa.xy/

or

1.4.15.
.ax/.ya/ D a.xy/a:

After introduction the ‘associator’

fa; b; cg D .ab/c � a.bc/;

we can rewrite (1.4.4), (1.4.9), (1.4.11) as

1.4.16.
fa; b; cg D fb; c; ag D �fb; a; cg:

This formula is called the ‘alternative law’.

1.5. Let fe0; e1; : : : ; er�1g be an orthonormal system in C,

.ei ; ej / D 0 for i ¤ j;
e0 for i D j:

By (1.4.1) we have

1.5.1.
ei .ejx/C ej .eix/ D 0 for i ¤ j I i; j > 0

1.5.2.
ei .eix/ D �x for i > 0:

In particular, this implies:

1.5.3.
eiej C ej ei D 0 for i ¤ j I i; j > 0;

1.5.4.

e2i D �e0 for i > 0;

ei .ej ek/ D �ej .eiek/ D ej .ekei / for i ¤ j; i ¤ kI i; j; k > 0;

so

1.5.5.
ei .ej ek/ D ej .ekei / D ek.eiej / for i ¤ j ¤ kI i; j; k > 0:

Moreover:
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1.5.6. From eiej D ekel (i ¤ j ¤ k ¤ l ¤ i , j ¤ l ; i; j; k; l > 0) it follows that

eiel D ej ek ;

because the assumption implies ej D �ei .ekel / D ek.eiel /.

1.5.7. We can change the basis in such a way that for all i; j it further holds that

eiej D ˙eki;j :

Assume this has already been done for i; j < 2p , that is, eiej D ˙ek for all i; j < 2p and
a suited k < 2p . Then choose f such that

.f; ei / D 0 for i < 2p;

.f; f / D e0

and let e2pCi D fei . Then, because of (1.3.2),

.fei ; ej / D �.f; ej ei / D 0 for i; j < 2p; i ¤ j;

and because of (1.2.1)

.fei ; fej / D .ei ; ej / for i; j < 2p

D

�
0 for i ¤ j;
�e0 for i; j < 2p:

Hence the ei and fei form an orthonormal system and we can apply (1.5.3) to (1.5.5).

.fei /ej D .eiej /f D ˙f .ej ei /

.fei /.fej / D .ei .fej //f D �f .f .ej ei // D ej ei :

Hence the ei (i < 2pC1) also satisfy this condition.

1.5.8. We now denote the set of the ei (i > 0) by E, the elements of E are called ‘points’
and the cyclically ordered triplets fei ; ej ; ekg are called ‘oriented lines’, more precisely
‘positive’ if

ei .ej ek/ D �e0 .or ei D ej ek/;

and ‘negative’ if

ei .ej ek/ D e0 .or ei D �ej ek/:

Two positive lines are said to have the same orientation, and so are two negative lines.
A positive and a negative line are said to have opposite orientations. If we neglect the
orientation, we simply speak of ‘lines’. We use the terminology of projective geometry.

Now, every line contains precisely three points, and every two points are connected by
a unique line. The ‘plane axiom’ holds as well, that is, if we call a line C a ‘transversal’ of
the lines A;B if C \A ¤ C \B , C \A and C \B not empty, then the following holds:
If two lines intersect, then their transversals intersect.

Because if A D fei ; ej ; ekg, B D fei ; ej ; emg, then ej ek D ˙elem, hence by 1.5.6,
ej em D ˙ekel etc.

The ‘plane’ AB of two intersecting lines A;B is understood to be the union of A;B
and their transversals. We show:
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1.5.9. For any two points ei ; ej the third point of their connecting line is contained in
AB .

We may assume that, say ej , is contained neither in A nor in B . There exists a transver-
sal D of A and B containing ej ; D D fej ; ek ; elg, ek 2 A, el 2 B , ei 62 D. If ei 2 A\B
and A D fei ; ek ; epg then fei ; ej ; �g and fep; el ; �g are transversals of A and D, and hence
the third point of fei ; ej ; �g is in fep; el ; �g and therefore inAB . If on the other hand ei 62 B ,
ei 2 A, then fei ; ej ; �g and B are transversals of A and D and one can proceed in an anal-
ogous manner. Finally, if ei 62 A [ B , and if C is a transversal of A and B containing ei ,
then fei ; ej ; �g and A are transversals of C and D, and again the result follows in by an
analogous argument.

1.5.10. If the points ei ; ej ; ek ; el form a plane quadriliteral and if the sides fei ; ej ; �g and
fek ; el ; �g have the same orientation (that is eiej D ekel ), then the sides fei ; ek ; �g and
fej ; el ; �g have opposite orientations (follows from 1.5.6).

1.5.11. For any triangle, say with sides fe1; e3; e2g, fe2; e6; e4g, fe6; e7; e1g, there exists
exactly one line, fe4; e3; e7g, being a transversal to every pair of sides. By the positive
orientation of the sides, the orientation of the transversal’s orientation is determined. With
the orientations given above taken to be the positive ones, the sides fe1; e3; �g and fe6; e4; �g
of the quadriliteral e1; e3; e6; e4 have the same orientation. Hence fe4; e3; �g must be the
positive transversal.

1.5.12. We now show that E is a projective geometry of dimension at most 2.
Under the assumption that this is not the case, through one point we draw three lines

fe1; e2; e3g; fe1; e4; e5g; fe1; e8; e9g with these orientations, not lying in one plane, and
consider the perspective triangles e2; e4; e8 and e3; e5; e9 (see Figure 1). Corresponding

e1

e2

e3

e4

e5

e8

e9

FIGURE 1.

sides have opposite orientation by 1.5.10. They intersect each other in a line which is a
transversal for both triangles and obtains opposite orientations from the two triangles by
1.5.11. This is the contradiction we were looking for.
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1.5.13. If dimE D �1, that is E is empty, then C is essentially the system of real numbers.
If dimE D 0, that is, there exist no lines, then E consists of one element e1 with e21 D �e0,
so C is essentially the system of complex numbers. If dimE D 1, that is, there exists
exactly one line with points e1; e2; e3, then one can assume e1e2 D e3, possibly after
renormalising. So one obtains for C the system of quaternions.

If dimE D 2, then E is the plane projective geometry over the prime field of charac-
teristic 2, and E has the cardinality 7. We introduce projective coordinates; every element
of E is given by a triple .˛0; ˛1; ˛2/ with ˛� D 0; 1 (not all 0). We also call this element
ei with i D ˛0 C 2˛1 C 4˛2. If ej D .ˇ0; ˇ1; ˇ2/ is another element, then eiej D ˙ek
with ek D .˛0 C ˇ0; ˛1 C ˇ1; ˛2 C ˇ2/.mod 2/. After a possible renormalising of the
points one can assume that the sides of the triangle e1e2e4 have the positive orientations
fe1; e3; e2g; fe2; e6; e4g; fe4; e5; e1g. Then the orientation of the transversal is necessar-
ily fe3; e6; e5g. By renormalising e7 one can obtain the orientation fe1; e7; e6g, and this
implies uniquely and free of contradiction fe2; e7; e5g; fe4; e7; e3g.

So for dimE D 2 there exists essentually one system C, it is 8-dimensional and is called
the (Graves-Cayley) octaves.

The multiplication table chosen here consists of (1.5.3)-(1.5.5) and Figure 2:

e1

e2

e3

e4e5

e6

e7

FIGURE 2.

e1e3 D e2; e2e6 D e4; e4e5 D e1;

e3e6 D e5;

e1e7 D e6; e2e7 D e5; e4e7 D e3:

Thus we have proven (see the literature in [8]):

1.5.14. Hurwitz Theorem. The only systems C are those of the real numbers, the complex
numbers, the quaternions and the octaves.

In the following, the system C will be understood to be the system of octaves.

1.6. If one picks the orthonormal basis e0; e1; : : : ; e7 arbitrarily (aside from the require-
ment, that e0 is 1), then because of their commutator relations (1.5.1) the Lei generate a
finite group U represented by orthogonal transformations. This representation depends on
the choice of basis, and as a finite group has only finitely many non-equivalent represen-
tations in a fixed dimension, the class of this representation is the same with respect to all
bases which arise from one another by orthogonal transformations with positive determi-
nant.

This represenation plays a role in certain proofs of the Hurwitz Theorem.
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2. D4 , B3

2.1. As usual D4 denotes the group of rotations in 8-dimensional space, and B3 the group
of rotations in 7-dimensional space. The associated infinitesmial rings are denoted by the
same letters. As is well-known, they consist of the skew-symmetric linear maps in the
respective dimensions. We consider D4 to be a transformation group in C and B3 as its
subgroup fixing e0.

2.2. As a basis of D4 we can use the Gij defined by

Gij ej D ei ; Gij ei D �ej ; Gij ek D 0 (i; j; k distinct):

Also,
Gij CGj i D 0:

Then the following commutator relations hold:

ŒGij ; Gjk � D Gik ;

ŒGij ; Gkl � D 0 (all indices distinct):

Define

Fi0x D
1

2
eix; F0i D �Fi0 .i ¤ 0/;

Fijx D
1

2
ej .eix/ .i ¤ j; i ¤ 0; j ¤ 0/;

then again
Fij C Fj i D 0

holds, and moreover, because of the commutator relations (1.5.1):

ŒFi0; F0j �x D
1

4
ej .eix/ �

1

4
ei .ejx/ D

1

2
ej .eix/

D Fijx;

ŒFij ; Fkl �x D �
1

4
el .ek.ej .eix///C

1

4
ej .ei .el .ekx///

D : : : D 0;

ŒFij ; Fjk �x D
1

4
ej .ei .ek.ejx/// �

1

4
ek.ej .ej .eix///

D : : : D
1

2
ek.eix/ D Fikx:

The relation
Gij 7! Fij

generates an automorphism which we call � ,

�Gij D Fij :

It must be an outer automorphism, for the Gij with determinant 0 are mapped to the Fij
with determinant 1.

If we further set
Kx D x;

then for A 2 D4
A 7! KAK
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is also an automorphism, which we call �,

�A D KAK:

From
�Gi0 D �Gi0; �Gij D Gij

it follows that � acts with determinant �1 on the space D4, that is, � is an outer automor-
phism.

A closer inspection of 1.5.14 yields:

2.2.1.

2F70 D CG70 �G61 �G52 �G34;

2F61 D �G70 CG61 �G52 �G34;

2F52 D �G70 �G61 CG52 �G34;

2F34 D �G70 �G61 �G52 CG34:

So � maps the commutative subring H generated by G70; G61; G52; G34 to itself, and the
matrix of this map is

2.2.2.

� in H W
1

2

0BB@
1 �1 �1 �1

�1 1 �1 �1

�1 �1 1 �1

�1 �1 �1 1

1CCA :
The matrix of � is

2.2.3.

� in H W
1

2

0BB@
�1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

1CCA :
� and � generate a group S:

2.2.4.

�� D � D
1

2

0BB@
�1 �1 �1 �1

�1 1 �1 �1

1 �1 1 �1

1 �1 �1 1

1CCA ;

�2 D
1

2

0BB@
�1 1 1 1

�1 1 �1 �1

�1 �1 1 �1

�1 �1 �1 1

1CCA
so

2.2.5.
�2 D 1; �3 D 1; �� D ��2 (in H)

and from this it follows that S is isomorphic to the symmetric group in three symbols
(� 7! .1 2/, � 7! .1 2 3/).

2.2.6. The same conclusions can be drawn for analogous subgroups containing Gi0 (i D
1; : : : ; 6), and thus the constraint ‘in H’ in (2.2.5) can be dropped.
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2.2.7. The roots for the subring H of the

˛0G70 C ˛1G61 C ˛2G52 C ˛3G34

are
.˙˛� ˙ ˛�/i (all sign combinations)I

for example, one checks the corresponding roots

.˛0 C ˛1/i corresponds to CG76 CG10 C iG71 C iG06
.�˛0 C ˛1/i corresponds to �G76 CG10 � iG71 C iG06
.˛0 � ˛1/i corresponds to CG76 �G10 � iG71 C iG06

.�˛0 � ˛1/i corresponds to �G76 �G10 C iG71 C iG06

and these are all complex, of course.
The transformations of S leave invariant all the elements of H with ˛1C ˛2C ˛3 D 0,

in particular the roots ˙.˛1 � ˛2/i, ˙.˛2 � ˛3/i, ˙.˛3 � ˛1/i. The others are permuted
by � as follows:

� W .˛� C ˛0/i 7! .˛� � ˛0/i 7! �.˛� C ˛�/i 7! .˛� C ˛0/i:

� permutes˙˛0 and permutes the roots accordingly.

2.3. The same (and more) is obtained independently in the following way:
In addition to

Lax D ax and Rax D xa

define
Ta D La CRa:

One can write (1.4.9) as

2.3.1.
Lax � y C x �Ray D Ta.xy/:

For a D ei (i ¤ 0)
Lax D eix � 2Fi0x

and

Tax D eix C xei D

8<: 2ei for x D e0
�2e0 for x D ei

0 for x D ej ; j ¤ i
;

so La D 2Fi0, Ta D 2Gi0. But then it also holds generally that

2.3.2.
�Ta D La for Re.a/ D 0:

2.3.3. Moreover,
�La D �Ra for Re.a/ D 0:

Also,
La 7! Ra for Re.a/ D 0

generates an automorphism of D4, which we call �1 here, but will later see to be identical
to �,
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2.3.4.
�1La D Ra for Re.a/ D 0:

we can now write (2.3.1) as:

(2.3.1.a) Lax � y C x � .�1La/y D �
�1La.xy/:

Consider for a moment the direct sum CC CC C of three copies of C and within it the
direct sum Qa of La, �1La, ��1La, that is

Qa.x; y; z/ D .Lax; �1Lay; �
�1Laz/;

then (2.3.1.a) says that

2.3.5.
xy � z D 0

is invariant with respect to the infinitesimal transformation Qa. As the La (Re.a/ D 0)
generate all of D4, a representation of D4 is given byLa 7! Qa, which also leaves invariant
(2.3.5).

2.3.6. So for all A 2 D4:

Ax � y C x � .�1A/y D .�
�1A/.xy/:

Thus we have the
Infinitesimal principle of triality of D4. For every A 2 D4 there exist precisely one B
and precisely on C in D4 such that

Ax � y C x � BY D C.xy/

holds.
The ‘precisely’ remains to be proven: If

x � B1y D C1.xy/; B1; C1 2 D4;

then for x respectively y D e0 with Be0 D a one has

B1y D C1y and C1x D xa;

hence
x.ya/ D .xy/a;

which is only possible for Ve.a/ D 0 in x; y, whereas the skew-symmetry of C1 requires
that Re.a/ D 0. Thus B1 D C1 D 0, from which the claim follows.

Remark: When formulating the principle of triality, one can just as well start with B or
C instead of A.

We can apply (1.4.4) with x; a; y instead of a; b; x and write

x � Lay C La.xy/ D Tax � y;

hence
Tax � y � x � Lay D La.xy/:

From (2.3.6) it follows now

�La D �1Ta; La D �
�1Ta:
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Together with (2.3.2), (2.3.3) and (2.3.4) and because of Ta D La C Ra, this yields for
Re.a/ D 0:

� W La 7! Ta 7! La; Ra 7! �Ra 7! RaI

�1 W La 7! Ra 7! �Ta � LaI

� W La 7! �Ra 7! La; Ta 7! �Ta 7! Ta:

From this it follows that �1 D ��, that is, �1 D �.
The isomorphism of S with S3 has been established once more. In the plane deter-

mined by La and Ra in D4, the group S is represented by

� D

�
0 �1

1 �1

�
; � D

�
0 �1

�1 0

�
; � D �� D

�
1 0

1 �1

�
;

�2 D

�
�1 1

�1 0

�
; �2� D

�
�1 1

0 1

�
:

2.3.7. Instead of (2.3.6) we can now write:

Ax � y C x � �Ay D �A.xy/:

Here, �A D ��2A D K.�2A/K. If one forms the inner product of (2.3.7) with z, then,
because of (1.3.5)-(1.3.6) and the skew-symmetry of ��2A, one obtains:

Re.Ax � y � z/C Re.x � �Ay � z/ D .�A.xy/; z/

D �.K.xy/; �2AKz/ D �.xy; �2Az/;

that is,

2.3.8.
Re..Ax � y/z C .x � .�A/y/z C .xy � .�2A/z// D 0:

2.4. We can achieve the same thing by studying the group D4 itself rather than its infini-
tesimal ring. We continue from 1.6.

Let ˚ 2 B3 be an orthogonal transformation of C such that ˚e0 D e0, det.˚/ D
1. Assuming the orthonormal basis e0; : : : ; e7, we find a new one: ˚e0; : : : ; ˚e7. The
representations of U generated by

ei 7! Lei and ei 7! L˚ei

are both orthogonal and equivalent to one another. So there exists a O̊ such that

2.4.1.
L˚ei D

O̊Lei
O̊�1:

As the ring generated by the Lei is all of D4, these representations are even irrducible,
and hence O̊ is determined up to a scalar factor, and as O̊ can be assumed to be real and
orthogonal, this factor is˙1.

From (2.4.1) it follows by taking linear combinations

2.4.2.
L˚x D O̊Lx O̊

�1

and this implies that
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2.4.3.
˚ 7! ˙ O̊

is a two-valued representation of B3 by an other subgroup of D4.
By differentiating ˚e0 D e0 in B3 at ˚ D 1, one obtains Ce0 D 0; by differentiating

(2.4.2)-(2.4.3) at˚ D 1, one obtains a homomorphism of the associated infinitesimal rings

C 7! OC

LCx 7! Œ OC ;Lx �:

In detail, the last equations reads

2.4.4.
Cx � y C x � OCy D OC.xy/;

so for Ce0 D 0:
�1C D �C D OC :

Writing (2.4.2) in the form

2.4.5.
˚x � O̊y D O̊ .xy/

one obtains the ‘finite’ analogue of the infinitesimal formula (2.4.4).
This is a special case of the ‘finite’ version of the

Principle of triality in D4. For very � 2 D4 there exists up to sign precisely one �1 and
precisely one �2, such that

2.4.6.
�x ��1y D �2.xy/

holds. (Again, one can also start with �1 or �2.)
For a � with �e0 D e0 we have already proved the existence; if � is of the form

� D La (jaj D 1), then it follows from (1.4.15) that

Lax �Ray D LaRa.xy/;

that is, �1 D Ra, �2 D LaRa.
An arbitray � 2 D4 can be written as � D La˚ , where a D �e0, ˚ 2 B3 and then

�1 D Ra O̊ ; �2 D LaRa O̊ :

As � 7! �1 and �2 7! �2 are (multi-valued) automorphisms, we only need to prove
uniqueness (up to a factor ˙1) for the case � D 1. One can rewrite (2.4.6) as Lx�1 D
�2Lx ; as the Lx generate an irreducible group, �1 D �2 D 1, and as �1; �2 2 D4, we
have  D ˙1.

2.4.7. It can be seen by infinitesimal methods that the automorphisms � , �, etc. are
globally 2-2-valued: If

H D ˛0G70 C ˛1G61 C ˛2G52 C ˛3G34;

and if we define

Eij ei D ei ; Eij ej D ej ; Eij ek D 0 .k ¤ i; k ¤ j /;

then
H 2
D �˛20E70 � ˛

2
1E61 � ˛

2
2E52 � ˛

2
3E34;
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that is,

exp.H/ D cos.˛0/E70 C cos.˛1/E61 C cos.˛2/E52 C cos.˛3/E34
C sin.˛0/G70 C sin.˛1/G61 C sin.˛2/G52 C sin.˛3/G34:

So the lattice points ˛� D m� � 2� are mapped to group’s identity element by the expo-
nential map. The automorphisms � , �, etc. do not map this lattice to itself, but only the
sublattice on which

P
m� � 0mod 2 holds. A lattice point with

P
m� � 1mod 2 is

mapped by �, � , etc. to a half-integer point satisfying exp.H/ D �1.

3. G2

Theorem 3.1. The group of (continuous) automorphisms of C is G2 (in Cartan’s classifi-
cation).

This can be deduced from the above by counting parameters, but it is not hard to set up
the root system:

3.2. An automorphism ˚ of C is neccessarily linear and satisfies

3.2.1.

˚.x/ � ˚.y/ D ˚.xy/:

j˚.x/j is thus a new absolute value for the elements of C, which is also invariant under
left-multiplication by a (with jaj D 1): as these generate an irreducible group, we have
j�.x/j D ˛jxj for some fixed ˛, and as

3.2.2.

�.e0/ D e0;

we have ˛ D 1. So � 2 D4.
With the principle of triality (2.4.6) it follows from (3.2.1) that ˚ D ˙˚1 D ˙˚2, and

more precisely because of (3.2.2):

3.2.3.

O̊ D �˚ D ˙˚:

Considering the infinitesimal ring, instead of (3.2.1)-(3.2.3) one has for an infinitesimal
automorphism A:

3.2.4.

Ax � y C x � Ay D A.xy/;

3.2.5.

Ae0 D 0;



18 HANS FREUDENTHAL

3.2.6.
�A D A:

Writing an automorphism in the formX
˛ijGij .˛ij C ˛j i D 0/

one obtains ˛i0 D 0 from (3.2.5) and
P
˛ijFij e0 D 0 because of (3.2.6), henceX
˛ij ej ei D 0:

This is satisfied by the expressions

˛G32 C ˇG45 C G76

˛G13 C ˇG64 C G75

˛G21 C ˇG65 C G47

˛G26 C ˇG51 C G73

˛G14 C ˇG36 C G27

˛G42 C ˇG53 C G17

˛G61 C ˇG52 C G34;

all with ˛ C ˇ C  D 0, and their linear combinations, and comprises the whole auto-
morphism group. It was shown before (2.2.7) that these elements are invariant under all of
S.

To compute the roots we choose a maximal abelian subalgebra, say

˛G32 C ˇG45 C G67 .with ˛ C ˇ C  D 0/:

To the roots

˙i.˛ C ˇ/ belongs .G43 CG53 � 2G17/˙ i.�2G16 CG52 CG34/;

˙i.˛ � ˇ/ belongs .G42 �G53/� i.G52 �G34/;
etc.

so that (with ˛ C ˇ C  D 0) the root system is formed by

˙ i.˛ C ˇ/; ˙ i.˛ � ˇ/; ˙i.ˇ C /;

˙ i. � ˛/; ˙ i. C ˛/; ˙.ˇ � /;

and this is precisely the root system of G2.

4. J, F4

4.1. Let Mn denote the ring of n-by-n matrices with coefficients in C.
A� D A

0
is the conjugate-tranpose of A,

MCn is the set of A 2Mn such that A D A�,
M�n is the set of A 2Mn such that AC A� D 0.
The trace of A is denoted by �.A/.

4.2. Let X D .xij / 2Mn, Y D .yij / 2Mn. Then

�.XY / D
X

xijyj i and �.X 0Y 0/ D
X

xj iyij ;

that is,
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4.2.1.
�.XY / D �.X 0Y 0/:

Moreover, because of (1.3.4) we have

XY D
X
j

xijyjk D
X
j

yjkxij D .Y
0
X
0
/0

that is,

4.2.2.
.XY /� D Y �X�:

4.3. We define an inner product in Mn:

.X; Y /e0 D Re.�.XY //I

it is linear in X and Y and also symmetric, because by (1.3.5):

Re.�.XY // D Re
�X

xijyj i
�
D

X
Re.xijyj i / D

X
Re.yj ixij /;

4.3.1. so
.X; Y / D .Y;X/:

Moreover,

4.3.2.
.X;X�/ D

X
jxij j

2 > 0 for X ¤ 0;

so the inner product is not degenerate.
Because of (4.2.2), Re.�.XY // D 1

2
.�.XY /C �.XY // D �.1

2
.XY C Y �X�//, so

4.3.3.

.X; Y /e0 D �

�
1

2
.XY C Y �X�/

�
:

4.3.4. Thus

.X; Y /e0 D �

�
1

2
.XY C YX/

�
for X; Y 2MCn and X; Y 2M�n ;

D �

�
1

2
.XY � YX/

�
for X 2MCn ; Y 2M�n ;

and hence, because of (4.3.1):

4.3.5.
.X; Y / D 0 for X 2MCn ; Y 2M�n :

4.3.6. This implies that .X; Y / is not degenerate on MCn and M�n .

4.3.7. Moreover:
.X;X/ is positive definite on MCn ,
.X;X/ is negative definite on M�n .
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4.4. From (1.4.9) it follows that

�..AX/Y /C �.X.YA// D �.A.XY //C �..XY /A/:

Going to the real parts yields because of (4.3.1):

.AX; Y /C .X; YA/ D 2.A;XY /:

Cyclic permutation yields

.XY;A/C .Y; AX/ D 2.X; YA/:

From these two equations and (4.3.1) it follows: .A;XY / D .X; YA/ or in other words

4.4.1.
.XY;Z/ D .X; YZ/ cyclically symmetric in X; Y;Z:

One also has
.ZX; Y / D .X; YZ/ and .XZ; Y / D .X;ZY /;

thus if
ŒZ;X� D ZX �XZ

denotes the Lie commutator:

4.4.2.
.ŒZ;X�; Y /C .X; ŒZ; Y �/ D 0:

As infinitesimal transformations, the QZ defined by
QZX D ŒZ;X� with Z 2Mn

leave invariant the inner product.

4.4.3. Moreover,

ŒMCn ;M
C
n � �M�n ;

ŒM�n ;M
�
n � �M�n ;

ŒMCn ;M
�
n � �MCn :

4.5. From now on we assume n D 3. Consider for X 2MC3

X.XX/ � .XX/X:

The .i; l/-entry is X
j

X
k

�
xij .xijkxkl / � .xijxjk/xkl

�
:

By 1.4 one can compute a product a.bc/ associatively if one element is real or two elements
are identical or conjugate. As x�� is real and x�� D x��, if the expression is not to vanish,
i; j; k have to be mutually distinct, and thus l D i holds. So all elements not on the main
diagonal vanish. As by (1.4.16) .ab/c�a.bc/ is cyclically symmetric, all diagonal entries
are identical.2

4.5.6. So
X.XX/ � .XX/X D a � 1 for X 2M3:

XX 2MC3 and by (4.4.3), a � 1 2M�3 , so

2Translator’s note: In the original German article, the equation labelled 4.5.1 to 4.5.5 are missing, so that
the first equation in section 4.5 has the number 4.5.6. For consistency, we keep the mislabelling of the German
article.
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4.5.7.

Re.a/ D 0:

If �.A/ D 0 and Z D a � 1, then .A;Z/ D Re.�.AZ// D 0. So if �.A/ D 0, then (by
(4.4.1) and (4.5.6)), for X 2MC3 :

.AX;XX/ D .A;X.XX// D .A; .XX/X/ D .XA;XX/;

hence

.ŒA;X�;XX/ D 0:

Polarisation yields in MC3 :

4.5.8.

.ŒA;X�; YZ CZY /C .ŒA; Y �; ZX CXZ/C .ŒA;Z�;XY C YX/ D 0:

We now define a commutative product in MC3 :

4.5.9.

X ı Y D
1

2
.XY C YX/

and denote MC3 endowed with this product by J. Then, by (4.3.4):

4.5.10.

.X; Y /e0 D �.X ı Y /;

by (4.4.1):

.X ı Y;Z/ D .X; Y ıZ/;

so

4.5.11.

.X; Y;Z/ D �.X ı Y ıZ/ symmetric in X; Y;Z:

By (4.4.3), A 2M�3 , considerer as an infinitesimal transformation, leaves invariant MC3 :

4.5.12.

ŒA;MC3 � �M�3 for A 2M�3 :

If we take R to be the set of those A 2 M�3 with �.A/ D 0, then we further obtain from
(4.4.2) and (4.5.8) that QA, defined by QA D ŒA;X� (X 2 J, A 2 R), leaves invariant the
bilinear and trilinear forms .X; Y / and .X; Y;Z/ in J:

4.5.13.

.ŒA;X�; Y /C .X; ŒA; Y �/ D 0;

4.5.14.

.ŒA;X�; Y;Z/C .X; ŒA; Y �; Z/C .X; Y; ŒA;Z�/ D 0:
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4.6. Every linear mal ı from J into itself, which, as an infinitesimal transformation,
leaves invariant .X; Y / and .X; Y;Z/, is an infinitesimal automorphism of J:

.ıX ı Y CX ı ıY � ı.X ı Y /;Z/ D .ıX; Y;Z/C .X; ıY;Z/ � .ı.X ı Y /;Z/

D .ıX; Y;Z/C .X; ıY;Z/C .X; Y; ıZ/

D 0

for every Z 2 J, that is,
ıX ı Y CX ı ıY D ı.X ı Y /:

In particular, the
QAX D ŒA;X�; A 2 R;

generate an infinitesimal ring of automorphisms QA of J, which we shall call QR. We will
see that QR is in fact the whole automorphism ring of J and identical to F4.

4.7. For the idempotents

E1 D

0@e0 0 0

0 0 0

0 0 0

1A ; E2 D

0@0 0 0

0 e0 0

0 0 0

1A ; E3 D

0@0 0 0

0 0 0

0 0 e0

1A
of QJ we have

EiEj D

�
Ei for i D j
0 for i ¤ j :

Thus for every infinitesimal automorphism ı of J it holds that

ıEi ı .e � 1 � 2Ei / D 0;

ıEi ıEj CEi ı ıEj D 0 for i ¤ j:

An easy calculation shows

ıE1 D

0@ 0 �a3 �a2
�a3 0 0

�a2 0 0

1A ; ıE2 D

0@ 0 a3 0

a3 0 a1
0 a1 0

1A ; ıE3 D

0@ 0 0 a2
0 0 �a1
a2 �a1 0

1A :
If one sets

A D

0@ 0 a3 a2
�a3 0 a1
�a2 �a1 0

1A
then A 2 R,

ŒA;Ei � D ıEi ;

that is
.ı � QA/X D ıX � ŒA;X� D 0 for X D Ei :

If we want to show that QR comprises the infinitesimal automorphisms of J, then we can
restrict to the ıs satisfying

ıX D 0 for X D Ei :

Set

F a1 D

0@0 0 0

0 0 a

0 a 0

1A ; F a2 D

0@0 0 a

0 0 0

a 0 0

1A ; F a3 D

0@0 a 0

a 0 0

0 0 0

1A ;
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then

Ei ı F
a
i D 0; hence Ei ı ıF ai D 0

Ej ı F
a
i D

1

2
F ai .i ¤ j /; hence .2Ej � 1/ ı ıF ai D 0;

and therefore it holds for the set Fi of the F ai :

ıFi � Fi :

We now define ıia by
ıF ai D F

ıia
i ;

such that ıia is linear in a. As

F ai ı F
b
i D 0modE1; E2; E3;

we obtain
F
ıia
i ı F bi C F

a
i ı F

ıib
i D 0;

that is,
ıia � b C b � ıiaC a � ıib C ıib � a D 0;

hence
.ıia; b/C .a; ıib/ D 0;

which means ıi 2 D4. From

F 2ai ı F
2b
iC1 D F

2.ab/
iC2 (with i cyclic)

one deduces:
F
2ıia
i ı F 2biC1 C F

2a
i ı F

2ıiC1b

iC1 D F
2ıiC2ab

iC2 ;

so
ıia � b C a � ıiC1b D ıiC2.ab/;

and by the Triality Theorem this shows

ıiC1 D �ıi :

As ı1 2 D4, we can assume

ı1a D pa or ı1a D q.pa/; Re.p/ D Re.q/ D .p; q/ D 0:

In the first case, set

Ap D

0@�p 0 0

0 p 0

0 0 0

1A
so that

ŒAp; F
a
1 � D F

pa
1 ; ŒAp; F

a
2 � D F

ap
2 ; ŒAp; F

a
3 � D F

�pa�ap
3

and hence
QApX D ŒAp; X� D ıX

holds for X D F ai , so it holds in general. In the second case, with the same notation, set

2�X D ŒAq; ŒAp; X�� � ŒAp; ŒAq; X��;

and then we obtain

2�F a1 D F
q.pa/
1 � F

p.qa/
1 D 2F

q.pa/
1 etc.

so that � D ı.
We have thus proven:
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4.8. The infinitesmial ring of the automorphisms of J is generated by the elements QA
defined by

QAX D ŒA;X�; where A 2 R (that is A 2MC3 , �.A/ D 0):

The elements of the automorphism ring can be written uniquely in the form

4.8.1.
QA D �C QA0;

where A0 2 R has all 0 on the main diagonal and � is an infinitesimal automorphism
leaving invariant the E� (� D 1; 2; 3). Conversely, all transformations (4.8.1) are infini-
tesimal automorphisms of J. They leave invariant the bilinear and trilinear forms .X; Y /
and .X; Y;Z/, and are determined by these properties. Those of them leaving invariant
the E� (� D 1; 2; 3) transform every Fi into itself and give rise to a representation of D4
in the Fi and F1 C F2 C F3:

ıF ai D F
ıia
i ; ıiC1 D �ıi :

4.9. If X is a generic element of J,

X D

0@x11 x12 x13
x21 x22 x23
x31 x32 x33

1A ; .xij D xj i /

and ı an infinitesimal automorphism leaving invariant the E� , then ıX may be written as

4.9.1.

ıX D

0@ı11x11 ı12x12 ı12x13
ı21x21 ı22x22 ı23x23
ı31x31 ı32x32 ı33x33

1A
if one defines

ı12 D ı3; ı23 D ı1; ı31 D ı2

and ıj ix D ıijx, that is,
ıij D �ıj i and ıi i D 0:

In this notation the principle of triality reads as follows:

4.9.2.
ıijx � y C x � ıjky D ıik.xy/ .i; j; k distinct/:

ıX is now reasonably defined by (4.9.1) for all X 2 M3. Set X 2 Mr
3 if all entries in

the main diagonal of X are real numbers (that is, real multiples of e0). With

Ap D

0@�p 0 0

0 �p 0

0 0 0

1A .Re.p/ D 0/

we have

QApX D ŒAp; X� D

0@ 0 �px12 � x12p �px13
px12 C x21p 0 px23

x31p �x32p 0

1A ;
so QAp is a ı as in (4.9.1). Similarly one sees that all ı can be generated by the QAp .

For X; Y 2Mr
3 define

X ı Y D
1

2
.XY C Y �X�/ .D

1

2
.XY C YX/ in J/;
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then we have

4.9.3.
ıX ı Y CX ı ıY D ı.X ı Y /:

This is because
ıijxij � yjk C xij � ıjkyjk D ıik.xijyjk/

by (4.9.2) for distinct i; j; k, and trivially for i D j ¤ k and i ¤ j D k, as xi i is real and
ıi i D 0, respectively ykk is real and ıkk D 0. As a consequence,

Z D .ıX/Y CX.ıY / � ı.XY /

is a diagonal matrix with i th entry:X
j

.ıijxij � yj i C xij � ıj iyj i /:

Therefore, ıX ı Y CX ı ıY � ı.X ı Y / D 1
2
.ZCZ�/ is also a diagonal matrix with i th

entry X
j

.ıijxij � yj i C xij � ıj iyj i / D
X
j

.ıijxij ; yj i /C .xij ; ıj iyj i / D 0;

because ıj iyj i D ıijyj i and the skew-symmetry of ıij 2 D4. So 1
2
.Z CZ�/ D 0, which

means (4.9.3) holds.
For X; Y 2 J, (4.9.3) is nothing new. For X 2 J and Y D A 2 R with 0 on the main

diagonal one can also write (because AC A� D 0)

ŒıA;X�C ŒA; ıX� D ıŒA;X�;

or
ı QA � QAı DfıA;

or

4.9.4.
Œı; QA� DfıA:

4.10. In order to determine the structure of the infinitesimal automorphism ring of J more
precisely, we choose as a maximal abelian subring H the same one as in 2.2 for D4; that is,
we set

ıj D ˛
.j /
0 G70 C ˛

.j /
1 G61 C ˛

.j /
2 G52 C ˛

.j /
3 G34;

where the vector ˛.jC1/ is obtained from the vector ˛.j / by application of the matrix �
(see (2.2.4)). As roots, we firstly find those already known from D4 (see (2.2.7),

.˙˛� ˙ ˛�/i;

(where we omit the upper index because it does not matter which one we choose; the root
system is invariant under �) with eigenvectors corresponding to those given there. Because
of (4.8.1), we will look for further eigenvectors amongst the A with 0 on the diagonal. In
fact, the 0@0 0 0

0 0 a

0 �a 0

1A with a D e0 � ie7; e1 � ie6; e2 � ie5; e4 � ie3
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belong to the roots˙˛.1/0 i,˙˛.1/1 i,˙˛.1/2 i,˙˛.1/3 i. The0@0 0 �a

0 0 0

a 0 0

1A with a D e0 � ie7; etc.

belong to the roots˙˛.2/0 i, etc. and the0@ 0 a 0

�a 0 0

0 0 0

1A with a D e0 � ie7; etc.

belong to the roots˙˛.3/0 i, etc. So the totality of roots is found to be (see (2.2.4))

˙i˛� ; ˙i˛� ˙ i˛� ;
1

2
.˙i˛0 ˙ i˛1 ˙ i˛2 ˙ i˛3/

(where all combinations of signs ˙ appear). But this is precisely the root system of the
exceptional group F4.

Now one easily confirms that the automorphism ring of J is irreducible on the subspace
with �.X/ D 0. The unit component of the automorphism group is thus a direct product
of simple groups and because the roots coincide it is just F4. (This can be easily seen
by a direct calculation if one computes the structure further.) If there were an additional
component !F4, then ! would generate an outer automorphism of F4 (but such an auto-
morphism cannot exist; Cartan [5]), or ! D �1 would hold because of the irreducibility
on the subspace with �.X/ D 0 (but this is not an automorphism of J). So the following
holds:

Theorem 4.11. The automorphism group of J is F4.

4.12. The automorphism group of J leaves invariant E1 C E2 C E3 D 1. The subgroup
leaving invariant the E� (� D 1; 2; 3) is isomorphic to D4 (locally). The subgroup leaving
invariant one of the E� (say E1) is a 16-dimensional representation of B4 (the group of
rotations in 9-dimensional space). For the invariance of E1 implies A0 being of the form0@0 0 0

0 0 a

0 �a 0

1A ;
so except for the roots of D4, only the ˙˛.1/� i are preserved. Together, these are just the
roots of B4.

4.13. The infinitesimal automorphisms ı of J leaving invariant all purely real elements
of J must satisfy ıie0 D 0 (see 4.8), and thus belong to G2 by 3.2.

With A;B 2 R and X 2 J one can compute associatively if X is purely real. Then the
Jacobi relation holds,

ŒA; ŒB;X�� � ŒB; ŒA;X�� D ŒŒA; B�; X�:

The map

Œ QA; QB� � AŒA; B�C 1

3
�.ŒA;B�/

is an infinitesimal automorphism of J which vanishes when applied to a real X , and is thus
generated by an element of G2. Hence

AŒA; B� � Œ QA; QB�C 1

3
�.ŒA;B�/ mod automorphisms of C:
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Moreover, one observes that dim F4 D 52 D dimRC dim G2 D 38C 14.

5. ˘

5.1. Principal Axis Transform in J. The elements of J can be transformed to diagonal
form (principal matrix) by transformations in F4; the diagonal elements (eigenvalues) are
then uniquely determined up to order, and characterise the equivalence class.

A consequence of this theorem is: If X1 2 J and inductively XnC1 D X1 ı Xn, then
Xi ıXj D XiCj .

ForXi ıXj D XiCj holds for a principal elementX1 and as this relation is F4-invariant,
it holds in general.

Proof. As a continuous automorphism group of J, the group F4 is closed in the general
linear group, and as a rotation group it is compact. We call two elements of J equivalent if
they can be transformed into one another by transformations on F4. Then the equivalence
classes are closed and compact. Among the

X D

0@�1 x3 x2
x3 �1 x1
x2 x1 �3

1A
of an equivalence class we are looking for an element with �21 C �

2
2 C �

2
3 maximal. We

claim that this element X0 is a principal matrix. Assume to the contrary say x.0/1 ¤ 0.
Consider the curve X� through X0 defined by the differential equation

5.1.1.

dX�
d�
D ŒA;X� �; A D

0@0 0 0

0 0 a

0 �a 0

1A
which is contained in the equivalence class of X0 because A 2 F4. More precisely, the
differential equation is

d�1
d�
D 0;

d�2
d�
D 2.a; x1/;

d�3
d�
D �2.a; x1/;

dx1
d�
D a.�3 � �2/ etc.

Now d.�21 C �
2
2 C �

2
3 / D 4.a; x1/.�2 � �3/d� , and this expression has to vanish for all a

at � D 0; thus (as x1 ¤ 0) �2 D �3 at � D 0. From the first three differential equations it
follows along the curve: �1 D const, �2 C �3 D const, and this means at � D 0 there is a
minimum rather than a maximum, contradicting our assumption.

One treats the cases x.0/2 D 0 and x.0/3 D 0 analogously. This shows that each equiva-
lence class contains a principal matrix.

We further show that two principal matrices identical diagonal elements (up to order)
are equivalent. We only need to show how a transformation in F4 exchanges entries in a
principal matrix, say �2 and �3. Again, this is achieved by the curve defined by (5.1.1).
The differential equation implies

d2.�2 � �3/
d�2

D 4
�
a;

dx1
d�

�
D �4.a; a/.�3 � �2/

with the initial condition
d.�2 � �3/

d�
D 0 for � D 0:

The solution
�2 � �3 D .�

.0/
2 � �

.0/
3 / cos.2jaj�/
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becomes for � D �
2
jaj:

�2 � �3 D �.�
.0/
2 � �

.0/
3 /;

and on the other hand �2C �3 is constant along the curve. For � D �
2
jaj the original �2, �3

have indeed be exchanged.
The uniqueness of the main diagonal elements (eigenvalues) follows readily.

5.2. Instead ofXıX andXıXıX we will also writeX2 andX3, respectively. Invariants
under F4 are e0 �1, .X;X/ and .X;X;X/, and so are �.X/ D .X; e0 �1/, �.X2/ and �.X3/.

5.2.1. Thus

�.X/ D
X

�2� ; �.X2/ D
X

�2� ; �.X3/ D
X

�3� ;

if �1; �2; �3 are diagonal elements of a principal matrix equivalent to X . By (5.2.1) the ��
are determined up to order, and from this follows the rest of Theorem 5.1.

A principal matrix X sataisfies its characteristic equation '.�/ D
Q
.�� � �/ D 0. As

F4 is the automorphism group of J, the relation '.X/ D 0 is invariant under F4, that is,
every X 2 J satisfies a characteristic equation. More precisely:

'.�/ D ��3 C .
X

��/�
2
� .
X

����/�C .�1�2�3/I

here,
P
�� D �.X/,

P
���� D

1
2
.�.X/2 � �.X2//; the product �1�2�3 shall be denoted

by det.X/ for now.
One easily verifies:

5.2.2.
�.X2/ D

X
�2� C 2

X
x�x�

5.2.3.

�.X3/ D
X

�3�

C 3
�
�1.x2x2 C x3x3/C �2.x3x3 C x1x1/C �3.x1x1 C x2x2/

�
C 6Re.x1x2x3/:

By taking the trace in

5.2.4.

'.X/ D �X3 C �.X/X2 �
1

2

�
�.X/2 � �.X2/

�
X C det.X/ � 1 � e0

D 0

one obtains after a short calculation:

5.2.5.

det.X/ D
1

3
�.X3/

1

2
�.X2/�.X/C

1

6
�.X/3

D �1�2�3 � �1x1x1 � �2x2x2 � �3x3x3 C 2Re.x1x2x3/:

This is a sensible generalisation of the usual definition of the determinant.
The determinant is of course also F4-invariant.

5.3. Let ˘ � J denote the set of irreducible idempotents; that is, X 2 ˘ if and only if:

5.3.1.
X D X ıX ¤ 0;
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5.3.2. and if X D X1 CX2 and

X� ıX� D

�
0 for � ¤ �;
X� for � D �;

then X1 D 0 or X2 D 0.
The relation (5.3.1) is F4-invariant and only possible for a principal matrix if all eigen-

values are 0 or 1; including (5.3.2) the only possibility is 0, 0, 1.

5.3.3. Hence

�.X/ D �.X2/ D �.X3/ D 1 for X 2 ˘:

Conversely, if (5.3.3) holds, then X is equivalent to a principal matrix with 0, 0, 1, that is,
X D X2 ¤ 0; and if X D X1CX2 etc. holds, then the eigenvalues of the X1, X2 are 0 or
1 and 1 D �.X/ D �.X1/C �.X2/, so at least on �.X�/ D 0, so at least one X� D 0.

The equation (5.3.3) thus characterises the elements of ˘ .
In the same way we find the elements X of ˘ to be characterised by

X D X ıX; �.X/ D 1:

5.4. The equation X2 D X can be written in more detail as

5.4.1.

�i D �
2
i C xiC1xiC1 C xiC2xiC2 (cyclic)

xi D xiC2xiC1 C .�iC1 C �iC2/xi (cyclic):

Because of
P
�� D 1 it follows for X 2 ˘ :

�ixi D xiC1xiC2:

5.4.2.

�ixixi D xi .xiC1xiC2/ D Re.xixiC1xiC2/;

and as this is cyclically symmetric:

�ixixi independent of i:

Moreover, as �ixixi D �ixixi ,

5.4.3.

xi .xiC1xiC2/ D .xiC1xiC2/xi D �ixixi independent of i:

The xixi thus behave like the �iC1�iC2; substituting in (5.4.1) gives the factor of pro-
portionality, which is 1; so

5.4.4.

xixi D �iC1�iC2:
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6. P

6.1. A plane projective geometry P is a system consisting of points, lines and an inci-
dence relation with the following property: For every two points (lines) there exists one
line (one point) incident to both.

Under the assumption that the system of points (the plane) is a manifold and the system
of lines (taken as sets of their points) satisfies certain regularity conditions, G. Hirsch
[9] proved that the plane can be only of the dimensions 2n (and the lines are thus 2n�1-
dimensional). The real, complex and quaternionic projective geometry are examples for
the cases n D 1; 2; 3; for the fourth case G. Hirsch constructed an example by topological
means which (rather indirectly) is related to the octaves.

In [7] we will provide an algebraic example. We do not know whether it is the only one
possible (under assumptions of regularity) or not.

6.2. If it is known that a plane projective geometry admits a groupG of the type of the real
projective group, then the points, lines and incidence can also be characterised in a group
theoretic manner. For a point p0 and a line l0 incident with it we study the subgroupsP and
L of transformations f in G leaving invariant p0 and l0, respectively. Then an arbitrary
point p (or an arbitrary line l) is characterised by the left-coset of transformations in G
which move p0 to p (or l0 to l). An incidence of p and l then corresponds to a non-empty
intersection of the corresponding cosets aP and bL.

These considerations lead to the following group theoretic definition of projective ge-
ometry:

Given a group G with two subgroups P and L. The left-cosets of P and L are called
points and lines, respectively. The relation aP \ bL ¤ ; is called incidence.

(Note: If aP \ bL ¤ ;, then it is a left-coset of P \ L. For if c; d 2 aP \ bL, then
c�1d 2 P , c�1d 2 L, so c�1d 2 P \L, and with c 2 aP \ bL and u 2 P \L we have
cu 2 aP \ bL.)

6.3. We now interprete the incidence axioms.

6.3.1. For very two points there exists at least one line incident to both: The line through
P have to cover the whole plane. We can write them as aL for some a 2 P . The set PL
has to meet all cP . In other words:

PLP D G:

One easily checks that this condition is sufficient as well.

6.3.2. Every two lines have at least one point of intersection: Analogously, we obtain

LPL D G

as a neccessary and sufficient condition.

6.3.3. For very two points there exists at most one line incident to both: If a� 2 P ,
b� 2 L and a1b1 D b2a2, then the lines L and a1L coincide in the points P and b2P . The
axiom now says: a1 2 L or b2 2 P . Thus

PL \ LP � P [ L;

where the inclusion can be replaced by an equality. One easily checks that this condition
is sufficient as well.
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6.4. G generates a transformation group in the thus defined P , if a 2 G corresponds to
the transformation fa with

fa.cP / D acP; fa.cL/ D acL:

Points are mapped to points, lines are mapped to lines, incidence are mapped to incidences.
The group is transitive.

The subgroup fixing P is precisely fP ; the one fixing L is fL. The subgroup fixing aP
is faPa�1 for a 2 L. The quotient group of L by this normal subgroup can be called the
projective group of lines in the geometry P .

6.5. We now intend to choose F4 for the group G and for the subgroup P and L those
subgroups of F4 fixing the elements E1 and E2, respectively, and both are isomorphic to
B4. One only need to check whether 6.3.1-6.3.3 are satisfied; this direct approach is a hard
one, though. Nevertheless, we wanted to begin with the considerations 6.1-6.4 to make the
following approach plausible. Comparing dimensions (dim F4 D 52, dim B4 D 36) tells
us that we have to expect a 16-dimensional P (the dimension of the coset space).

The coset space G=P can be modelled in J by the equivalence classes of E1; but this
is just the set ˘ of irreducible idempotents in J. It is also useful to model G=L. As an
incidence relationX ıY D 0 offers itself. This is satisfied forE1,E2 and it is F4-invariant.

The following definitions are now sufficiently motivated by heuristics.

7. P .C/

7.1. We define two ‘genera’ of ‘entities, the genus of points and the genus of lines. Each
genus is a bijective image of the system ˘ in a well-defined manner. If X 2 ˘ , then ‘the
point X ’ is short for ‘the point corresponding under the given map to the element X in˘ ’.

Between two entities of different genera an incidence relation exists,

X ı Y D 0;

that is, the point X is incident with the line Y if X ı Y D 0.
This is the octave plane.

7.2. Neccessary and sufficient for the incidence of the pointX and the line Y is .X; Y / D
0.

We only need to show:

.X; Y / D �.X ı Y / D 0 implies X ı Y D 0:

For this we may assume X D E1, that is �.X; Y / D �1, where

Y D

0@�1 y3 y2
y3 �2 y1
y2 y1 �3

1A :
So �1 D 0 and thus by (5.4.1): y2 D y3 D 0. So

7.2.1.

Y D

0@0 0 0

0 �2 y1
0 y1 �3

1A :
So indeed X ı Y D 0.
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7.2.2. We further remark that, because of (5.4.1),

�2 C �3 D 1 and �2 D �
2
2 C y1y1:

The points on X are thus determined by �2 and y1, which have to satisfy the relation�
�2 �

1

2

�2
Cy1y1 D

1

4
;

and one easily checks that this condition is also sufficient.
So the line is, as a set of points, an 8-dimensional sphere.

7.3. We show: For X 2 ˘ , Y 2 J, we have

X ı .X ı Y / D
1

2
X ı Y C

1

2
.X; Y /X:

We only need to prove it for X D E1. Then X ı Y is of the form0@ �1
1
2
y3

1
2
y2

1
2
y3 0 0
1
2
y2 0 0

1A :
So .X; Y / D �.X ı Y / D �1 and

X ı .X ı Y / D

0@ �1
1
4
y3

1
4
y2

1
4
y3 0 0
1
4
y2 0 0

1A ;
which implies the assertion.

7.4. Let X; Y 2 ˘ ,
Z D X � Y:

Then

�.Z/ D �.X/ � �.Y / D 0

�.Z2/ D �.X/ � 2�.X ı Y /C �.Y / D 2.1 � "/

with " D �.X ı Y /

�.Z3/ D �.X/ � 3�.X ı Y /C 3�.X ı Y / � �.Y / D 0:

So, by (5.2.4),
�Z3 C .1 � "/Z C det.Z/ � 1 � e0 D 0:

By taking the trace we obtain det.Z/ D 0, so

Z3 D .1 � "/Z;

and thus
Z2.nC1/ D .1 � "/nZ2; Z2nC1 D .1 � "/nZ:

In particular,

�.Z2/ D 2.1 � "/; �.Z4/ D 2.1 � "/2; �.Z6/ D 2.1 � "/3:

We now set

W D 1 �
Z2

1 � "
;
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which is reasonable for X ¤ Y , as in this case j.X; Y /j < 1. Then

�.W / D 3 � 2 D 1:

�.W 2/ D �.1/ � 2�

�
Z2

1 � "

�
C �

�
Z

.1 � "/2

�
D 3 � 4C 2 D 1:

�.W 3/ D �.1/C 3�

�
Z2

1 � "

�
C 3�

�
Z

.1 � "/2

�
� �

�
Z

.1 � "/3

�
D 3 � 6C 6 � 2 D 1:

By (5.3.3) we have
W 2 ˘:

Moreover,

X ıZ2 D X ı .X � 2X ı Y C Y / D X � 2X ı .X ı Y /CX ı Y;

and by 7.3 this is identical to

X � .X; Y /Y D .1 � "/X;

that is,
X ıW D 0;

and analogously
Y ıW D 0:

Thus we have found the foloowing:

7.5. For X; Y 2 ˘ , X ¤ Y , let

X _ Y D 1 �
.X � Y /2

1 � �.X ı Y /
;

then

X _ Y 2 �:

X ı .X _ Y / D Y ı .X _ Y / D 0:

But this is the incidence axiom: For two entities of the same genus there exists at least one
entity of the opposite genus which is incident with both.

7.5.1. Moreover: X _ Y is a multiple (¤ 0) of X ı Y � 1
2
X � 1

2
Y C 1

2
.1 � �.X ı Y //.

7.6. X; Y 2 ˘ with X ıY D 0 can be simultaneously transformed to a principal matrix.
For we may assume that X D E1. Then

Y D

0@0 0 0

0 �2 y1
0 y1 �3

1A :
Now one proceeds as in 5.1, but with respect to the subgroup P of F4 fixing E1, that is,
minimze �22 C �23 in the P -equivalence class of Y . The same transformation as in 5.1
(which leaves invariant E1) shows that Y is in principal matrix form.

7.7. X; Y;Z with X ı Y D Y ı Z D Z ı X D 0 can be simultaneously transformed
to principal form. For if X and Y are already principal matrices, the neccessarily Z D
1 �X � Y .
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7.8. Let X; Y;Z� 2 ˘ , X ıZ� D Y ıZ� D 0, X ¤ Y . Then Z1 D Z2. For by 7.5 we
may assume: X D E2, Z1 D E1. Because of Y ıE1 D E2 ıZ2 we find

Y D

0@0 0 0

0 �2 y1
0 y1 �3

1A ; Z2 D

0@�1 0 z2
0 0 0

z2 0 �3

1A :
Y ı Z2 has entry �3�3 D 0 in row 3, column 3. By 7.2.1, �3 D 0 would imply �2 D 1,
y1 D 0, that is, Y D E2 D X , whereas X ¤ Y was assumed. Hence �3 D 0 and so by
(7.2.1)-(7.2.2) again �1 D 1, z2 D 0, Z2 D E1 D Z1.

7.9. According to 7.8 the elementZ amongX; Y;Z 2 ˘ withX ¤ Y ,X ıZ D Y ıZ D
0, is uniquely determined. But this is the incidence axiom: For two entities of the same
genus there exists at most one entity of the opposite genus which is incident with both.

7.10. By polarisation we obtain from the cubic form det.X/ a trilinear form det.X; Y;Z/
which is also F4-invariant; det.X; Y;Z/ is defined as the coefficient of 6˛ˇ in det.˛X C
ˇY C Z/. From (5.2.5) it follows that for X; Y;Z 2 ˘

7.10.1.

det.X; Y;Z/ D
1

3
�.X ı Y ıZ/ �

1

6

�
.�.X ı Y /C �.Y ıZ/C �.Z ıX/

�
C
1

6
:

We now show: It is neccessary and sufficient for the collinearity of three points X; Y;Z
that det.X; Y;Z/ D 0.

For we can write the right hand side of (7.10.1) as

1

3

�
X ı Y �

1

2
X �

1

2
Y C

1

2
.1 � �.X ı Y //;Z

�
:

But by (7.5.1) this is, up to a real factor (¤ 0 if X ¤ Y ), identical to .X _ Y;Z/.
By 7.2 this is 0 if and only if

X _ Y / ıZ D 0;

that is, if Z is contained in the line through X and Y .

7.11. Three points on a complex projective line determine a unique real projective line,
that is, a subset which is characterised by the cross ratio of every four of its points being
a real number; these real lines appear as circles in the Riemannian model of the complex
projective line.

It is similar in octave geometry. If X; Y;Z are three collinear points and if one wants to
determine all points

˛X C ˇY C Z

on the same line with real ˛; ˇ;  , one finds the equations

7.11.1.

�.˛X C ˇY C Z/ D ˛ C ˇ C  D 1

and
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7.11.2.

�..˛X C ˇY C Z/2/ D ˛2 C ˇ2 C 2 C 2˛ˇ.X; Y /C 2ˇ.Y;Z/C 2˛.Z;X/ D 1:

Instead of the third equation

�..˛X C ˇY C Z/3/ D 1

one can write by (5.2.5)

det.˛X C ˇY C Z/ D 0;

but this holds to begin with, as det.X; Y;Z/ vanishes by assumption and det.X;X; Y / etc.
vanish trivially.

As the solution to (7.11.1) and (7.11.2) one thus obtains the intersection of the octave
line (8-dimensional sphere, see (7.2.2)) with the plane (in the sense of 9-dimensional space)
through X; Y;Z, that is, a circle. We shall call it the real line through X; Y;Z.

7.12. It is obvious that the notion of the real line is F4-invariant. Moreover, it is invariant
under perspectivities between different octave lines.

To prove this, we drop the norm of J and consider the set ˘ # of those �X with X 2 ˘
and � real. So a point etc. is associated to a set f�Xg. The connecting line X _ Y is now
homogeneously written as

7.12.1.

X _ Y D �.X/�.Y / � �.X ı Y / � �.X/Y � �.Y /X C 2X ı Y:

By projecting the point X on the octave line A through the fixed point Y (not on A), we
obtain a pencil X 0 D X _ Y . Restricting to the points

X D ˛1X1 C ˛2X2 C ˛3X3

on the real line through X1; X2; X3, we obtain the same relation

X 0 D ˛1X
0
1 C ˛2X

0
2 C ˛3X

0
3

by the linearity of (7.12.1) for the corresponding pencil line. Intersecting the pencil with
another line B we obtain points X 00 D B _X 0, again satisfying the relation

X 00 D ˛1X
00
1 C ˛2X

00
2 C ˛3X

00
3 :

But these relations precisely characterise the points on a real line.

7.13. Interpreted as conic sections (see the end of 7.11), the real lines are mapped projec-
tively by perspectivities. This implies that the octave lines, as quadrics in 9-dimensional
space (end of 7.11), can be mapped projectively.

7.13.1. The octave line E1 satisfies the homogeneous equation

�2�3 � x1x1 D 0:

Call the self-maps generated by the perspectivities of an octave line prospectivities, then
the prospectivities of E1 from a subgroup of the form of D5 belonging to (7.13.1). It will
be shown later on that this subgroup coincides with the 1-component of the invariance
group of (7.13.1) (see 8.2).
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7.14. On the octave line, one can also study complex projective lines: we say thatXi (i D
1; : : : ; 5) lie on a complex projective line if they are real linearly independent. This notion
is F4-invariant as well. The complex projective lines onE1 are nothing but the intersections
of (7.13.1) with 3-dimensional projective subspaces of the 9-dimensional projective space
of the �2, �3, x1. The prospectivities of the line E1 on a complex projective line from E1
are thus projective maps of the ordinary complex projective line (Möbius group).

In particular:
IfXi (i D 1; : : : ; 5) lie on an octave line, and if under a certain prospectivityX1 andX2

are interchanged and if X3 and X4 are fixed, then Xi (i D 1; : : : ; 5) even lie harmonically
on a real line.

For the Xi (i D 1; : : : ; 5) certainly lie on a complex line, and for this the assertion
holds.

7.15. We call a projective geometry harmonic if for an ordered triple of points on a line
the fourth harmonic point (by the usual construction, see Figure 3) is uniquely determined
(that is, independent of the choice of auxiliary points A;B). This is also called the (spe-

A

C

X1 X2X3 X4

B

D

FIGURE 3.

cial) Quadrilateral Theorem. It is sufficient to require the fourth harmonic point to be
independent of a translation of A along the line AB .

We show: Octave geometry is harmonic.
Proof. Projection fromB onCD followed by projection fromA back mapsX1; X2; X3; X4

to X2; X1; X3; X4, and is thus a prospectivity satisfying the conditions at the end of 7.14.
SoX4 is already contained in a real lineX1; X2; X3 and is uniquely determined by its cross
ratio to X1; X2; X3.

7.16. Remark. P .C/ is non-Desargueian, as a Desargueian geometry neccessarily is a
geometry over a skew-field, which moreover has to be Euclidean in the small, meaning the
real, the complex and the quaternionic field. The octave geometry does not belong to these.

8. E6

8.1. We are looking for the group T of linear transformations of J leaving invariant

det.X/ D
1

3
�.X ıX ıX/ �

1

2
�.X/�.X ıX/C

1

6
�.X/3
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and thus also the trilinear form

det.X; Y;Z/ D
1

3
�.X ı Y ıZ/ �

1

6

�
�.X/�.Y ıZ/C �.Y /�.X ıX/C �.Z/�.X ı Y /

�
C
1

6
�.X/�.Y /�.Z/:

In any case, T is a group containing F4, which also leaves invariant .X; Y /.
At first we show:

8.1.1. All

X 7! T ıX D
1

2
.TX CX�T �/ with T 2M3; �.T / D 0

belong to the infinitesimal ring T. We may assume T 2 MC3 , as for T 2 M�3 the map
X 7! TX �XT D ŒT; X� is a transformation in F4.

When applying (8.1.1), X changes infinitesimally by

�.X ıX ı .T ıX// �
1

2
�.T ıX/�.X ıX/ � �.X/�.X ı .T ıX//C �.X/2�.T ıX/

D
�
X ıX ıX

1

2
�.X ıX/X�.X/X ıX C �.X/2X; T

�
D .det.X/ � 1; T / D det.X/ � �.T /
D 0:

Let an arbitrary infinitesimal ˚ 2 T be given. Set

T D ˚1:

Then T 2MC3 , �.T / is up to a positive factor identical to det.˚1; 1; 1/ D 0.

˚X D T ıX; for X D 1:

˚1, given by
˚1X D ˚X � T ıX;

also belongs to T, and we have
˚11 D 0:

But this means ˚1 not only leaves invariant det.X; Y;Z/, but also (see (7.10.1))

det.X; Y; 1/ D �
1

6

�
�.X ı Y / � �.X/�.Y /

�
D �

1

6

�
�.X; Y / � �.X/�.Y /

�
and

det.X; 1; 1/ D
1

3
�.X/;

and thus also �.X/, �.Y / and .X; Y /. Therefore, ˚1 2 F4.
This implies:
The infinitesimal ring of linear transformations of J leaving invariant det.X/ is gene-

rated by the
X 7! T ıX with �.T / D 0I

each of its elements can be uniquely written as the sum of a

X 7! T ıX with T 2MC3 ; �.T / D 0
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and an infinitesimal automorphism of J, or also as the sum of a � 2 D4 and a

X 7! T ıX

where T 2Mr
3 (that is, T 2M3 with real diagonal) and �.T / D 0 (because of 4.8).

From (4.9.3) it further follows that

�.T ıX/ � T ı .�X/ D .�T / ıX;

so
AŒ�; T � De�T :

These reasoning can also be applied to groups themselves. First a few preliminary
remarks:

8.1.2. X > 0 (positive definite) for X 2 J means: all eigenvalues of X are positive.

8.1.3. X > 0 if and only if �.X ı Y ı Y / > 0 identical in Y 2 J. For we may assume
X to be a principal matrix with diagonal elements �� , and with the notation of 7.2 it then
holds that

�.X ı Y ı Y / D �1.�
2
1 C y2y2 C y3y3/

C�2.�
2
2 C y3y3 C y1y1/C �3.�

2
3 C y1y1 C y2y2/;

from which the assertion follows.

8.1.4. The set Jpos of X > 0 is convex. This follows from 8.1.3.

8.1.5. If T0 is the 1-component of the (finite) group T, then T01 � Jpos. This is because
for ' 2 T0 the eigenvalues of '1 depend contiuously on ' and can never vanish because
of det.'1/ D det.1/ D 1.

8.1.6. If QT is the infinitesimal transform X 7! T ıX and QJ the set of QT with T 2 J, then
Jpos � exp. QJ/1. For if X 2 Jpos has the principal form with diagonal elements �� , let T be
the principal matrix with diagonal elements log.��/ and we obtain exp. QT /1 D X . We can
reduce the general case to this by a transformation in F4.

8.1.7. T01 D Jpos. This follow from 8.1.5-8.1.6.

8.1.8. In the same way we find that T0, applied to0@1 0 0

0 �1 0

0 0 �1

1A ;
yields the set of elements of J with precisely two negative eigenvalues.

8.1.9. Every finite ' 2 T has to leave invariant Jpos or commute with the set in 8.1.8. But
the latter is not possible, as Jpos is convex by 8.1.2 and the set 8.1.8 certainly is not convex.

So T1 D Jpos D exp. QJ/1.

8.1.10. As the set of ' 2 T with '1 D 1 is precisely F4 (see 4.11 and 8.1.1), this implies

T D F4 � exp. QJ/:

So T has only one component.
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8.2. We study those elements of T leaving invariant the lineE1. They also leave invariant

det.E1; X;X/ D �
1

2
�.X ıX/C

1

2
�.X/2 D �2�3 � x1x1

and form a subring G of D5. By 8.1.1 (at the end) they can be written as the sum of a
� 2 D4 and a QT with

T D

0@0 0 0

0 �2 t23
0 t32 �3

1A :
A dimension count (28C17 D 45) yields that (infinitesimally) G D D5, so G contains the
prospectivities of E1 (see 7.13).

8.3. We now show that T is E6 from Cartan’s classification.
We use the decomposition of T at the end of 8.1.1.
As a maximal abelian subring H we use the same one as for D4 and F4 (see 4.10)

augmented by the elements QS defined by

S D

0@�1 0 0

0 �2 0

0 0 �3

1A ; �1 C �2 C �3 D 0;

QSX D S �X

(so H is 6-dimensional). For ı 2 D4 we have ıE� D 0, so ıS D 0, so (end of 8.1.1)
Œı; QS� D 0, that is, every ı commutes with every S and in particular is H abelian. Let F a��
denote the matrix with entry a in row � and column �, and entries 0 otherwise.

8.3.1. Then (see (4.9.2))

ıF a�� D F
ı��a
�� :

Moreover, as the matrix coefficients of S are real and therefore associate,

8.3.2.

Œ QS; QF a�� � D
1

2
BŒS; F a�� � D

1

2
.�� � ��/ QF

a
�� :

Exactly as in 4.10 one determines the roots, which in addition to ˛0, ˛1, ˛2, ˛3 now also
depend on �1, �2, �3 (�1 C �2 C �3 D 0). Because of (8.3.1), the dependence on the
˛ is the same as in 4.10, the dependence on the � follows from (8.3.2). The roots are
˙˛� i˙ 1

2
.�2 � �3/,˙˛�i˙ ˛� i,

1

2
.˙˛0i˙ ˛1i˙ ˛2i˙ ˛3i/˙

1

2

�
.�3 � �1/;

.�1 � �2/
;

where in the last expression according to (2.2.4) in case of an even number of positive signs
for the ˛ the upper summand holds, and in case of an odd number the lower summand
holds, and where moreover all sign combinations are possible.

It is not evident that this root system is isomorphic to the one of Cartan’s E6. The trans-
formation rules are easy to deduce, but uninteresting. But we can easily see the isomorphy
without a calculation if we use Dynkin’s representation [7]. One determines a system of
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positive irreducible roots (those which cannot be written as sums of other positive roots).

˛2i � ˛3i(1)

˛3i˙ .�2 � �3/(2˙)
1

2
.˛0 � ˛1 � ˛2 � ˛3/i˙ .�1 � �2/(3˙)

˛1i � ˛2i:(4)

The Dynkin diagram is then

.3�/ .2�/ .1/ .2C/ .3C/

.4/

where those roots are connected by a line whose sum is again a root. But this is precisely
the diagram of E6.

8.4. An approach analogous to 4.13 shows that if �.T1/ D �.T2/ D 0, then

BŒT1; T2� � 2Œ QT1; QT2�C 1

3
D�.ŒT1; T2�/

modulo automorphisms of J generated by an element of G2.
Again,

dim E6 D 78
D dim.set of the T /C dim G2

D 64C 14:

9. A

We will show: The group of autmorphisms of P .C/ is a representation of E6. As in
real and quaternion geometry (but contrary to complex geometry) the continuity of the
automorphisms will be automatic.

In P .C/ the group F4 plays the part of the elliptic group, E6 plays the part of the
projective group.

The subgroup of index 16 in E6 fixing a point in P .C/ can already be found in Cartan
[2, p. 152, row 3].

Here the proofs follow:

9.1. The elements X; Y 2 ˘ # (see 7.12) are characterised by: det.X;X; Y / D 0 identi-
cally in Y .

Proof. Because of (7.10.1)

det.X;X; Y / D �.X ıX ıX/�
1

2

�
�.X ıX/�.Y /C 2�.X ı Y /�.X/C

3

2
�.X/2�.Y /

�
:

For X 2 ˘ # we have X ıX D ˛X , �.X/ D ˛, �.X2/ D ˛2, that is, det.X;X; Y / D 0.
Conversely, assume det.X;X; Y / D 0 in particular for Y D 1. Then �.X ı X/ D

�.X/2, and if this holds for Y D X , then �.X ı X ı X/ D �.X/3, and this implies
X 2 ˘ #.

9.2. ˘ # is invariant under E6. This follows from 9.1.
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9.3. As E6 permutes the sets f�Xg it can be considered a group of transformations of
P .C/. As det.X; Y;Z/ D 0 characterises by 7.11 the collinearity of points X; Y;Z, and
this equation is invariant under E6, it follows that E6 is a subgroup of the automorphism
group A of P .C/. We now show: A D E6. This proof is easier than the original one,
which moreover contained a little gap.

9.4. We construct a (finite) element ' 2 E6 with

'E2 � E2; 'E3 � E3; 'A � E1;

where A is a given point not on the line E1. Let

P D

0@1 0 0

p 1 0

0 0 1

1A :
The map

X 7! PXP �

is (well-defined without brackets) and a (finite) element of E6 leaving invariant the points
E2, E3. If in

A D

0@˛1 a3 a2
a3 ˛2 a1
a2 a1 ˛3

1A
we have a3 ¤ 0 (so by (5.4.4) also ˛1 ¤ 0), choose p D �˛�11 a3. If a3 D 0, choose
p D 0. Then in

B D PAP �

the element b3 D 0.
Now apply with

Q D

0@1 0 0

0 1 0

q 0 1

1A
the transformation

X 7! QXQ�;

which also belongs to E6 and fixes the points E2, E3. Thus, for a suitable choice of q, in

C �QBQ�

the element c3 also vanishes. C is the of the form

C D

0@1 0 0

0 2 a1
0 a1 3

1A ;
where (by (5.4.4)) 1 or a1 vanishes. 1 D 0 would imply that C is contained in the line
E1 through the points E2 and E3; but then so would A, which was assumed not to be the
case. Thus a1 D 0 and (by (5.4.4)) also ˛2 D ˛3 D 0. So C � E1. The map

X 7! Q.PXP �/Q�

is the desired '.

9.5. There exists a (finite) element ' 2 E6 which maps a given point A and a given line
B (not incident) to the point E1 and the line E1, respectively.

For this, first map the line B to the line E1 by some element '1 2 F4, and then (accord-
ing to 9.4) map the point '1A to the point E1, where the line E1 is fixed.
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9.6. This is easily understood geometrically: There exists at most one transformation in
A fixing the point A and all points of the line B (not incident with A) and maps a point C
to a point D.

9.7. The involution 0@�1 x3 x2
x3 �2 x1
x2 x1 �3

1A 7! 0@ �1 �x3 �x2
�x3 �2 x1
�x2 x1 �3

1A
leaves invariant det.X/ and hence belongs to E6 and fixes the point E1 and all points on
the line E1. Point and image point lie harmonically to the points E1 and the line E1.

9.8. According to 9.6 the involution fixing the point A and all points on the line B (not
incident with A) is uniquely determined by A and B . By 9.5 and 9.7 the system S of
all these involutions is contained in E6; as the harmonic position is A-invariant, S is A-
invariant. The subgroup G of E6 generated by S is thus a normal subgroup of A and thus
of E6, and by the simplicity of E6 we have G D E6, that is, E6 is a normal subgroup of A.

9.9. Dual to the transformations ' of P .C/ are the transformations '� of the lines. The
relation is given by

.'X;U / D .X; '�U/:

For the infinitesimal elements ˚ 2 E6 one states for ˚ 2 F4:

.˚X;U /C .X;˚U / D 0

by 4.4.2, for ˚ D QT with T D T �:

.˚X;U / D
1

2
.T;X;U / D

1

2
.X; T; U / D .X;˚U /:

So

˚� D �˚ for ˚ 2 F4
˚� D ˚ for ˚ D QT with T D T �:

In general,
˚ W X 7! T ıX

implies
˚� W X 7! X ı T:

˚ 7! �˚� is essentially the only outer automorphism of E6 (see Cartan [5]).

9.10. If ! 2 AnE6 generates an outer automorphism of E6, then we can assume it is the
one in 9.9. If ! generates an inner automorphism, then we can assume it commutes with
all elements of E6. In any case ! commutes with all elements of F4. We consider the
maximal subgroup G of F4 fixing the point X . For ' 2 G we have

'!X D !'X D !X:

So G fixes !X . This implies !X D X for all X , so ! D 1, which contradicts ! 2 AnE6.
Hence A D E6.

10. ? ?

We collect some open problems:

10.1. Wich geometries are associated to E7 and E8?
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10.2. A plane projective geometry is calle k-times differentiable or analytic if its points
form a k-times differentiable or analytic manifold, respectively, and if intersection points
and connecting lines depend k-times differentiably or analytically on the given quantities
with a functional matrix of maximal rank.

10.3. Do there exist1-times differentiable non-harmonic P in dimensions 2, 4, 8, 16?

10.4. In which dimensions do k-times differentiable P exist? (For the theorem by G.
Hirsch, which restricts these dimensions to powers of 2, one needs at least k D 1.)

10.5. Is every analytic P also harmonic?

10.6. Is (in dimensions 4, 8) every continuous harmonic P also Desargueian?
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