
The Riccati differential equation
and non-associative algebras1)

By MAX KOECHER

Introduction

1 The Riccati differential equation, that is, systems of differential equations of
the form

Pxi D

nX
k;lD1

˛iklxkxl ; ˛ikl 2 R; i D 1; : : : ; n; (�)

often appears in problems regarding the behaviour of closed systems in biology,
genetics, ecology, chemistry etc. Aside from the fact that the corresponding initial
value problem has a unique solution, in the general case very little is known about
the solutions xi D xi.�/.

In vector notation, the system (�) can be written

Px D p.x/; (��)

where p W Rn ! Rn is a given vector-valued homogeneous polynomial of degree
2.

The homogeneous polynomial p W R2 ! R2 of degree 2 correspond bijectively
to the commutative algebra structures onRn: If p is such a polynomial, we obtain
via

xy D
1

2
.p.x C y/ � p.x/ � p.y//

an R-bilinear and symmetric map .x; y/ 7! xy of Rn � Rn into Rn. Thus we
assign to every p a commutative (but not necessarily associative) algebra A D Ap

on Rn, and p.x/ D x2 holds. Conversely, if A is an algebra on Rn, then p.x/ D
x2 is a homogeneous polynomial of degree 2.

Subsequently, we take the following “algebraic” point of view when studying the
properties of the system (�) and (��), respectively:

1)Extended version of a talk given at the Festkolloquium in honour of the 60th birthday of
Helene Braun on the June 12, 1974.
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Let A with the product .x; y/ 7! xy be a commutative R-algebra on Rn. The
associated Riccati differential equation is the system

Px D x2: (� � �)

Every solution x D x.�/ that is differentiable in a neighborhood of � D 0 is called
an A-solution.

2 Define the R-vector space Rn of power series f that converge in a neighbor-
hood of 0 in Rn,

f .u/ D

1X
mD0

fm.u/;

where fm Rn ! Rn are homogeneous polynomials of degree m. In addition,
define the subset

Gn D ff 2 Rn j f .u/ D uC higher order termsg

of Rn. It is well-known that every f 2 Gn is invertible in a neighborhood of 0
and that Gn is a group with respect to .f; g/ 7! f ı g. Moreover, it is clear that
Gn acts on Rn as a group of endomorphisms via

Rn �Gn ! Rn; .q; f / 7! q ı f:

For p; q 2 Rn, define p � q 2 Rn by

..p � q/.u//i D

nX
jD1

@pi.u/

@uj
qj .u/;

where the indices denote indicate the components of vectors inRn. Geometrically,
p � q is the directional derivative of p in the direction of q. Clearly, Rn together
with the product .p; q/ 7! p � q is a (non-associative) R-algebra.

3 As in 1, let A be a commutative R-algebra on Rn. As usual, the powers of A
are defined recursively by umC1 D uum, u1 D u. Define recursively

gmC1 D gm � p; g0.u/ D u;

where p is given by p.u/ D u2, and verifies that

gA.u/ D

1X
mD0

1

mŠ
gm.u/
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defines an element gA of Gn. Verify that

gA.u/ D uC u
2
C u3 C

1

3
.2u4 C u2u2/C

1

6
.2u5 C u.u2u2/C 3u2u3/C : : :

To the algebra A is now assigned a subset G.A/ of those f 2 Gn for which
f .x.�// is an A-solution if x D x.�/ is. The elements of G.A/ preserve solutions
of the associated Riccati equation of A. One can prove that G.A/ is a subgroup
of Gn that contains gA. Thus G.A/ does not consist of the identity element only.

4 From the theory of Jordan algebras it is known that certain algebras derived
from A play an important role: For a 2 A define a new product on Rn,

u ?a v D u.va/C v.ua/ � a.uv/; u; v 2 Rn:

We call this algebra Aa on Rn defined by the product .u; v/ 7! u ?a v the
mutation of A with respect to a. Clearly, Aa is also commutative.

In studying the group G.A/ one necessarily encounters the vector subspace

J .A/ D fa 2 Rn j 2u.u.ua//C u3a D 2u.u2a/C u2.ua/ for u 2 Rng

of Rn. In other places it has been shown:

Theorem A If A has an identity element, then

a 7! gB; B D Aa;

is an isomorphism of the additive group of J .A/ onto G.A/.

Due to this isomorphism the seemingly arbitrarily defined vector subspace J .A/
of Rn has to play an exceptional role. In the present note we will show (Theorem
2.3) that J .A/ is indeed algebraically exceptional:

Theorem B For every commutative algebra A on Rn, J .A/ is a Jordan subalge-
bra of A.

The proof uses standard arguments from the theory of Jordan and Lie algebras
(compare Meyberg [2, 3, 4]). The restriction to real algebras A is not essential.
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5 A simple special case shall be mentioned: If the commutative R-algebra A is
also associative (or more generally power-associative), then the differential equa-
tion (� � �) can be solved explicitely. With elementary arguments we can see that
the power series gA defined in 3 is given by

gA.u/ D

1X
mD1

um:

So if A has an identity element e, it follows that

gA.u/ D u.e � u/
�1:

Thus gA is birational. The solution of the initial value problem x.0/ D u of the
differential equation (� � �) is then give by

x.�/ D u.e � �u/�1:

We obtain a global solution whose asymptotic behaviour is easy to determine.

In the special case of a commutative and associative algebra A discussed here, it
follows that J .A/ D A, so that G.A/ is an n-dimensional vector group.

§1 Lie algebras and Jordan tripel systems

In this paragraph, let k always be a commutative ring with identity element. All
k-modules appearing here are k-left-modules of rings with identity (“unitary left-
modules”).

1 Let Q be a Lie algebra over k with the following properties:

(Q.1) Q D J ˚T ˚N is the direct sum of the subalgebras J , T and N.

(Q.2) J and N are abelian.

(Q.3) ŒJ ;T � � J , ŒJ ;N� � T , ŒT ;N� � N.

We then have ŒJ ;Q� � J ˚T and ŒN;Q� � T ˚N, so that

ŒJ ; ŒJ ; ŒJ ;Q��� D ŒN; ŒN; ŒN;Q��� D 0: (1.1)

By

fa; p; bg D Œa; Œb; p�� for a; b 2 J ; p 2 N;

fp; a; qg D Œp; Œq; a�� for a 2 J ; p; q 2 N;
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two k-trilinear maps

J �N � J ! J ; .a; p; b/ 7! fa; p; bg;

N � J �N! N; .p; a; q/ 7! fp; a; qg;
(1.2)

are defined. From the composition rules (Q.3) we infer that the images are indeed
contained in J and N, respectively. By (Q.2) both maps are symmetrical in the
first and third argument. Using the Jacobi identity we verify

Œt; fb; q; cg� D fŒt; b�; q; cg C fb; Œt; q�; cg C fb; q; Œt; c�g (1.3)

for t 2 T , b; c 2 J and q 2 N. Analogously,

Œt; fq; b; rg� D fŒt; q�; b; rg C fq; Œt; b�; rg C fq; b; Œt; r�g (1.4)

for t 2 T , b 2 J and q; r 2 N. As in [3, p. 19] we see:

Lemma 1.1 For a; b; c 2 J and p; q; r 2 N:

(a) fb; fp; a; qg; cg D fb; q; fa; p; cgg C fc; q; fa; p; bgg � fa; p; fb; q; cgg,

(b) fq; fa; p; bg; rg D fq; b; fp; a; rgg C fr; b; fp; a; qgg � fp; a; fq; b; rgg.

PROOF: Set t D Œa; p� in (1.3) and (1.4). }

A pair .J ;N/ of k-modules together with two trilinear maps (1.2) that are sym-
metric in the first and third argument and satisfy the identities in Lemma 1.1 are
called a Jordan tripel system (or connected pair in the sense of Meyberg [2]).
From [2, Satz 2.2, Satz 2.3] we obtain:

Lemma 1.2 If Q D J ˚ T ˚ N is a k-Lie algebra satisfying (Q.1), (Q.2) and
(Q.3), and if the k-module Q is divisible by 2 and 3, then:

(a) For every p 2 N, J with the product

.a; b/ 7! fa; p; bg D Œa; Œb; p��

is a k-Jordan algebra.

(b) For every a 2 J , N with the product

.p; q/ 7! fp; a; qg D Œp; Œq; a��

is a k-Jordan algebra.

(c) The two “fundamental formulas”

fa; fp; fa; q; ag; pg; ag D ffa; p; ag; q; fa; p; agg;

fp; fa; fp; b; pg; ag; pg D ffp; a; pg; b; fp; a; pgg

hold for all a; b 2 J , p; q 2 N.
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2 We now present a class of examples to illustrate the relation between certain
Lie algebras and Jordan tripel systems from 1:

Let L be a k-Lie algebra with the following properties:

(L.1) L D
L1

�D0 L� is the direct sum of submodules L� , � D 0; 1; : : :.

(L.2) ŒL�;L�� � L�C��1 for all �; � � 0, L�1 D 0.

After a change of indices L is then a graded Lie algebra. In particular, L0 and L1
are subalgebras, and L0 is abelian.

For p 2 L2 define

Np D fq 2 L2 j Œp; q� D 0g;

Tp D ft 2 L1 j Œp; Œp; t �� D 0g;

Jp D fa 2 L0 j Œp; Œp; Œp; a��� D 0g:

As Np is restricted to elements of L2, it is not necessarily a subalgebra of L.

Lemma 1.3 Let p 2 L2 and assume Np is an abelian subalgebra of L. Then:

(a) Tp is a subalgebra of L, and for t 2 L1, the following are equivalent:

Œp; t � 2 Np; (1)
ŒNp; t � � Np: (2)

(b) Jp is an abelian subalgebra of L, and for a 2 L0, the following are equiva-
lent:

Œp; a� 2 Tp; (1)
ŒNp; a� � Tp: (2)

(c) Qp D Jp ˚ Tp ˚ Np is a subalgebra of L that satisfies (Q.1), (Q.2) and
(Q.3).

PROOF: (a) For t 2 L1, t 2 Tp is equivalent to (1) by (L.2). Moreover, (1)
follows directly from (2) since p 2 Np. Now let t 2 L1 with Œp; t � 2 Np be given.
For q 2 Np, Œp; Œq; t �� D ŒŒp; q�; t �C Œq; Œp; t ��. Here, Œp; q� D 0 and Œp; t � 2 Np

by (1). As Np was assumed to be abelian, it follows that Œq; Œp; t �� D 0 and hence
Œp; Œq; t �� D 0. Then Œq; t � 2 Np, so that (2) holds. By (2), Tp is a subalgebra of
L.
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(b) As a submodule of L0, Jp is an abelian subalgebra of L. Again a 2 Jp
is equivalent to (1), and (1) follows from (2). To prove (2), let a 2 L0 with
Œp; a� 2 Tp be given. By (1) of part (a), Œp; Œp; a�� 2 Np. Since Np abelian, it
follows for all q 2 Np that

0 D Œq; Œp; Œp; a��� D ŒŒq; p�; Œp; a��C Œp; Œq; Œp; a��� D Œp; Œq; Œp; a���:

As Œq; Œp; a�� 2 L2, it follows that Œq; Œp; a�� D Œp; Œq; a�� 2 Np, so that by (1) of
part (a), Œq; a� 2 Tp. Thus (2) holds.

(c) Conditions (Q.1) and (Q.2) have already been shown. In light of parts(2) in (a)
and (b), we only need to show ŒJp;Tp� � Jp for (Q.3). For a 2 Jp and t 2 Tp,
Œa; t � 2 L0 and we have

Œp; Œa; t �� D ŒŒp; a�; t �C Œa; Œp; t ��:

By (b), Œp; a� 2 Tp, and by (a), Œp; t � 2 Np, so that by (b) both summands lie in
Tp. Thus Œa; t � 2 Jp by (1) of part (b). }

3 For later applications we summarize the results of 1 and 2:

Theorem 1.4 Let L D
L1

�D0 L� be a k-Lie algebra that satisfies conditions (L.1)
and (L.2), and let p 2 L2 be given such that Np is an abelian subalgebra of L. If
the k-module L is divisible by 2 and 3, then:

(a) .Jp;Np/ together with the two maps

.a; q; b/ 7! fa; q; bg D Œa; Œb; q��;

.r; a; q/ 7! fr; a; qg D Œr; Œq; a��

is a linear Jordan tripel system.

(b) For every q 2 Np, Jp together with the product .a; b/ 7! fa; q; bg is a
Jordan algebra.

(c) For every a 2 Jp, Np together with the product .q; r/ 7! fq; a; rg is a
Jordan algebra.

PROOF: By (c) of Lemma 1.3, we can apply all the results from 1. }
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4 The construction of the Lie algebra Qp in 2 is based on the following: Let L
be a k-Lie algebra and N a subalgebra of L. If we put

T D ft 2 L j ŒN; t � � Ng;

J D fa 2 L j ŒN; a� � Tg;

then T and J are subalgebras of L, and

Q D J CT CN

satisfies (Q.3). In general, this is not a direct sum.

However, if conditions (L.1) and (L.2) are satisfied by L and if N is an abelian
subalgebra of L2, then we can define

T .N/ D ft 2 L1 j ŒN; t � � Ng;

J .N/ D fa 2 L0 j ŒN; a� � T .N/g;

and
Q.N/ D J .N/˚T .N/˚N:

Then Q.N/ satisfies (Q.2) and (Q.3), so we can again apply the results from 1.

§2 Commutative algebras

Throughout this paragraph, let k be an infinite field of characteristic different from
2 and 3.

1 Let V be a vector space of finite dimension n > 0 over k. An element x in
a base field extension of V is called a generic element of V if the components of
x with respect to a basis of V are algebraically independent over k. Clearly this
definition does not depende on the choice of the basis.

Let us now choose n elements �1; : : : ; �n in an extension field of k that are alge-
braically independent over k, and form the field

zk D k.�1; : : : ; �n/:

For an arbitrary vector space W over k let zW denote the zk-vector space obtained
from W by extension of the base field k to zk. After choosing a basis b1; : : : ; bn
of V,

x D �1b1 C : : :C �nbn
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is a generic element of V that is contained in zV.

If f is an element of zW, then we write f .x/ instead of f and call f .x/ a rational
function in x. The function f .x/ is called a polynomial in x, if all components of
f .x/ with respect to a basis of W over k are polynomials in �1; : : : ; �n.

If u is an element in a base field extension of V and f 2 zV, then

�uxf .x/ D
d

d�
f .x C �u/j�!0

defines a differential operator �. Compare [1, Chapter II, §1].

2 For f; g 2 zV,

Œf; g�.x/ D �g.x/x f .x/ ��f .x/x g.x/ (2.1)

defines an anti-commutative product .f; g/ 7! Œf; g� on zV. In [3, I, §1.3] and
in [4] it was shown that zV together with the product .f; g/ 7! Œf; g� is a k-Lie
algebra Rat V.

Let Pol V denote the subspace of Rat V of all polynomials and P�.V/ the sub-
space of homogeneous polynomials of degree �. Then

Pol V D

1M
�D0

P�.V/

is a subalgebra of Rat V that satisfies (L.1) and (L.2) for L� D P�.V/. In the fol-
lowing we study elements of P2.V/, that is, homogeneous polynomials of degree
2, for which

Np D fq 2 P2.V/ j Œp; q� D 0g

is an abelian subalgebra of Pol V, compare §1.2.

3 If A together with the product .a; b/ 7! ab is a commutative algebra defined
on the vector space V, then

pA.x/ D x
2

defines an element pA of P2.V/. Conversely, for every q 2 P2.V/ there exists
an algebra A on V with q D pA. Therefore,

P2.V/ D fpA j A is a commutative algebra on Vg:
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Now fix a commutative algebra A with product .a; b/ 7! ab on V. For p D
pA 2 P2.V/, that is p.x/ D x2, we write N.A/ for Np, and obtain by (2.1) for
q 2 P�.V/, � � 3,

ŒpA; q�.x/ D �
q.x/
x x2 ��x

2

x q.x/:

This q defines a �-linear and symmetric map .a1; : : : ; a�/ 7! q.a1; : : : ; a�/ from
V �V to V via q.a; : : : ; a/ D q.a/. Using the chain rule, it follows that

ŒpA; q�.x/ D 2xq.x/ � �q.x; : : : ; x; x
2/: (2.2)

In particular,
N.A/ D fq 2 P2.V/ j xq.x/ D q.x; x

2/g: (2.3)

Lemma 2.1 Suppose the commutative algebra A on V has an identity element e.
If ŒpA; q� D 0 for some q 2 P3.V/, then q D 0.

PROOF: Let the symmetric trilinear map q W V � V � V ! V be given by
q.x; x; x/ D q.x/. By (2.2),

2xq.x/ D 3q.x; x; x2/:

In particular, for x D e it follows that q.e/ D 0. By linearization,

yq.x/C 3xq.x; x; y/ D 3q.y; x; x2/C 3q.x; x; xy/: (2.4)

For x D e, q.e; e; y/ D 0 follows. Another linearization yields

2yq.x; x; y/C2xq.x; y; y/ D q.y; y; x2/C2q.y; x; xy/C2q.x; y; xy/Cq.x; x; y2/:

For x D e it follows that q.e; y; y/ D 0. Finally, let y D e in (2.4) and obtain
q.x/ D 0, that is, q D 0. }

Remark 1 If k has characteristic 0, we can show analogously that Œp; q� D 0,
q 2 P�.V/, � � 3, already implies q D 0.

Corollary 1 N.A/ is an abelian subalgebra of Pol V.

PROOF: For q; r 2 N.V/, Œp; Œq; r�� D 0 follows from the Jacobi identity. As
the Œq; r� belong to P3.V/, we obtain Œq; r� from Lemma 2.1. }

10



4 By the corollary to Lemma 2.1 and the fact that Pol V satisfies (L.1) and (L.2),
we can apply the results from §1 to algebras A on V. Write T .A/, J .A/ for Tp,
Jp, respectively, and obtain from §1.2

T .V/ D fT 2 End V j ŒpA; ŒpA; T �� D 0g;

J .V/ D fa 2 V j ŒpA; ŒpA; ŒpA; a��� D 0g;

where we identify the elements of P1.V/ and End V and those of P0.V/ and V.
Since pA.x/ D x

2,

ŒpA; T �.x/ D 2x.T x/ � T x
2;

ŒpA; a�.x/ D 2ax:

As usual, left-multiplication on A is denoted by L W A! End V, that is,

xy D L.x/y:

In particular,
ŒpA; a� D 2L.a/;

and we see that a 2 J .A/ if and only if L.a/ 2 T .A/. Now verify that

T .A/ D fT 2 End V j 2x.x � T x/C T x3 D 2x � T x2 C x2 � T xg; (2.5)

J .A/ D fa 2 V j 2x.x � xa/C ax3 D 2x.ax2/C x2.ax/g: (2.6)

Lemma 2.2 If the commutative algebra A on V has an identity element e, then

N.A/ D fq j q.x/ D 2x.xa/ � ax2 for all a 2 J .A/g

and a 7! 2x.ax/ � ax2 is a linear bijection of J .A/ onto N.A/.

PROOF: The defining condition ŒpA; q� D 0 for N.A/means by (2.2) the identity

xq.x/ D q.x; x2/:

Linearization leads to

yq.x/C 2xq.x; y/ D q.y; x2/C 2q.x; xy/;

so that x D e or y D e with a D q.e/ yields

q.e; y/ D ay or q.x/ D 2xq.e; x/ � q.e; x2/

respectively. This implies

q.x/ D 2x.xa/ � ax2;

that is, q D ŒpA; L.a/�. As ŒpA; q� D 0, L.a/ 2 T .A/, that is, a 2 J .A/.

Conversely, if a 2 J .A/, then q D ŒpA; L.a/� 2 N.A/. }
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5 In addition to the left-multiplication L of A consider the quadratic represen-
tation

P.x/ D 2L.x/2 � L.x2/

and its linearized form P.x; y/. By Lemma 2.2 N.A/ consists precisely of those
polynomials q with q.x/ D P.x/a with a 2 J .A/.

By the corollary of Lemma 2.1, Theorem 1.4 can be applied. From part (c) we
obtain for q D pA that J .A/ together with the product

.a; b/ 7! fa; pA; bg D �Œa; ŒpA; b�� D 2ŒL.b/; a� D 2ab

is a Jordan algebra.

Theorem 2.3 If A is a finite-dimensional commutative algebra over a field of
characteristic other than 2 and 3, then J .A/ is a Jordan subalgebra of A.

PROOF: First assume that A contains an identity element. Then we just saw
that J .A/ is a Jordan algebra with the product .a; b/ 7! 2ab, hence also with the
product .a; b/ 7! ab. The general case now follows by adjunction of an identity
element. }

Remark 2 In general, J .A/ D 0.

§3 Some examples

Let k be an infinite field of characteristic other than 2 and 3, and let A be a finite-
dimensional commutative k-algebra.

1 As in Theorem 2.3 we consider the Jordan subalgebra

J .A/ D fa 2 A j 2x.x � xa/C ax3 D 2x.ax2/C x2.ax/g

of A. As examples we study the following classes of algebras:

(a) A is power-associative, that is, xmxn D xmCn for all m; n 2 N.

(b) A is a Lie triple algebra, that is, for x; y; z 2 A,

w.x; y; z/C y.x;w; z/ D .x; yw; z/;

where the associator is defined by .x; y; z/ D .xy/z � x.yz/. Compare
Osborn [5] and Petersson [6].
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(c) A has a non-degenerate symmetric bilinear form � that is associative, that
is, �.xy; z/ D �.x; yz/ for all x; y; z 2 A.

Lemma 3.1 If A is of type (a), (b) or (c), then

J .A/ D fa 2 A j x2.ax/ D x.ax2/g:

PROOF: Type (a): By linearization of x2x2 D x4 we obtain

4.ax/x2 D ax3 C x.ax2/C 2x.x � ax/

for a; x 2 A. Thus a 2 J .A/ is equivalent to x2.ax/ D x.ax2/.

Type (b): a 2 J .A/ is equivalent to 2x.a; x; x/ D x2.ax/ � ax3. The claim
follows since 2x.a; x; x/ D .a; x2; x/ D .ax2/x � ax3.

Type (c): By assumption, L.x/ is self-adjoint with respect to � . By linearization
of the defining identity for J .A/ we find that

2L.x � xa/C 2L.x/L.xa/C L.x/2L.a/C L.a/L.x2/C 2L.a/L.x/2

D 2L.x2a/C 4L.x/L.a/L.a/C 2L.xa/L.x/C L.x2/L.a/

holds for a 2 J .A/. Taking the adjoint with respect to � and subtracting yields

2ŒL.x/; L.xa/�C ŒL.a/; L.x2/� D 0

and application to x yields

2x.x � ax/ � 2x2.xa/C ax3 � x2 � xa D 0:

Comparing this with the definition of J .A/, it follows that x2.ax/ D x.ax2/ for
all a 2 J .A/.

Conversely, if x2.ax/ D x.ax2/, we obtain by linearization

2L.xa/L.x/C L.x2/L.a/ D L.x2a/C 2L.x/L.a/L.x/:

Again it follows that

2ŒL.x/; L.xa/�C ŒL.a/; L.x2/� D 0

and application to x yields a 2 J .A/. }

By (a), J .A/ D A is holds precisely for Jordan algebras. In the case of a Lie
triple algebra, the defining relations immediately imply that J .A/ D fa 2 A j
.x; a; x2/ D 0g is a Jordan algebra.
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2 Let B be an arbitrary k-algebra with product .x; y/ 7! xy, and let BC the
corresponding commutative algebra with product .x; y/ 7! x � y D 1

2
.xy C yx/.

Verify that the defining identity for J .BC/ can be written in the form

2f.xa; x; x/ � .x; x; ax/C .x; x2; a/ � .a; x2; x/g C .ax; x; x/ � .x; x; xa/

C .x; a; x2/ � .x2; a; x/C .x; x; x/a � a.x; x; x/C x.a; x; x/ � .x; x; a/x

� .x; a; x/x C x.x; a; x/ D 0:

If B is flexible, then Theorem 2.3 implies the curious result that the set of a 2 B
satisfying

3.xa; x; x/C3.ax; x; x/C4.x; x2; a/C2.x; a; x2/Cx.a; x; x/C.a; x; x/x D 0

is a Jordan subalgebra of BC.
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