
ON A REMARKABLE HERMITIAN METRIC

ERICH KÄHLER

1.

When studying the invariants of a real 2n-dimensional Hermitian metric1

(1) ds2 =
∑

gikdxidxk

with respect to the “pseudo-conformal” transformations

(2)
x′i = ϕi(x1, x2, . . . , xn)
x′i = ϕi(x1, x2, . . . , xn)

(i = 1, 2, . . . , n)

it seems natural to study, aside from (1), the alternating quadratic differential form
(forme extérieure)

ω =
∑

gikd(xi, xk),

in which d(xi, xk) denotes the so-called exterior product2 of the differentials dxi, dxk,

that is, a differential determinant ∂(xi,xk)
∂(s,t) dsdt. This form ω which is invariantly

related to (1) allows to use the elegant calculus of symbolic differential forms3 to
construct new invariants. For example, the derivative

ω′ =
∑

d(gik, xi, xk) =
∑ ∂gik

∂xl
d(xl, xi, xk) +

∂gik
∂xl

d(xl, xi, xk)

is a new invariant form, and by combining it with ω one obtains further invariants.
In this approach, the case ω′ = 0 appears as a remarkable exception. We find

that the metric can be derived in the following way

(3) ds2 =
∑ ∂2U

∂xi∂xk
dxidxk

from a “potential” U , which evidently is an invariant property equivalent to ω′ = 0.
This type is associated to certain metrics arising in the theory of automorphic

functions. In fact, if

(4) x′i =
Li(x)

L0(x)
=

αi0 + αi1x1 + . . .+ αinxn
α00 + α01x1 + . . .+ α0nxn

(i = 1, 2, . . . , n)

is a projective transformation mapping the unit hypersphere

1− x1x1 − x2x2 − . . .− xnxn = 0

to itself, then metric

ds2 =
∑ ∂2U

∂xi∂xk
dxidxk

formed with

U = k log
(

1−
∑

xνxν

)
1x denotes the complex conjugate of some quantity x. The indices referring to a conjugate

variable x will always be overlined.
2To avoid confusion with the usual multiplication, the exterior products of differentials

dx, dy, dz are written as d(x, y, z).
3Cartan, Invariants intégraux, Chap. VI, VII. Paris (1922). – Goursat, Leons sur le problème

de Pfaff, Chap. III. Paris (1922).
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is invariant with respect to the group of “hyperfuchsian” transformations (4) be-
cause of (

1−
∑
ν

x′νx
′
ν

)
=
(

1−
∑
ν

xνxν

)
·
(
L0(x)L0(x)

)−1
.

In an analogous manner the “hyperabelian” transformations

x′i =
αixi + βi
γixi + δi

(i = 1, 2, . . . , n),

fixing the unit spheres

1− xixi = 0 (i = 1, 2, . . . , n)

leave invariant the metric derived from the potential

U =

n∑
i=1

ki log(1− xixi) (ki constant),

and it is clear that the intermediate cases, for example the group composed from
hyperfuchsian transformations in r and s (with r + s = n) variables, give rise to
metrics of if this type.

These relations will justify studying the metric (3) in the following; as many
things in the algebra of automorphic forms depend on the properties of this metric.

At last note that

ds2 =
∑ ∂2U

∂xi∂xk
dxidxk

represents a solution to Einstein’s equations of gravity

Rαβ = λgαβ

if the potential U statisfies ∣∣∣∣ ∂2U

∂xi∂xk

∣∣∣∣ = eλU .

2.

The proof that ω′ = 0 implies (3) is easy. By equating the coefficients of ω′ to 0
we obtain

∂gik
∂xl
−
∂glk
∂xi

= 0,
∂gik
∂xl
−
∂gil
∂xk

= 0,

whereafter we may set

gik =
∂Vi
∂xk

=
∂Vk
∂xi

.

The integrability conditions

∂2Vk
∂xi∂xl

=
∂2Vi
∂xk∂xl

=
∂2Vl
∂xk∂xi

,

i.e.
∂

∂xk

(
∂Vi
∂xl
− ∂Vl
∂xi

)
= 0,

then show that the expressions ∂Vi

∂xl
− ∂Vl

∂xi
do not depend on the xl:

(5)
∂Vi
∂xl
− ∂Vl
∂xi

= ϕil(x1, x2, . . . , xn).

Now one can determine n functions V ′1 , V
′
2 , . . . , V

′
n of x1, x2 . . . , xn such that

∂V ′i
∂xl
− ∂V ′l
∂xi

= ϕ(x1, x2, . . . , xn)
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holds; for these equations may be combined to(
−
∑

V ′i dxi

)
=
∑

ϕild(xi, xl).

A neccessary and sufficient condition for a differential form
∑
ϕil(x1, . . . , xn)d(xi, xl)

to be representable as the differential of another one only containing the variable x
is the vanishing of the differential(∑

ϕild(xi, xl)
)′

=
∑ ∂ϕil

∂xm
d(xm, xi, xl) = 0,

which clearly is the case because of the left hand side of (5).
Clearly one can, without violating the equations

gik =
∂Vi
∂xk

,

replace Vi by Vi − V ′i with the consequence that the new Vi satisfy the equations

∂Vi
∂xl
− ∂Vl
∂xi

= 0.

Thus the Vi can be represented in the form

Vi =
∂W

∂xi
+ ψi(x1, x2, . . . , xn)

and for the gik one obtains

gik =
∂Vi
∂xk

=
∂2W

∂xi∂xk
+
∂ψi
∂xk

=
∂2U

∂xi∂xk
,

when setting

U = W + x1ψ1 + x2ψ2 + . . .+ xnψn.

One sees immediately that for any metric

(6) ds2 =
∑ ∂2U

∂xi∂xk
dxidxk

the corresponding exterior differential form

ω =
∑ ∂2U

∂xi∂xk
d(xi, xk)

is integrable (ω′ = 0).

3.

We now wish to compute the Riemannian curvature tensor and in particular the
contracted curvature tensor Rαβ of the metric (3). To be consistent with common
notations, it is recommended to include a factor 2:

ds2 = 2
∂2U

∂xi∂xk
dxidxk = gαβdxαdxβ .

Greek letters shall henceforth denote indices capable of assuming all of the 2n
values 1, 2, . . . , n, 1, 2, . . . , n, whereas Latin letters denote numbers of the sequence
1, 2, . . . , n, the overlined letters denote the numbers 1, 2, . . . , n. Furthermore, by
common convention the summation signs are omitted.

The terms gik and gik are missing in the quadratic form gαβdxαdxβ and thus

gik = 0, gik = 0,

whereas

gik =
Dik

D
,



4 KÄHLER

and Dik is understood to be the minor associated to the element Uik,4 endowed
with the correct sign, of

D = D(U) = |Uik|.
The Christoffel symbols

[
α β
γ

]
are easiest computed as the coefficients of ẋα, ẋβ

in the Lagrangian expression

Pγ =
d

dt

(
∂T

∂ẋγ

)
− ∂T

∂xγ

with kinetic energy

T =
1

2
ṡ2 = Uikẋiẋk.

One finds [
i k

l

]
= Uikl,

[
i k
l

]
= Uikl,

and all other Christoffel symbols are 0. Thereby the curvature tensor is also known;
only the components of type Rik,lm are different from 0,5 more precisely

Rik,lm = −Uiklm + grsUilsUkmr.

Of the contracted tensor

Rαβ = Rα
γ
βγ

therefore only the components Rik with mixed indices remain; for it is

Riβ = Ri
γ
βγ = gγδRiδβγ = −glmRimlβ ,

which is different from 0 only for β = k. In

Rik = glmRimlk = glmUiklm − g
lmgrsUilsUkmr

the expression on the right hand side can be elegantly combined to

∂2

∂xi∂xk
log(D(U)),

which we want to confirm by a computation. We have

∂D

∂xi
= DrsUrsi,

∂2D

∂xi∂xk
= DrsUrsik + UrsiUlmkD

lmrs,

where Dlmrs denotes the second minor of D associated to
∣∣ Urs Urm

Uls Ulm

∣∣. It follows that

∂2

∂xi∂xk
log(D) =

1

D

∂2D

∂xi∂xk
− 1

D2

∂D

∂xi

∂D

∂xk

=
Drs

D
Ursik + UrsiUlmk

(
Dlmrs

D
− DrsDlm

D2

)
,

and because of the easily seen determinant identity6

DDlmrs −DrsDlm +DrmDls = 0

4For simplicity, the derivatives of a function shall henceforth be denoted by attaching the

subscript indices of the differentiation variables, e.g. ∂2U
∂xi∂xk

= Uik.
5And of course Rik,lm etc.
6Fix r, s, l on the left hand side of the expression and denote it by Zm. One has n homogeneous

equations in the immediately following equations
∑

UimZm = 0 (for i 6= r) together with Zs = 0,
from which Zm = 0 follows.
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this is equivalent to

grsUrsik − g
rmglsUrsiUlmik = Rik.

One obtains

(7) Rik =
∂2

∂xi∂xk
log(D(U)).

4.

The tensor Rik = ∂2V
∂xi∂xk

, V = log(D(U)), gives rise to a second alternating
differential form

Ω = Rikd(xi, xk) = Vikd(xi, xk),

whose differential Ω′ vanishes, because Ω is of the same type as

ω = Uikd(xi, xk).

Moreover, both forms can be represented as differentials of forms of degree 1:

(8)
ω = −(Uidxi)

′ = (Ukdxk)′

Ω = −(Vidxi)
′ = (Vkdxk)′.

Via exterior multiplication, these two forms ω and Ω give rise to a series of invariant
differential forms, among which the forms7 of degree 2

(9) Ωνωn−ν , (ν = 0, 1, 2, . . . , n)

of the form
A · d(x1, x1, x2, . . . , xn)

are of some interest.
Firstly,

ωn = n! · |Uik| · d(x1, x1, x2, . . . , (x)n)

equals the volume form up to a constant factor,

dv =
√
|gαβ |d(x1, x1, x2, . . . , (x)n) = |Uik|d(x1, x1, x2, . . . , (x)n).

Further,

Ωω = (n− 1)! ·Rik ·D
ik · d(x1, x1, x2, . . . , (x)n)

= (n− 1)! ·Rik · g
ik ·D · d(x1, x1, x2, . . . , (x)n)

= (n− 1)! ·R · dv,
where R denotes the curvature scalar.

The integrals
∫

Ωνωn−ν can be transformed into boundary integrals by writing
Ωνωn−ν as differential oof a form, which is possible in several different ways. For
example, one has

ωn = Uikd(xi, xk)ωn−1 = (Ukdxk)′ωn−1 = (Ukdxkω
n−1)′,

because ω′ = 0; alternatively

ωn = −(Uidxiω
n−1)′.

The integral
∫
Rdv cannot be transformed into a boundary integral for a general

metric (with n > 1), because the variation of this integral in more than 2 dimesions
yields Einstein’s equations of gravity.

But for our metrics one has

(n− 1)!

∫
Rdv =

∫
Ωωn−1 =

∫
(Vkdxk)′ωn−1 =

∫
(Vkdxkω

n−1)′

7There should be no confusion if symbolically multiplied forms are simply written next to each
other. One has to observe the order and possibly change the sign when permuting factors.
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so that

(10)

∫
C

Rdv =
1

(n− 1)!

∫
<(C)

Vkdxkω
n−1

holds by Stokes’ Theorem, where C is understood to be a 2n-dimensional cell with
boundary <(C). Also, ∫

C

Rdv =
1

(n− 1)!

∫
<(C)

Vidxiω
n−1

and by adding (10) one obtains with

(11)

∫
C

Rdv =
1

2 · (n− 1)!

∫
<(C)

(Vkdxk − Vidxi)ω
n−1

a real expression for the integrand on the right hand side.
This formula is reminiscent of the Gauss-Bonnett-Theorem, but for a proper

analogy the invariance of the boundary integrand is missing. Under a pseudo-
conformal transformation (2) V = log(D(U)) becomes

V ′ = V + log(∆) + log(∆), ∆ =
∂(x1, x2, . . . , xn)

∂(x′1, x
′
2, . . . , x

′
n)
,

that is, Vkdxk − Vidxi becomes

∂V

∂x′k
dx′k −

∂V

∂x′i
dx′i + d log

(
∆

∆

)
because of

∂∆

∂x′i
=
∂∆

∂x′k
= 0.

The whole integrand thus changes by(
d log

(
∆

∆

))
ωn−1,

because

ω =
∂2U

∂xi∂xk
d(xi, xk) =

∂2U

∂x′i∂x
′
k

d(x′i, x
′
k)

remains unchanged.
If one were to find a covariant A associated to a 2n−1-dimensional hypersurface

in such a way that A changes by

log

(
∆

∆

)
under a pseudo-conformal transformation, then the integrand

(Vkdxk − Vidxi)ω
n−1

can be made invariant by adding

dA · ωn−1

without essentially destroying equation (11). Because dA ·ωn−1 is integrable ((dA ·
ωn−1)′ = 0), the integral

∫
dA · ωn−1 over the boundary-free hypersurface <(C) is

invariant under continuous deformations of <(C).
For n = 1, that is a 2-dimensional metric, it is easy to find such a covariant A.

If x = x(t), x = x(t) is the equation of a line, then

A = − log
dx
dt
dx
dt

= −2arg
dx

dt
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has the desired property, and the expression ∂V
∂x

dx
dt −

∂V
∂x

dx
dt corrected by dA, that is

d2x
dt2

dx
dt −

d2x
dt2

dx
dt

dx
dt
dx
dt

+
Uxxx
Uxx

dx

dt
− Uxxx

Uxx

dx

dt
,

is essentially the geodesic curvature of the boundary line <(C). The integral
∫
dA

takes the value −4π when running once through <(C) with positive orientation.
Note further that every 2-dimensional metric can be written in the form

ds2 =
∂2U

∂x∂x
dxdx = ∆U(dx21 + dx22) (x = x1 + ix2).

It would be of major importance for the theory of automorphic functions if the
curvature integral (11) or any of the other integrals

∫
Ωνωn−ν could be transformed

into a boundary integral invariant under pseudo-conformal transformations as de-
scribed above.

5.

The simple form (7) of the contracted curvature tensor Rik allows one to guess
a solution to Einstein’s equations

(12) Rαβ = λgαβ .

For non-mixed indices (α, β) = (i, k) or (α, β) = (i, k) these equations are always
satisfied for the metric

(13) ds2 = 2
∂2U

∂xi∂xk
dxidxk,

and the equations
Rik = λgik

require:
∂2

∂xi∂xk
log(D(U)) = λ

∂2U

∂xi∂xk
.

Thus, the difference log(D(U))−λU = ϕ has to be an “n-harmonic” function, that
is, it has to satisfy the differential equations characterising the real parts of analytic
functions,

∂2ϕ

∂xi∂xk
= 0.

Every such function can be written in the form

ϕ = ψ(x1, x2, . . . , xn) + ψ(x1, x2, . . . , xn).

The equation

(14) log(D(U))− λU = ψ(x1, . . . , xn) + ψ(x1, . . . , xn)

clearly is also sufficient for (13) to satisfy the equations of gravitation (12).
The latter equation can be simplified by a pseudo-conformal transformation.

Under such a transformation log(D(U)) changes by

log
∂(x1, x2, . . . , xn)

∂(x′1, x
′
2, . . . , x

′
n)

+ log
∂(x1, x2, . . . , xn)

∂(x′1, x
′
2, . . . , x

′
n)
,

and one can always find a transformation

x′i = x′i(x1, x2, . . . , xn)

such that
∂(x′1, x

′
2, . . . , x

′
n)

∂(x1, x2, . . . , xn)
= ψ(x1, x2, . . . , xn)

holds. Thus we obtain ψ = ψ = 0 in (14).
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If one is only looking for the essentially distinct metrics satisfying (12), then it
is sufficient to restrict oneself to the solutions of the equation

D(U) = eλU .

The metric belonging to

U = − log
(

1−
∑

xνxν

)
,

invariant under hyper-fuchsian transformations, is a solution to Einstein’s equa-
tions. For one has

Uik =
xixk
S2
− δik

S
,

S =
∑
k xkxk − 1, δik = 0 (i 6= k), δii = 1. The determinant in

D(U) = S−2n

∣∣∣∣∣∣∣∣∣∣
x1x1 − S x1x2 · · · x1xn

x2x1 x2x2 − S · · ·
...

...
. . .

...
xnx1 · · · · · · xnxn − S

∣∣∣∣∣∣∣∣∣∣
is computed most easily by considering it to be the determinant of the homogeneous
system of equations

(15)
∑
k

xixkYk = Λ · Yi

with the unknowns Yi for Λ = S. From (15) it follows that

xi ·
(∑

k

xkYk

)
= Λ · Yi,

for which the zero-dimensional solution is

(16) Y1 : Y2 : . . . : Yn = x1 : x2 : . . . : xn

and ∑
xkYk = 0

the n − 1-dimensional solutions. Hence the eigenvalue Λ = 0 has to be at least
n− 1-fold and as we have the additional eigenvalue Λ =

∑
k xkxk from (16), Λ = 0

is precisely n− 1-fold. So

|xixk − δikΛ| = (−Λ)n−1 ·
(∑

k

xkxk − Λ
)
,

and for Λ = S =
∑
k xkxk − 1 we obtain as value the determinant in question:(∑

k

xkxk

)n−1
,

so that

(17) D(U) =
(∑

k

xkxk

)n−1
= e(n+1)U

holds. For the hyper-abelian metric formed with

U = −
∑
i

log(1− xixi),

a similar equation holds:

(18) D(U) = e2U .
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6.

The differential expression D(U) can be obtained by variation of an integral∫
C(U)d(x1, x1, x2, . . . , xn),

thus reducing the problem of solving the equation

D(U) = ekU

to a variational problem.
The integrand C(U) is Levi’s integral invariant, generalised by Wirtinger8 to n

variables, which appears in the theory of 3-dimensional singularties of analytical
functions in two variables:

C(U) =

∣∣∣∣∣∣∣∣∣∣∣

0 U1 U2 · · · Un
U1 U11 U12 · · · U1n

U2 U21 U22 · · · U2n

...
...

...
. . .

...
Un Un1 Un2 · · · Unn

∣∣∣∣∣∣∣∣∣∣∣
.

In the symbolism of differential forms one has

(n− 1)!C(U)d(x1, x1, x2, . . . , xn) = (Uidxi)(Ukdxk)(Ulmd(xl, xm))n−1,

and the variation of the integral

I =

∫
ω =

∫
(Uidxi)(Ukdxk)(Ulmd(xl, xm))n−1

yields (setting δU = v)

δI =

∫
δω

with

δω = (vidxi) · (Ukdxk) · (Ulmd(xl, xm))n−1

+ (Uidxi) · (vkdxk) · (Ulmd(xl, xm))n−1

+ (n− 1) · (Uidxi) · (Ukdxk) · (vlmd(xl, xm)) · (Ulmd(xl, xm))n−2.

One convinces oneself by computations using the rules for differentials of symbolic
differential forms that

(19)

δω = −(n+ 1) · v · (Uikd(xi, xk))n

+(n− 1) ·
(
(Uidxi) · (Ukdxk) · (vldxl) · (Ursd(xr, xs))

n−2)′
−n ·

(
v · (Uidxi) · (Ulmd(xl, xm))n−1

)′
+
(
v · (Ukdxk) · (Ulmd(xl, xm))n−1

)′
holds, so that δI coincides with

−(n+ 1)!

∫
D(U) · v · d(x1x1, x2, . . . , xn)

up to a boundary integral.
The equation

D(U) = ekU

is thus obtained by the variation of

(20)

∫ (
C(U) +

n(n+ 1)

k
ekU
)
d(x1x1, x2, . . . , xn).

8Wirtinger, Zur formalen Theorie der Funktionen von mehr komplexen Veränderlichen.
Math. Ann. 97 (1926), p. 363.
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If the metric to be determined

ds2 = 2
∂2U

∂xi∂xk
dxidxk

is positive definite, the integrand in (20) is positive; because then the quadratic
form

gikXiXk

is positive definite as well, and

gik
∂U

∂xi

∂U

∂xk
=
Dik

D
UiUk

is identical to
C(U)

D(U)
.

In the theory of hyper-abelian functions the equation

(21) D(U) = 0

is of importance, to be solved under the contraint

C(U) > 0.

By the above we have in ∫
C(U)d(x1x1, x2, . . . , xn)

an integral whose variation leads to (21).
In intend to address the application of the formal developments at hand to the

theory of automorphic functions and the analogy of the equations

D(U) = 0, D(U) = ekU ,

with the classical differential equations

∆U = 0, ∆U = ekU ,

already pointed out by G. Giraud9 and A. Bloch10, in a later work.

Original: Über eine bemerkenswerte Hermitesche Metrik, Abhandlungen aus dem Mathema-
tischen Seminar der Universität Hamburg 9, 1933 (1), 173-186

Translation by Wolfgang Globke, Version of December 2, 2013.

9G. Giraud, Sur une équation aux dérivées partielles, non linéaires etc. Comptes Rendus 166,
I (1918), p. 893.

10A. Bloch, Sur une nouvelle et importante généralisation de l’équation de Laplace.
L’Enseignement Mathém. 26 (1926), p. 52.
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