The Riccati differential equation and non-associative algebras^{[1\)](#page-0-0)}

By MAX KOECHER

Introduction

1 The *Riccati differential equation*, that is, systems of differential equations of the form

$$
\dot{x}_i = \sum_{k,l=1}^n \alpha_{ikl} x_k x_l, \quad \alpha_{ikl} \in \mathbb{R}, i = 1, \dots, n,
$$
\n^(*)

often appears in problems regarding the behaviour of closed systems in biology, genetics, ecology, chemistry etc. Aside from the fact that the corresponding initial value problem has a unique solution, in the general case very little is known about the solutions $x_i = x_i(\xi)$.

In vector notation, the system $(*)$ can be written

$$
\dot{x} = p(x), \qquad \qquad (**)
$$

where $p : \mathbb{R}^n \to \mathbb{R}^n$ is a given vector-valued homogeneous polynomial of degree 2.

The homogeneous polynomial $p : \mathbb{R}^2 \to \mathbb{R}^2$ of degree 2 correspond bijectively to the commutative algebra structures on \mathbb{R}^n : If p is such a polynomial, we obtain via

$$
xy = \frac{1}{2}(p(x + y) - p(x) - p(y))
$$

an R-bilinear and symmetric map $(x, y) \mapsto xy$ of $\mathbb{R}^n \times \mathbb{R}^n$ into \mathbb{R}^n . Thus we assign to every p a commutative (but not necessarily associative) algebra $\mathfrak{A} = \mathfrak{A}_p$ on \mathbb{R}^n , and $p(x) = x^2$ holds. Conversely, if \mathfrak{A} is an algebra on \mathbb{R}^n , then $p(x) =$ x^2 is a homogeneous polynomial of degree 2.

Subsequently, we take the following "algebraic" point of view when studying the properties of the system $(*)$ and $(**)$, respectively:

 1 ¹⁾Extended version of a talk given at the Festkolloquium in honour of the 60th birthday of Helene Braun on the June 12, 1974.

Let $\mathfrak A$ with the product $(x, y) \mapsto xy$ be a commutative R-algebra on $\mathbb R^n$. The associated Riccati differential equation is the system

$$
\dot{x} = x^2. \tag{***}
$$

Every solution $x = x(\xi)$ that is differentiable in a neighborhood of $\xi = 0$ is called an A*-solution*.

2 Define the R-vector space \mathfrak{R}_n of power series f that converge in a neighborhood of 0 in \mathbb{R}^n ,

$$
f(u) = \sum_{m=0}^{\infty} f_m(u),
$$

where $f_m \mathbb{R}^n \to \mathbb{R}^n$ are homogeneous polynomials of degree m. In addition, define the subset

$$
\mathfrak{S}_n = \{ f \in \mathfrak{R}_n \mid f(u) = u + \text{higher order terms} \}
$$

of \mathfrak{R}_n . It is well-known that every $f \in \mathfrak{S}_n$ is invertible in a neighborhood of 0 and that \mathcal{G}_n is a group with respect to $(f, g) \mapsto f \circ g$. Moreover, it is clear that \mathfrak{S}_n acts on \mathfrak{R}_n as a group of endomorphisms via

$$
\Re_n \times \mathfrak{S}_n \to \mathfrak{R}_n, \quad (q, f) \mapsto q \circ f.
$$

For $p, q \in \mathfrak{R}_n$, define $p \bullet q \in \mathfrak{R}_n$ by

$$
((p \bullet q)(u))_i = \sum_{j=1}^n \frac{\partial p_i(u)}{\partial u_j} q_j(u),
$$

where the indices denote indicate the components of vectors in \mathbb{R}^n . Geometrically, $p \bullet q$ is the *directional derivative of* p *in the direction of* q. Clearly, \mathcal{R}_n together with the product $(p, q) \mapsto p \bullet q$ is a (non-associative) R-algebra.

3 As in 1, let $\mathfrak A$ be a commutative R-algebra on $\mathbb R^n$. As usual, the powers of $\mathfrak A$ are defined recursively by $u^{m+1} = uu^m$, $u^1 = u$. Define recursively

$$
g_{m+1} = g_m \bullet p, \quad g_0(u) = u,
$$

where p is given by $p(u) = u^2$, and verifies that

$$
g_{\mathfrak{A}}(u) = \sum_{m=0}^{\infty} \frac{1}{m!} g_m(u)
$$

defines an element $g_{\mathfrak{A}}$ of \mathfrak{S}_n . Verify that

$$
g_{\mathfrak{A}}(u) = u + u^2 + u^3 + \frac{1}{3}(2u^4 + u^2u^2) + \frac{1}{6}(2u^5 + u(u^2u^2) + 3u^2u^3) + \dots
$$

To the algebra $\mathfrak A$ is now assigned a subset $\mathfrak{G}(\mathfrak A)$ of those $f \in \mathfrak{S}_n$ for which $f(x(\xi))$ is an \mathfrak{A} -solution if $x = x(\xi)$ is. The elements of $\mathfrak{G}(\mathfrak{A})$ preserve solutions of the associated Riccati equation of \mathfrak{A} . One can prove that $\mathfrak{S}(\mathfrak{A})$ is a subgroup of \mathcal{G}_n that contains $g_{\mathfrak{A}}$. Thus $\mathfrak{G}(\mathfrak{A})$ does not consist of the identity element only.

4 From the theory of Jordan algebras it is known that certain algebras derived from $\mathfrak A$ play an important role: For $a \in \mathfrak A$ define a new product on $\mathbb R^n$,

$$
u \perp_a v = u(va) + v(ua) - a(uv), \quad u, v \in \mathbb{R}^n.
$$

We call this algebra \mathfrak{A}_a on \mathbb{R}^n defined by the product $(u, v) \mapsto u \perp_a v$ the *mutation of* $\mathfrak A$ *with respect to a.* Clearly, $\mathfrak A_a$ is also commutative.

In studying the group $\mathcal{G}(\mathfrak{A})$ one necessarily encounters the vector subspace

$$
\mathfrak{F}(\mathfrak{A}) = \{ a \in \mathbb{R}^n \mid 2u(u(ua)) + u^3 a = 2u(u^2a) + u^2(ua) \text{ for } u \in \mathbb{R}^n \}
$$

of \mathbb{R}^n . In other places it has been shown:

Theorem A If $\mathfrak A$ has an identity element, then

$$
a \mapsto g_{\mathfrak{B}}, \quad \mathfrak{B} = \mathfrak{A}_a,
$$

is an isomorphism of the additive group of $\mathfrak{F}(\mathfrak{A})$ onto $\mathfrak{F}(\mathfrak{A})$.

Due to this isomorphism the seemingly arbitrarily defined vector subspace $\mathfrak{F}(\mathfrak{A})$ of \mathbb{R}^n has to play an exceptional role. In the present note we will show (Theorem [2.3\)](#page-11-0) that $\mathfrak{F}(\mathfrak{A})$ is indeed algebraically exceptional:

Theorem B For every commutative algebra \mathfrak{A} on \mathbb{R}^n , $\mathfrak{J}(\mathfrak{A})$ is a Jordan subalgebra of \mathfrak{A} .

The proof uses standard arguments from the theory of Jordan and Lie algebras (compare Meyberg $[2, 3, 4]$ $[2, 3, 4]$ $[2, 3, 4]$). The restriction to real algebras $\mathfrak A$ is not essential.

5 A simple special case shall be mentioned: If the commutative R-algebra $\mathfrak A$ is also associative (or more generally power-associative), then the differential equation $(* * *)$ can be solved explicitely. With elementary arguments we can see that the power series $g_{\mathfrak{A}}$ defined in 3 is given by

$$
g_{\mathfrak{A}}(u) = \sum_{m=1}^{\infty} u^m.
$$

So if $\mathfrak A$ has an identity element e , it follows that

$$
g_{\mathfrak{A}}(u)=u(e-u)^{-1}.
$$

Thus $g_{\mathfrak{A}}$ is birational. The solution of the initial value problem $x(0) = u$ of the differential equation $(* * *)$ is then give by

$$
x(\xi) = u(e - \xi u)^{-1}.
$$

We obtain a global solution whose asymptotic behaviour is easy to determine.

In the special case of a commutative and associative algebra $\mathfrak A$ discussed here, it follows that $\mathfrak{F}(\mathfrak{A}) = \mathfrak{A}$, so that $\mathfrak{G}(\mathfrak{A})$ is an *n*-dimensional vector group.

§1 Lie algebras and Jordan tripel systems

In this paragraph, let $\mathbb k$ always be a commutative ring with identity element. All k-modules appearing here are k-left-modules of rings with identity ("unitary leftmodules").

1 Let Ω be a Lie algebra over k with the following properties:

 $(Q.1)$ $\Omega = \mathfrak{F} \oplus \mathfrak{D} \oplus \mathfrak{N}$ is the direct sum of the subalgebras $\mathfrak{F}, \mathfrak{D}$ and \mathfrak{N} .

 $(Q.2)$ $\tilde{\gamma}$ and \mathfrak{N} are abelian.

 $(Q.3) \quad [\mathfrak{F}, \mathfrak{D}] \subset \mathfrak{F}, [\mathfrak{F}, \mathfrak{N}] \subset \mathfrak{D}, [\mathfrak{D}, \mathfrak{N}] \subset \mathfrak{N}.$

We then have $[\mathfrak{F}, \mathfrak{Q}] \subset \mathfrak{F} \oplus \mathfrak{X}$ and $[\mathfrak{N}, \mathfrak{Q}] \subset \mathfrak{F} \oplus \mathfrak{N}$, so that

$$
[\mathfrak{F}, [\mathfrak{F}, \mathfrak{L}]]] = [\mathfrak{N}, [\mathfrak{N}, [\mathfrak{N}, \mathfrak{Q}]]] = \mathbf{0}.
$$
 (1.1)

By

$$
\{a, p, b\} = [a, [b, p]] \quad \text{for } a, b \in \mathfrak{F}, p \in \mathfrak{N},
$$

$$
\{p, a, q\} = [p, [q, a]] \quad \text{for } a \in \mathfrak{F}, p, q \in \mathfrak{N},
$$

two k-trilinear maps

$$
\mathfrak{F} \times \mathfrak{N} \times \mathfrak{F} \to \mathfrak{F}, \quad (a, p, b) \mapsto \{a, p, b\},
$$

$$
\mathfrak{N} \times \mathfrak{F} \times \mathfrak{N} \to \mathfrak{N}, \quad (p, a, q) \mapsto \{p, a, q\},
$$
 (1.2)

are defined. From the composition rules (Q.3) we infer that the images are indeed contained in $\mathfrak F$ and $\mathfrak R$, respectively. By (Q.2) both maps are symmetrical in the first and third argument. Using the Jacobi identity we verify

$$
[t, \{b, q, c\}] = \{[t, b], q, c\} + \{b, [t, q], c\} + \{b, q, [t, c]\}
$$
(1.3)

for $t \in \mathcal{F}$, $b, c \in \mathcal{F}$ and $q \in \mathcal{R}$. Analogously,

$$
[t, \{q, b, r\}] = \{[t, q], b, r\} + \{q, [t, b], r\} + \{q, b, [t, r]\}
$$
(1.4)

for $t \in \mathcal{X}, b \in \mathcal{X}$ and $q, r \in \mathcal{X}$. As in [\[3,](#page-13-1) p. 19] we see:

Lemma 1.1 For $a, b, c \in \mathcal{F}$ and $p, q, r \in \mathcal{R}$:

(a) $\{b, \{p, a, q\}, c\} = \{b, q, \{a, p, c\}\} + \{c, q, \{a, p, b\}\} - \{a, p, \{b, q, c\}\},\$

(b)
$$
\{q, \{a, p, b\}, r\} = \{q, b, \{p, a, r\}\} + \{r, b, \{p, a, q\}\} - \{p, a, \{q, b, r\}\}.
$$

PROOF: Set $t = [a, p]$ in [\(1.3\)](#page-4-0) and [\(1.4\)](#page-4-1). \diamondsuit

A pair $(\mathfrak{F}, \mathfrak{N})$ of k-modules together with two trilinear maps [\(1.2\)](#page-4-2) that are symmetric in the first and third argument and satisfy the identities in Lemma [1.1](#page-4-3) are called a *Jordan tripel system* (or *connected pair* in the sense of Meyberg [\[2\]](#page-13-0)). From [\[2,](#page-13-0) Satz 2.2, Satz 2.3] we obtain:

Lemma 1.2 If $\Omega = \mathcal{F} \oplus \mathcal{F} \oplus \mathcal{R}$ is a k-Lie algebra satisfying (Q.1), (Q.2) and $(Q.3)$, and if the k-module Ω is divisible by 2 and 3, then:

(a) For every $p \in \mathfrak{N}, \mathfrak{F}$ with the product

$$
(a,b)\mapsto\{a,p,b\}=[a,[b,p]]
$$

is a k-Jordan algebra.

(b) For every $a \in \mathfrak{F}$, \mathfrak{R} with the product

$$
(p,q) \mapsto \{p,a,q\} = [p,[q,a]]
$$

is a k-Jordan algebra.

(c) The two "fundamental formulas"

$$
{a, {p, {a, q, a}, p}, a} = {a, p, a}, q, {a, p, a},
$$

$$
{p, {a, {p, b, p}, a}, p} = {p, a, p}, b, {p, a, p}
$$

hold for all $a, b \in \mathfrak{F}$, $p, q \in \mathfrak{N}$.

2 We now present a class of examples to illustrate the relation between certain Lie algebras and Jordan tripel systems from 1:

Let $\&$ be a k-Lie algebra with the following properties:

- (L.1) $\mathfrak{L} = \bigoplus_{\nu=0}^{\infty} \mathfrak{L}_{\nu}$ is the direct sum of submodules \mathfrak{L}_{ν} , $\nu = 0, 1, \dots$
- (L.2) $[\mathfrak{L}_{\nu}, \mathfrak{L}_{\mu}] \subset \mathfrak{L}_{\nu+\mu-1}$ for all $\nu, \mu \geq 0, \mathfrak{L}_{-1} = 0$.

After a change of indices \mathcal{L} is then a graded Lie algebra. In particular, \mathcal{L}_0 and \mathcal{L}_1 are subalgebras, and \mathfrak{L}_0 is abelian.

For $p \in \mathcal{L}_2$ define

$$
\mathfrak{N}_p = \{q \in \mathfrak{L}_2 \mid [p, q] = 0\},\
$$

$$
\mathfrak{D}_p = \{t \in \mathfrak{L}_1 \mid [p, [p, t]] = 0\},\
$$

$$
\mathfrak{D}_p = \{a \in \mathfrak{L}_0 \mid [p, [p, [p, a]]] = 0\}.
$$

As \mathfrak{N}_p is restricted to elements of \mathfrak{L}_2 , it is not necessarily a subalgebra of \mathfrak{L} .

Lemma 1.3 Let $p \in \mathcal{R}_2$ and assume \mathcal{R}_p is an abelian subalgebra of \mathcal{R} . Then:

(a) \mathfrak{D}_p is a subalgebra of \mathfrak{L} , and for $t \in \mathfrak{L}_1$, the following are equivalent:

$$
[p, t] \in \mathfrak{N}_p,\tag{1}
$$

$$
[\mathfrak{N}_p, t] \subset \mathfrak{N}_p. \tag{2}
$$

(b) \mathfrak{F}_p is an abelian subalgebra of \mathfrak{L} , and for $a \in \mathfrak{L}_0$, the following are equivalent:

$$
[p, a] \in \mathfrak{D}_p,\tag{1}
$$

$$
[\mathfrak{N}_p, a] \subset \mathfrak{D}_p. \tag{2}
$$

(c) $\mathfrak{Q}_p = \mathfrak{F}_p \oplus \mathfrak{D}_p \oplus \mathfrak{N}_p$ is a subalgebra of $\mathfrak L$ that satisfies (Q.1), (Q.2) and $(Q.3)$.

PROOF: (a) For $t \in \mathcal{L}_1$, $t \in \mathcal{L}_p$ is equivalent to (1) by (L.2). Moreover, (1) follows directly from (2) since $p \in \mathfrak{N}_p$. Now let $t \in \mathfrak{L}_1$ with $[p, t] \in \mathfrak{N}_p$ be given. For $q \in \mathfrak{N}_p$, $[p, [q, t]] = [[p, q], t] + [q, [p, t]]$. Here, $[p, q] = 0$ and $[p, t] \in \mathfrak{N}_p$ by (1). As \mathfrak{N}_p was assumed to be abelian, it follows that $[q, [p, t]] = 0$ and hence $[p, [q, t]] = 0$. Then $[q, t] \in \mathfrak{N}_p$, so that (2) holds. By (2), \mathfrak{S}_p is a subalgebra of \mathcal{L} .

(b) As a submodule of \mathfrak{L}_0 , \mathfrak{F}_p is an abelian subalgebra of \mathfrak{L} . Again $a \in \mathfrak{F}_p$ is equivalent to (1), and (1) follows from (2). To prove (2), let $a \in \mathcal{L}_0$ with $[p, a] \in \mathfrak{S}_p$ be given. By (1) of part (a), $[p, [p, a]] \in \mathfrak{N}_p$. Since \mathfrak{N}_p abelian, it follows for all $q \in \mathfrak{N}_p$ that

$$
0 = [q, [p, [p, a]]] = [[q, p], [p, a]] + [p, [q, [p, a]]] = [p, [q, [p, a]]].
$$

As $[q, [p, a]] \in \mathcal{L}_2$, it follows that $[q, [p, a]] = [p, [q, a]] \in \mathcal{R}_p$, so that by (1) of part (a), $[q, a] \in \mathfrak{S}_p$. Thus (2) holds.

(c) Conditions (Q.1) and (Q.2) have already been shown. In light of parts(2) in (a) and (b), we only need to show $[\mathfrak{F}_p, \mathfrak{F}_p] \subset \mathfrak{F}_p$ for $(Q.3)$. For $a \in \mathfrak{F}_p$ and $t \in \mathfrak{F}_p$, $[a, t] \in \mathfrak{L}_0$ and we have

$$
[p,[a,t]] = [[p,a],t] + [a,[p,t]].
$$

By (b), $[p, a] \in \mathfrak{D}_p$, and by (a), $[p, t] \in \mathfrak{N}_p$, so that by (b) both summands lie in \mathfrak{D}_p . Thus $[a, t] \in \mathfrak{J}_p$ by (1) of part (b). \diamondsuit

3 For later applications we summarize the results of 1 and 2:

Theorem 1.4 Let $\mathcal{L} = \bigoplus_{\nu=0}^{\infty} \mathcal{L}_{\nu}$ be a k-Lie algebra that satisfies conditions (L.1) and (L.2), and let $p \in \mathcal{L}_2$ be given such that \mathcal{R}_p is an abelian subalgebra of \mathcal{R} . If the $\&$ -module $\&$ is divisible by 2 and 3, then:

(a) $(\mathfrak{F}_p, \mathfrak{N}_p)$ together with the two maps

$$
(a, q, b) \mapsto \{a, q, b\} = [a, [b, q]],
$$

$$
(r, a, q) \mapsto \{r, a, q\} = [r, [q, a]]
$$

is a linear Jordan tripel system.

- (b) For every $q \in \mathfrak{N}_p$, \mathfrak{F}_p together with the product $(a, b) \mapsto \{a, q, b\}$ is a Jordan algebra.
- (c) For every $a \in \mathfrak{J}_p$, \mathfrak{N}_p together with the product $(q, r) \mapsto \{q, a, r\}$ is a Jordan algebra.

PROOF: By (c) of Lemma [1.3,](#page-5-0) we can apply all the results from 1. \diamond

4 The construction of the Lie algebra Ω_p in 2 is based on the following: Let $\mathcal R$ be a k-Lie algebra and \mathfrak{N} a subalgebra of \mathfrak{L} . If we put

$$
\mathfrak{D} = \{ t \in \mathfrak{L} \mid [\mathfrak{N}, t] \subset \mathfrak{N} \},
$$

$$
\mathfrak{J} = \{ a \in \mathfrak{L} \mid [\mathfrak{N}, a] \subset \mathfrak{D} \},
$$

then $\mathfrak F$ and $\mathfrak F$ are subalgebras of $\mathfrak L$, and

$$
\mathfrak{Q} = \mathfrak{J} + \mathfrak{D} + \mathfrak{N}
$$

satisfies (Q.3). In general, this is not a direct sum.

However, if conditions (L.1) and (L.2) are satisfied by \mathcal{L} and if \mathcal{R} is an abelian subalgebra of \mathfrak{L}_2 , then we can define

$$
\mathfrak{T}(\mathfrak{N}) = \{t \in \mathfrak{L}_1 \mid [\mathfrak{N}, t] \subset \mathfrak{N}\},\
$$

$$
\mathfrak{J}(\mathfrak{N}) = \{a \in \mathfrak{L}_0 \mid [\mathfrak{N}, a] \subset \mathfrak{T}(\mathfrak{N})\},\
$$

and

$$
\mathfrak{Q}(\mathfrak{N}) = \mathfrak{J}(\mathfrak{N}) \oplus \mathfrak{T}(\mathfrak{N}) \oplus \mathfrak{N}.
$$

Then $\mathfrak{Q}(\mathfrak{N})$ satisfies (Q.2) and (Q.3), so we can again apply the results from 1.

§2 Commutative algebras

Throughout this paragraph, let \Bbbk be an infinite field of characteristic different from 2 and 3.

1 Let $\mathfrak V$ be a vector space of finite dimension $n > 0$ over k. An element x in a base field extension of V is called a *generic element* of V if the components of x with respect to a basis of $\mathfrak V$ are algebraically independent over k. Clearly this definition does not depende on the choice of the basis.

Let us now choose *n* elements τ_1, \ldots, τ_n in an extension field of k that are algebraically independent over k, and form the field

$$
\widetilde{\mathbb{k}} = \mathbb{k}(\tau_1,\ldots,\tau_n).
$$

For an arbitrary vector space $\mathfrak W$ over \Bbbk let $\widetilde{\mathfrak W}$ denote the $\widetilde{\Bbbk}$ -vector space obtained from $\mathfrak W$ by extension of the base field k to $\widetilde{\mathbb R}$. After choosing a basis b_1, \ldots, b_n of V,

$$
x = \tau_1 b_1 + \ldots + \tau_n b_n
$$

is a generic element of $\mathfrak V$ that is contained in $\widetilde{\mathfrak V}$.

If f is an element of $\widetilde{\mathfrak{W}}$, then we write $f(x)$ instead of f and call $f(x)$ a *rational function* in x. The function $f(x)$ is called a *polynomial* in x, if all components of $f(x)$ with respect to a basis of $\mathfrak W$ over k are polynomials in τ_1, \ldots, τ_n .

If u is an element in a base field extension of $\mathfrak V$ and $f \in \widetilde{\mathfrak V}$, then

$$
\Delta_x^u f(x) = \frac{\mathrm{d}}{\mathrm{d}\tau} f(x + \tau u)|_{\tau \to 0}
$$

defines a differential operator Δ . Compare [\[1,](#page-13-3) Chapter II, §1].

2 For $f, g \in \widetilde{\mathfrak{V}}$,

$$
[f, g](x) = \Delta_x^{g(x)} f(x) - \Delta_x^{f(x)} g(x)
$$
 (2.1)

defines an anti-commutative product $(f, g) \mapsto [f, g]$ on $\widetilde{\mathfrak{B}}$. In [\[3,](#page-13-1) I, §1.3] and in [\[4\]](#page-13-2) it was shown that $\widetilde{\mathfrak{B}}$ together with the product $(f, g) \mapsto [f, g]$ is a k-Lie algebra Rat V.

Let Pol $\mathfrak V$ denote the subspace of Rat $\mathfrak V$ of all polynomials and $\mathfrak P_\nu(\mathfrak V)$ the subspace of homogeneous polynomials of degree ν . Then

$$
\operatorname{Pol} \mathfrak{V} = \bigoplus_{\nu=0}^\infty \mathfrak{P}_\nu(\mathfrak{V})
$$

is a subalgebra of Rat $\mathfrak V$ that satisfies (L.1) and (L.2) for $\mathfrak{L}_{\nu} = \mathfrak{P}_{\nu}(\mathfrak{V})$. In the following we study elements of $\mathfrak{P}_2(\mathfrak{V})$, that is, homogeneous polynomials of degree 2, for which

$$
\mathfrak{N}_p = \{q \in \mathfrak{P}_2(\mathfrak{V}) \mid [p, q] = 0\}
$$

is an abelian subalgebra of Pol \mathfrak{V} , compare §1.2.

3 If $\mathfrak A$ together with the product $(a, b) \mapsto ab$ is a commutative algebra defined on the vector space \mathfrak{V} , then

$$
p_{\mathfrak{A}}(x) = x^2
$$

defines an element $p_{\mathfrak{A}}$ of $\mathfrak{P}_2(\mathfrak{B})$. Conversely, for every $q \in \mathfrak{P}_2(\mathfrak{B})$ there exists an algebra $\mathfrak A$ on $\mathfrak V$ with $q = p_{\mathfrak A}$. Therefore,

$$
\mathfrak{P}_2(\mathfrak{V}) = \{ p_{\mathfrak{A}} \mid \mathfrak{A} \text{ is a commutative algebra on } \mathfrak{V} \}.
$$

Now fix a commutative algebra $\mathfrak A$ with product $(a, b) \mapsto ab$ on $\mathfrak A$. For $p =$ $p_{\mathfrak{A}} \in \mathfrak{B}_2(\mathfrak{B})$, that is $p(x) = x^2$, we write $\mathfrak{R}(\mathfrak{A})$ for \mathfrak{R}_p , and obtain by [\(2.1\)](#page-8-0) for $q \in \mathfrak{P}_v(\mathfrak{V}), v \leq 3$,

$$
[p_{\mathfrak{A}}, q](x) = \Delta_x^{q(x)} x^2 - \Delta_x^{x^2} q(x).
$$

This q defines a v-linear and symmetric map $(a_1, \ldots, a_\nu) \mapsto q(a_1, \ldots, a_\nu)$ from $\mathfrak{V} \times \mathfrak{V}$ to \mathfrak{V} via $q(a, \ldots, a) = q(a)$. Using the chain rule, it follows that

$$
[p_{\mathfrak{A}}, q](x) = 2xq(x) - \nu q(x, \dots, x, x^2). \tag{2.2}
$$

In particular,

$$
\mathfrak{N}(\mathfrak{A}) = \{ q \in \mathfrak{P}_2(\mathfrak{B}) \mid xq(x) = q(x, x^2) \}. \tag{2.3}
$$

Lemma 2.1 Suppose the commutative algebra \mathfrak{A} on \mathfrak{B} has an identity element e. If $[p_{\mathfrak{A}}, q] = 0$ for some $q \in \mathfrak{P}_3(\mathfrak{V})$, then $q = 0$.

PROOF: Let the symmetric trilinear map $q : \mathfrak{V} \times \mathfrak{V} \times \mathfrak{V} \rightarrow \mathfrak{V}$ be given by $q(x, x, x) = q(x)$. By [\(2.2\)](#page-9-0),

$$
2xq(x) = 3q(x, x, x^2).
$$

In particular, for $x = e$ it follows that $q(e) = 0$. By linearization,

$$
yq(x) + 3xq(x, x, y) = 3q(y, x, x^2) + 3q(x, x, xy).
$$
 (2.4)

For $x = e$, $q(e, e, y) = 0$ follows. Another linearization yields

$$
2yq(x, x, y) + 2xq(x, y, y) = q(y, y, x^2) + 2q(y, x, xy) + 2q(x, y, xy) + q(x, x, y^2).
$$

For $x = e$ it follows that $q(e, y, y) = 0$. Finally, let $y = e$ in [\(2.4\)](#page-9-1) and obtain $q(x) = 0$, that is, $q = 0$.

Remark 1 If k has characteristic 0, we can show analogously that $[p, q] = 0$, $q \in \mathfrak{P}_v(\mathfrak{V}), v \geq 3$, already implies $q = 0$.

Corollary 1 $\mathfrak{N}(\mathfrak{A})$ is an abelian subalgebra of Pol \mathfrak{B} .

PROOF: For $q, r \in \mathfrak{N}(\mathfrak{V}), [p, [q, r]] = 0$ follows from the Jacobi identity. As the [q, r] belong to $\mathfrak{P}_3(\mathfrak{V})$, we obtain [q, r] from Lemma [2.1.](#page-9-2) \diamond

4 By the corollary to Lemma [2.1](#page-9-2) and the fact that Pol $\mathfrak V$ satisfies (L.1) and (L.2), we can apply the results from §1 to algebras $\mathfrak A$ on $\mathfrak A$. Write $\mathfrak T(\mathfrak A), \mathfrak J(\mathfrak A)$ for $\mathfrak T_p$, \mathfrak{F}_p , respectively, and obtain from §1.2

$$
\mathfrak{T}(\mathfrak{V}) = \{ T \in \text{End } \mathfrak{V} \mid [p_{\mathfrak{A}}, [p_{\mathfrak{A}}, T]] = 0 \},
$$

$$
\mathfrak{J}(\mathfrak{V}) = \{ a \in \mathfrak{V} \mid [p_{\mathfrak{A}}, [p_{\mathfrak{A}}, [p_{\mathfrak{A}}, a]]] = 0 \},
$$

where we identify the elements of $\mathfrak{P}_1(\mathfrak{V})$ and End \mathfrak{V} and those of $\mathfrak{P}_0(\mathfrak{V})$ and \mathfrak{V} . Since $p_{\mathfrak{A}}(x) = x^2$,

$$
[p_{\mathfrak{A}}, T](x) = 2x(Tx) - Tx^{2},
$$

$$
[p_{\mathfrak{A}}, a](x) = 2ax.
$$

As usual, left-multiplication on $\mathfrak A$ is denoted by $L : \mathfrak A \to \text{End } \mathfrak B$, that is,

$$
xy = L(x)y.
$$

In particular,

$$
[p_{\mathfrak{A}}, a] = 2L(a),
$$

and we see that $a \in \mathfrak{F}(\mathfrak{A})$ if and only if $L(a) \in \mathfrak{X}(\mathfrak{A})$. Now verify that

$$
\mathfrak{D}(\mathfrak{A}) = \{ T \in \text{End } \mathfrak{B} \mid 2x(x \cdot Tx) + Tx^3 = 2x \cdot Tx^2 + x^2 \cdot Tx \},\tag{2.5}
$$

$$
\mathfrak{F}(\mathfrak{A}) = \{a \in \mathfrak{B} \mid 2x(x \cdot xa) + ax^3 = 2x(ax^2) + x^2(ax)\}.
$$
 (2.6)

Lemma 2.2 If the commutative algebra $\mathfrak A$ on $\mathfrak A$ has an identity element e, then

$$
\mathfrak{N}(\mathfrak{A}) = \{ q \mid q(x) = 2x(xa) - ax^2 \text{ for all } a \in \mathfrak{J}(\mathfrak{A}) \}
$$

and $a \mapsto 2x(ax) - ax^2$ is a linear bijection of $\mathfrak{F}(\mathfrak{A})$ onto $\mathfrak{R}(\mathfrak{A})$.

PROOF: The defining condition $[p_{\mathfrak{A}}, q] = 0$ for $\mathfrak{N}(\mathfrak{A})$ means by [\(2.2\)](#page-9-0) the identity

$$
xq(x) = q(x, x^2).
$$

Linearization leads to

$$
yq(x) + 2xq(x, y) = q(y, x^2) + 2q(x, xy),
$$

so that $x = e$ or $y = e$ with $a = q(e)$ yields

$$
q(e, y) = ay
$$
 or $q(x) = 2xq(e, x) - q(e, x^2)$

respectively. This implies

$$
q(x) = 2x(xa) - ax^2,
$$

that is, $q = [p_{\mathfrak{A}}, L(a)]$. As $[p_{\mathfrak{A}}, q] = 0, L(a) \in \mathfrak{X}(\mathfrak{A})$, that is, $a \in \mathfrak{F}(\mathfrak{A})$. Conversely, if $a \in \mathfrak{F}(\mathfrak{A})$, then $q = [p_{\mathfrak{A}}, L(a)] \in \mathfrak{R}(\mathfrak{A})$. 5 In addition to the left-multiplication L of $\mathfrak A$ consider the quadratic representation

$$
P(x) = 2L(x)^2 - L(x^2)
$$

and its linearized form $P(x, y)$. By Lemma [2.2](#page-10-0) $\mathfrak{N}(\mathfrak{A})$ consists precisely of those polynomials q with $q(x) = P(x)a$ with $a \in \mathfrak{F}(\mathfrak{A})$.

By the corollary of Lemma [2.1,](#page-9-2) Theorem [1.4](#page-6-0) can be applied. From part (c) we obtain for $q = p_{\mathfrak{A}}$ that $\mathfrak{F}(\mathfrak{A})$ together with the product

$$
(a, b) \mapsto \{a, p_{\mathfrak{A}}, b\} = -[a, [p_{\mathfrak{A}}, b]] = 2[L(b), a] = 2ab
$$

is a Jordan algebra.

Theorem 2.3 If \mathfrak{A} is a finite-dimensional commutative algebra over a field of characteristic other than 2 and 3, then $\mathfrak{F}(\mathfrak{A})$ is a Jordan subalgebra of \mathfrak{A} .

PROOF: First assume that $\mathfrak A$ contains an identity element. Then we just saw that $\mathfrak{F}(\mathfrak{A})$ is a Jordan algebra with the product $(a, b) \mapsto 2ab$, hence also with the product $(a, b) \mapsto ab$. The general case now follows by adjunction of an identity \bullet element.

Remark 2 In general, $\mathfrak{F}(\mathfrak{A}) = 0$.

§3 Some examples

Let $\mathbb k$ be an infinite field of characteristic other than 2 and 3, and let $\mathfrak A$ be a finitedimensional commutative k-algebra.

1 As in Theorem [2.3](#page-11-0) we consider the Jordan subalgebra

$$
\mathfrak{F}(\mathfrak{A}) = \{ a \in \mathfrak{A} \mid 2x(x \cdot xa) + ax^3 = 2x(ax^2) + x^2(ax) \}
$$

of A. As examples we study the following classes of algebras:

- (a) \mathfrak{A} is *power-associative*, that is, $x^m x^n = x^{m+n}$ for all $m, n \in \mathbb{N}$.
- (b) $\mathfrak A$ is a *Lie triple algebra*, that is, for $x, y, z \in \mathfrak A$,

$$
w(x, y, z) + y(x, w, z) = (x, yw, z),
$$

where the *associator* is defined by $(x, y, z) = (xy)z - x(yz)$. Compare Osborn [\[5\]](#page-13-4) and Petersson [\[6\]](#page-13-5).

(c) \mathfrak{A} has a non-degenerate symmetric bilinear form σ that is associative, that is, $\sigma(xy, z) = \sigma(x, yz)$ for all $x, y, z \in \mathfrak{A}$.

Lemma 3.1 If \mathfrak{A} is of type (a), (b) or (c), then

$$
\mathfrak{J}(\mathfrak{A}) = \{ a \in \mathfrak{A} \mid x^2(ax) = x(ax^2) \}.
$$

PROOF: Type (a): By linearization of $x^2x^2 = x^4$ we obtain

$$
4(ax)x^{2} = ax^{3} + x(ax^{2}) + 2x(x \cdot ax)
$$

for $a, x \in \mathfrak{A}$. Thus $a \in \mathfrak{J}(\mathfrak{A})$ is equivalent to $x^2(ax) = x(ax^2)$.

Type (b): $a \in \mathfrak{J}(\mathfrak{A})$ is equivalent to $2x(a, x, x) = x^2(ax) - ax^3$. The claim follows since $2x(a, x, x) = (a, x^2, x) = (ax^2)x - ax^3$.

Type (c): By assumption, $L(x)$ is self-adjoint with respect to σ . By linearization of the defining identity for $\mathfrak{F}(\mathfrak{A})$ we find that

$$
2L(x \cdot xa) + 2L(x)L(xa) + L(x)^{2}L(a) + L(a)L(x^{2}) + 2L(a)L(x)^{2}
$$

= 2L(x²a) + 4L(x)L(a)L(a) + 2L(xa)L(x) + L(x²)L(a)

holds for $a \in \mathfrak{F}(\mathfrak{A})$. Taking the adjoint with respect to σ and subtracting yields

$$
2[L(x), L(xa)] + [L(a), L(x2)] = 0
$$

and application to x yields

$$
2x(x \cdot ax) - 2x^2(xa) + ax^3 - x^2 \cdot xa = 0.
$$

Comparing this with the definition of $\mathfrak{J}(\mathfrak{A})$, it follows that $x^2(ax) = x(ax^2)$ for all $a \in \mathfrak{X}(\mathfrak{A})$.

Conversely, if $x^2(ax) = x(ax^2)$, we obtain by linearization

$$
2L(xa)L(x) + L(x2)L(a) = L(x2a) + 2L(x)L(a)L(x).
$$

Again it follows that

$$
2[L(x), L(xa)] + [L(a), L(x2)] = 0
$$

and application to x yields $a \in \mathfrak{F}(\mathfrak{A})$.

By (a), $\mathfrak{F}(\mathfrak{A}) = \mathfrak{A}$ is holds precisely for Jordan algebras. In the case of a Lie triple algebra, the defining relations immediately imply that $\mathfrak{F}(\mathfrak{A}) = \{a \in \mathfrak{A} \mid$ $(x, a, x^2) = 0$ } is a Jordan algebra.

2 Let $\mathfrak B$ be an arbitrary k-algebra with product $(x, y) \mapsto xy$, and let $\mathfrak B^+$ the corresponding commutative algebra with product $(x, y) \mapsto x \cdot y = \frac{1}{2}(xy + yx)$. Verify that the defining identity for $\mathfrak{F}(\mathfrak{B}^+)$ can be written in the form

$$
2\{(xa, x, x) - (x, x, ax) + (x, x^2, a) - (a, x^2, x)\} + (ax, x, x) - (x, x, xa)
$$

+ (x, a, x²) - (x², a, x) + (x, x, x)a - a(x, x, x) + x(a, x, x) - (x, x, a)x
- (x, a, x)x + x(x, a, x) = 0.

If B is flexible, then Theorem [2.3](#page-11-0) implies the curious result that the set of $a \in \mathcal{B}$ satisfying

 $3(xa, x, x) + 3(ax, x, x) + 4(x, x^2, a) + 2(x, a, x^2) + x(a, x, x) + (a, x, x)x = 0$

is a Jordan subalgebra of \mathfrak{B}^+ .

References

- [1] H. Braun, M. Koecher: *Jordan-Algebren*, Springer Berlin, Heidelberg, New York, 1966
- [2] K. Meyberg: *Jordan-Tripelsysteme und die Koecher-Konstruktion von Lie-Algebren*, Mathematische Zeitschrift 115, 1970, 58-78
- [3] M. Koecher: *An elementary approach to bounded symmetric domains*, Rice University, Houston, Texas, 1969, and Appendix 1970
- [4] M. Koecher: *Gruppen und Lie-Algebren von rationalen Funktionen*, Mathematische Zeitschrift 109, 1969, 349-392
- [5] M. Osborn: *Commutative algebras satisfying an identity of degree four*, Proceedings of the American Mathematical Society 16, 1965, 1114-1120
- [6] H. Petersson: *Zur Theorie der Lie-Tripel-Algebren*, Mathematische Zeitschrift 97, 1967, 1-15

Original: *Die Riccati-sche Differentialgleichung und nicht-assoziative Algebren*, Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg 46, 1977, 129-141

Translation by Wolfgang Globke, Version of June 25, 2017.