
The inner differential calculus

By ERICH KÄHLER in Berlin

I consider it providence that, after a long journey through the realms of algebra
and arithmetic, I was once more drawn to differential geometry when the time
came to congratulate and pay tribute to the leading German differential geometer
on his 75th birthday. This unexpected return demonstrated to me more clearly
than any conscious effort might have done how formative the years were which I
spent experiencing differential geometry at its source as Prof. Blaschke’s assistant.
The result of this change of perspective, initiated by contemplation of Dirac’s
theory, is a calculus that deserved to be placed as inner differential calculus next
to the established exterior differential calculus, not least because of its relations to
complex function theory. I sketched the foundations of this calculus in November
1960 during a Blaschke Festkolloquium, and I believe it serves the matter well if
I only now report on this talk in a simplified and extended way.

1 Differentials and differential tensors

The functions f .x1; : : : ; xn/ that satisfy a certain differentiability condition B on
a domain G in n-dimensional space, for example, being infinitely differentiable,
form a ring denoted by r. The exterior differential ring R over r is obtained
through extending r by n symbols dxi , where i D 1; : : : ; n, which are subject
only to the relations

dxi ^ 1 D 0; dxi ^ a D a ^ dxi for a 2 r;

dxi ^ dxk C dxk ^ dxi D 0;

where i; k D 1; : : : ; n, and the relations following from these. Every element
u 2 R can be written in the form

u D aC aidxi C aikdxi ^ dxk C : : :

with a; ai ; aik; : : : 2 r, where the systems of coefficients aik; aikl ; : : : are uniquely
determined by u as skew-symmetric tensors, just like a and ai . Its decomposition

u D u0 C u1 C : : :C un
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into homogeneous components up of degree p is independent of the coordinate
system, which is why

�u D

nX
pD0

.�1/pup; �u D

nX
pD0

.�1/.
p
2/up

define invariant operators �; � on R, of which the first one is an automorphism
and the second one is an anti-automorphism of R.

Besides the scalar elements of R, which we simply call differentials, we also
consider differential tensors, that is, tensors whose components are elements of
R. The action of the operators �; � extends componentwise to differential tensors.

Another operator el whose meaning only becomes clear when dealing with differ-
ential tensors is given by its action

elu
j1:::jq
i1:::ip

D

nX
hD0

1

hŠ
a
j1:::jq
i1:::iplk1:::kh

dxk1 ^ � � � ^ dxkh;

on

u
j1:::jq
i1:::ip

D

nX
hD0

1

hŠ
a
j1:::jq
i1:::ipk1:::kh

dxk1 ^ � � � ^ dxkh :

While el maps differential tensors to differential tensors, the operator @
@xl

, which
means partial differentiation of a differential or differential tensor with respect to
xl , depends on the coordinate system. However, if a Riemannian metric is given,
covariant differentiation of coefficients with respect to xl allows us to define an
operator dl which is independent of the coordinate system, commutes with every
el and gives rise to the definition

.du/j1:::jqi1:::ip
D dxl ^ dlu

j1:::jq
i1:::ip

of the exterior differential of the differential tensors. Since for a scalar differential
u (because of the symmetry in the lower indices of the Chrisoffel symbols) du
equals dxl ^ @u

@xl
, this is an extension of the exterior differential d defined on the

ring of differentials. Its action can be expressed using the differentials repeatedly
used by E. Cartan,

!ki D �
k
ij dxj

as

.du/j1:::jqi1:::ip
D dxl ^

@

@xi
u
j1:::jq
i1:::ip

C !jm ^ u
m;j2:::jq
i2:::ip

C : : : � !mi1 ^ u
j1:::jq
m;i2:::ip

:
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As an example of a differential tensor let us consider

˝k
i D d.!ki / � !

m
i ^ !

k
m D

1

2
Rkijldx

j
^ dxl

where the parenthesis after d mean that !ki is to be trated like a scalar differential.
According to Bianchi, it satisfies

.d˝/ki D 0:

From the simple product rule

el.u ^ v/ D elu ^ v C �u ^ elv (1)

we see that the operator el has the character of a differentiation as well. This
correpsonds precisely to the following equation for exterior differentiation

d.u ^ v/ D du ^ v C �u ^ dv:

In these equations, u; v mean arbitrary differential tensors and ^ is the exterior
tensor product. In the following, we will frequently use this simplification of the
notation, unless stated otherwise.

The operators e anti-commute with one another and with �. On the other hand,
el� D ��el , eldC del D dl , �d D d��, where d and � anti-commute.

We call differential tensors u constant that satisfy the equations

dlu D 0; l D 1; : : : ; n:

Products and sums of constant differential tensors are constant. The Bianchi iden-
tity tells us in particular that ˝ik is constant. A particularly important role in the
theory of Dirac equations is played by the clearly constant volume differential
form,

z D
p
jgikjdx1 ^ : : : ^ dxn:

2 Inner multiplication and differentiation

Whereas the exterior multiplication and differentiation of scalar differentials can
be defined without a metric, for the development of the inner differential calclus
the existence of a metric fundamental tensor gik is essential, as the following
definition of the inner product u _ v of two differential tensors u; v shows:

u _ v D

nX
mD0

.�1/.
m
2/
�m

mŠ
ei1 � � � eimu ^ e

i1 � � � eimv .ei D gikek/:
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We may call this a multiplication by virtue of the associativity law .u_ v/_w D

u _ .v _ w/.

Contrary to the exterior multiplication, for which the simple rule

u ^ v D .�1/pv ^ u .for v homogeneous of degree p/

holds, the inner multiplication is non-commutative in an intricate way, as the fol-
lowing analogue of the above equation shows:

u _ v D

nX
mD0

.�1/.
m
2/
2m

mŠ
ei1 � � � eim�

pCm
_ ei1 � � � eimu

where u is homogeneous of degree p.

Nevertheless, performing inner multiplications in physical applications is often
easy, since in the case of all gik vanishing for i ¤ k, all the inner products
dxi _ dxk _ � � � _ dxl with all indices distinct coincide with the corresponding
exterior products.

The relation
dxi _ dxk D dxi _ dxk C gik

allows to conclude by virtue of its consequence dxi _ dxk C dxi _ dxk D 2gik,
that the inner multiplication of scalar differentials is the Clifford multiplication
corresponding to the symmetric matrix gik. This implies that the “exterior” dif-
ferential ringR is a ring in a second way, in which it is called the inner differential
ring. For this ring as well � is an automorphism, � is an anti-automorphism and
the formula corresponding to (1) holds,

el.u _ v/ D elu _ v C �u _ elv:

Right-multiplication with the volume differential z is the transfer of a differential
u to its dual �u D i _ z which is so important in the theory of Hodge.

The interpretation of du D dxl ^ dlu of exterior differentiation suggests to define
as its analogue the inner differentiation

•u D dxl _ dlu:

Indeed, this defines an operation which at least by virtue of its appearance in the
Dirac equation and as the square root of the Laplace-Beltrami operator � D ••

merits our attention.

Its connection to the exterior differential is given through the equation

•u D duC eldlu;
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which can also be written

•u D duC d�u with d�u D ��1d � u D .�1/.
n
2/d.u _ z/ _ z

and thus highlights the relation to the operator� in the case of scalar differentials
via the then valid relation d�d�u D 0. It is important in relation to the theory of
Dirac equations that a rather simple product rule

•.u _ v/ D .•u/ _ v C �u _ .•v/C 2enu _ dhv: (2)

holds.

The mirror image of inner differentiation is

�•�u D dlu _ dxl :

Both • and d commute with the operator �, and it also holds that

•el C el• D dl

in analogy to a relation between d, e and dl mentioned above.

3 Scalar products

Out of two differentials u; v we obtain a differential

.u; v/ D .�u _ v/ ^ z

which differs from the volume differential z by the factor .�u _ v/0 that com-
prises the terms of degree 0 in the decomposition

Pn
mD0.�u_ v/m of �u_ v into

homogeneous differentials .�u _ v/m of degree m.

Even though it would be more appropriate to call the integral over the whole space
of .u; v/ the scalar product of u and v, we will, in regard to non-compact spaces,
call the differential .u; v/ itself the scalar product of u and v. It has the properties

.u; v/ D .v; u/ D .�u�v/ D .�u; �v/ D .u_v; v_z/ D .u_z; v_z/ D .z_u; z_v/;

and for arbitrary differentials u; v;w we have

.u _ w; v/ D .u; v _ �w/;

.w _ u; v/ D .u�w _ v/:
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Its computation is simplified by the observation that from the decomposition into
homogeneous parts, u D

Pn
mD0 um, v D

Pn
mD0 vm, we obtain

.u; v/ D
X
m

.um; vm/ D
X
m

.�um ^ �vm/;

where �vm D vm _ z.

Besides the n-fold differential .u; v/, the n � p-fold differentials

.u; v/p D
1

pŠ
ei1 � � � eip.dx

ip _ � � � _ dxi1 _ u; v/

deserve our attention. They have similar properties

.v; u/ D .�1/.
p
2/.u; v/p; .�u; �v/p D .�1/

p.u; v/p;

.u _ w; v/p D .u; v _ �w/p;

and
.u; v/1 D ei.dxi _ u; v/ D .�u _ dxi _ v/0eiz

stands out by its appearance in Green’s formula

d.u; v/1 D .u; •v/C .v; •u/:

Note that in the case of a positive definite metric, .u; u/ differs from the volume
differential z by a factor that is positive precisely where u does not vanish, that is,
where at least one coefficient of u is different from 0.

4 Lie operators and differentials

A Lie operator acting on functions,

A D ˛i.x1; : : : ; xn/
@

@xi

defines a contravariant tensor ˛i with the help of which we can form an expression

Au D ˛i
@u

@xi
C d.˛i/ ^ eiu

independently of the coordinate system. In the presence of a metric, this expres-
sion coincides with

Au D ˛i � diuC .d˛/i ^ eiu:
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In the first of these formulas, the exterior differential d.˛i/ of the i th component
of the tensor ˛i appears, whereas .d˛/i denotes the i th component of the exte-
rior differential of the tensor ˛i . The operator A thus declared on the ring R of
differentials has the properties

A.u ^ v/ D Au ^ v C u ^ Av; dAu D Adu; (3)

and if three of these operators A, B , C acting on functions are in the relation
AB � BA D C , then the same holds for their extensions A, B , C to operators in
the ring R.

In the presence of the metric every Lie operator gives rise to a scalar differential
˛ D ˛i � dxi D gik˛kdxi .

The Killing equations
di˛k C dk˛i D 0

hold if and only if the metric at A is invariant in the following sense: If we in-
troduce coordinates in which ˛i D 0 for i < n, ˛n D 1, then the coefficients of
the fundamental tensor gik are indepdendent of xn. Under these assumptions, the
action of the operator A can be described by

Au D ˛i � diuC
1

4
.d˛ _ u � u _ d˛/

and the analogous relations to (3)

A.u _ v/ D Au _ v C u _ Av; ıA

hold.

If the differentials ˛, ˇ, 
 are associated to the three operators A, B , C that leave
the metric invariant and are related by AB � BA D C , then

d
 D
1

4
.d˛ _ dˇ � ıˇ _ ı˛/C 2˛i � ˇk �˝ik:

5 Dirac equations

The inner differential calculus finds its raison d’être in the fact that important
systems of partial differential equations take the form

ıu D a _ u;

where a is a given and u the desired differential.
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We call every equation of this form a Dirac equation, since Dirac’s theory of
the states of electrons in an electromagnetic field gave rise to the study of such
equations in the first place.

From the product rule (2) it follows that a solution u of a Dirac equation gives rise
to another solution u_ c of the same Dirac equation by inner right-multiplication
by an arbitrary constant differential.

Every operator that, like _c, maps solutions of a Dirac equation to solutions of
the same Dirac equation is called an integral of the Dirac equation. For example,
every Dirac equation has the transition � D _z to the dual as an integral.

If a one-parameter group determined by the operator A preserves the metric and
the differential a, which is equivalent to A satisfying the Killing equations and the
condition Aa D 0, then A is an integral of the Dirac equation.

If u is a solution of the Dirac equation ıu D a _ u and v is a solution of the
adjoint Dirac equation

ıv D ��a _ v;

then
d.u; v/1 D 0;

which follows from Green’s formula.

6 Spherical differentials

In three-dimensional Euclidean space, the constant differentials are precisely those
that have constant coefficients when written as inner or exterior polynomials in
dx1, dx2, dx3. In particular,

w D dx1 _ dx2 _ dx3 and wi D dxi _ w D w _ dxi

are constant. The rotations about the three coordinate axes give rise to three oper-
ators X1, X2, X3 whose action on differentials w is given by

Xiu D x
k @u

@xl
� xl

@u

@xk
C
1

2
wi _ v �

1

2
u _ wi ;

where .i; j; k/ is a cyclic permutation of .1; 2; 3/. Like the well-known Lie oper-
ators they satisfy the relation

XkXl �XlXk D �Xi

and commute with the operator K given by

.K C 1/u D
X
i

Xiu _ wi
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independently of the coordinate system, with which they also satisfy the relation

X2
1 CX

2
2 CX

2
3 D �K �K

2:

K also commutes with the operator _w:

K.u _ w/ D Ku _ w;

and in polar coordinates, Ku is best determined via the formula

.K C 1/u D ��ı�u _ rdr C
3X
iD1

xi
@u

@xi
C
3

2
.u � �u/C g�u;

in which g denotes the linear operator that simply mutliplies every homogeneous
differential by its degree.

The spherically symmetric (space) differentials are precisely those differentials u
that satisfy the equations

X1u D X2u D X3u D 0;

or equivalently, those that can be written as inner polynomials in dr ,w with coeffi-
cients depending only on r . For every Dirac equation ıu D a_u with spherically
symmetric a, the operators X1, X2, X3, K, _w, and of course all other operators
_c with constant c, are integrals. In particular, this holds for the Dirac equation

ıu D 0;

whose solution leads to the important spherical differentials if we ask for those
solutions of this equation that are rationally homogeneous in x1, x2, x3.

By means of the Legendre polynomials Pm
k

, which may also have negative lower
index by setting Pm

k
D Pm

�k�1
, we first form the expression

Y mk D P
m
k .cos.�//eim'

in polar coordinates r , � , ', and then form the spherical differential

Smk D r
1�k
� d.rk � Y mk /;

which satisfies the Dirac equation

ıSmk D
1 � k

r
dr _ Smk
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equivalent to ı.rk�1 � Sm
k
/ D 0, and is a K-eigendifferential with eigenvalue k,

KSmk D kS
m
k :

It is also an eigendifferential of the operator X3:

X3S
m
k D imSmk ;

and for applications it is important that for every spherically symmetric differen-
tial R,

ı.R _ Smk / D

�
ıRC ��R _

1 � k

r
dr
�
_ Smk

holds.

The meaning of the spherical differentials for the integration of the Dirac equation

ıu D 0

becomes clear from the following observation: The solutions of the equation that
are twice differentiable on the whole space except the origin can be expanded into
a uniformly convergent series

u D
X

Rmk _ S
m
k

on every compact set excluding the origin, where Rm
k

is spherically symmetric,
namely,

ark�1 C a0rk�1w C a00r�k�1dr C a000r�k�1dr _ w

with constants a; a0; a00; a000.

7 Dirac equations in space and time

The Einstein-Minkowski metric

.dx1/2 C .dx2/2 C .dx3/2 � dc2.dt /2

determines an inner differential calculus in which dx1, dx2, dx3 satisfy the same
relations as in the space considered above, whereas computations involving dt are
subject to the following rules:

dxi _ dt D �dt _ dxi D dxi ^ dt; dt _ dt D �c2:

Those differentials that do not contain dt when written as exterior or inner poly-
nomials in dx1, dx2, dx3, dt will be called space differentials. We speak of a pure
space differential if the coefficients in such a representation do not depend on t .
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The totality of all pure space differentials can be considered as an inner (and
also exterior) subring of the ring of all differentials of Einstein-Minkowski space,
and here the inner differentiation is the extension of the inner differentiation on
Euclidean space, and so both shall be denoted by ı. Keeping the other notations
from the previous section as well, we can decompose the volume differential z
into

z D dx1 _ dx2 _ dx3 _ icdt D w _ icdt D w ^ icdt:

Its inner square is z _ z D 1.

Just like z, every other inner or exterior polynomial in dx1, dx2, dx3, dt with
constant coefficients is constant, and there are no other constant differentials.

The constant differentials
"˙ D

1

2
�

ic
2

dt

satisfying the relations "˙ _ "˙ D "˙, "˙ _ "� D 0 and "C C "� D 1, give rise
to a decomposition of an arbitrary differential u into two summands uC _ "C and
u�_"� (with space differentials uC, u�) that are uniquely determined by u as the
eigendifferentials of the idempotent operators _"C and _"�.

For every Dirac equation
ıu D a _ u

with a D ˛ C ˇ _ icdt (and ˛, ˇ space differentials), in which the differential a
does not depend on t in the sense that @a

@t
D 0, the energy operator H given by

Hu D �
h

2� i
@u

@t

is an integral, and as H commutes with the integrals _"C, _"�, the complete
solutions of such a Dirac equation can be reduced to the determination of the
simultaneous eigendifferentials of H and _"˙, that is, those the differentials

u D p _ T ˙ with T ˙ D "˙ � e�
2� i
h
Et ;

where the first factor, as a pure space differential, must satisfy

ıp D ˛ _ p �

�
2�

hc
E C ˇ

�
_ �p: (4)

8 Spherically symmetric Dirac equations

Among the Dirac equations in space and time with energy integral, those in which
˛ and ˇ are spherically symmetric space differentials distinguish themselves by
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physical applicability and the possibility of reduction to ordinary differential equa-
tions.

In this case we can continue further the above separation of u into a pure space
differential p and a pure time differential T by setting

p D R _ S

and require thatR is spherically symmetric and S D Sm
k

is a spherical differential.
Indeed, it is sufficient to determine R such that

ıR D ˛ _R˙

�
2�

hc
E C ˇ

�
_ �RC

k � 1

r
dr _ ��R

holds, which by making the ansatz R D f0.r/Cf1.r/drCf2.r/dwCf3.r/dr _
dw leads to the following system of ordinary differential equations:

df1
dr
C
1C k

r
f1 �

2�

hc
Ef0 D .˛0 ˙ ˇ0/f0 C .˛1 � ˇ1/f1 C .�˛2 ˙ ˇ2/f2 C .�˛3 � ˇ3/f3;

df0
dr
C
1 � k

r
f0 ˙

2�

hc
Ef1 D .˛1 ˙ ˇ1/f0 C .˛0 � ˇ0/f1 C .�˛3 ˙ ˇ3/f2 C .�˛2 � ˇ2/f3;

df2
dr
C
1C k

r
f3 ˙

2�

hc
Ef2 D .˛2 ˙ ˇ2/f0 C .˛3 � ˇ3/f1 C .˛0 � ˇ0/f2 C .˛1 ˙ ˇ1/f3;

df2
dr
C
1 � k

r
f1 �

2�

hc
Ef3 D .˛3 ˙ ˇ3/f0 C .˛2 � ˇ2/f1 C .˛1 � ˇ1/f2 C .˛0 � ˇ0/f3

(5)

where we set

˛ D ˛0.r/C ˛1.r/dr C ˛2.r/w C ˛3.r/dr _ w;
ˇ D ˇ0.r/C ˇ1.r/dr C ˇ2.r/w C ˇ3dr _ w:

9 The Dirac equation of the electron

The relation between the vector potential A1, A2, A3, the electric potential ˚ and
the electromagnetic field can be described, after introducing the field differential

! D A1dx1 C A2dx2 C A3dx3 � c˚dt;
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by
d! D �;

where

� DH1dx2 ^ dx3 CH2dx3 ^ dx1 CH3dx1 ^ dx2

C cE1dx1 ^ dt C cE2dx2 ^ dt C cE3dx3 ^ dt

satisfies the equations
d� D 0; ı� D 0

equivalent to the Maxwell equations. Since only d! has a physical meaning, all
physical statements derived from ! must be gauge invariant, that is, invariant
under the transformation ! 7! ! C df . If the arbitrariness in the choice of ! is
further constrained by the Lorentz condition,

d! D ı!;

then ! is harmonic in the sense that ıı! D 0.

Since electrodynamics allows such a concise formulation in the language of dif-
ferentials, it suggests itself to consider the Dirac theory of the electron as an affair
of inner differential calculus.

The spin of an electron is considered as an unmistakable sign that the states of an
electron cannot be described by a state function, but by a state differential. In an
electromagnetic field given by the field differential ! only those states are possible
whose differential u satisfies the Dirac equation

h

2� i
ıu D

1

c
.iE0 ˙ e!/ _ u;

with E0 the rest energy and e the charge of an electron. Namely, the states of the
“negative” electron are given by the condition

u _ "� D u; u _ "C D 0;

and those of the positron by

u _ "C D u; u _ "� D 0:

So these are the (automatically simultaneous) eigendifferentials of the integrals
_"C, _"� of the Dirac equation.

What is physically relevant is not the state differential u itself, but the following
triple differential derived from it,

jej � .u; �u/1 D % � w � .i1 � w1 C i2 � w2 C i3 � w3/ ^ dt;
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which determines the current density .i1; i2; i3/ and the charge density %.

This interpretation is possible by the conservation law

d.u; �v/1 D 0

that holds for any pair of solutions u, v of the above Dirac equation.

As befits every physically relevant differential, the density differential jej�.u; �u/1
is gauge invariant in the following sense: If we replace ! by ! C df in the Dirac
equation, then the new Dirac equation is solved by

v D e
2� i
hc
ef u

if u is a solution of the original Dirac equation. The requirement of gauge invari-
ance of the density differential thus is satisfied if every change ! 7! ! C df of
the field differential is accompanied by a change

u 7! e
2� i
hc
ef u

of the state differential.

The interpretation of Dirac’s theory presented here also holds up when the states
of an electron in a spherically symmetric Coulomb field are to be determined, that
is, for ! D �c˚dt with ˚ D Z

r
jej. With the method indicated above we obtain

state differentials of the form

u D R _ S _ T;

where R is a spherically symmetric space differential, S a spherical differential,
and T time differential that contains the energy constant. Since in the present
situation ˛ D ˛0 D �

2�
hc
E0, ˛k D 0 for k ¤ 0, ˇ D ˇ0 D

2�
hc
Ze2

r
, ˇk D 0

for k ¤ 0, the differential equations (5) simplfy considerably, namely to the two
known radial differential equations, if we consider that due to the absence of w in
˛ and ˇ, R can be assumed as to be independent of w as well (that is, f2 D f3 D
0) or only contains w as a factor, in which case f0 D f1 D 0 holds.

It deserves to be noted that in this calculus, h
2� iXk , k D 1; 2; 3, is naturally in-

terpreted as the total angular momentum, because the verbatim translation of the
usual interpretation would require h

2� i.Xk C
1
2
wk/ instead.
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Maxwell equations, 13
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k

(Legendre polynomial), 9
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k
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