The Riccati differential equation
and non-associative algebras)

By MAX KOECHER

Introduction

1 The Riccati differential equation, that is, systems of differential equations of
the form

n
)'c,- = Z oirixeXxy, i €R,i=1,...,n, (*)
k=1
often appears in problems regarding the behaviour of closed systems in biology,
genetics, ecology, chemistry etc. Aside from the fact that the corresponding initial
value problem has a unique solution, in the general case very little is known about
the solutions x; = x;(§).

In vector notation, the system () can be written
X = p(x), (k)

where p : R” — R” is a given vector-valued homogeneous polynomial of degree
2.

The homogeneous polynomial p : R? — R? of degree 2 correspond bijectively
to the commutative algebra structures on R": If p is such a polynomial, we obtain
via

%y = 3P0+ )~ p() — p(Y)

an R-bilinear and symmetric map (x, y) + xy of R” x R” into R”. Thus we
assign to every p a commutative (but not necessarily associative) algebra A = U,
on R", and p(x) = x2 holds. Conversely, if 2 is an algebra on R”, then p(x) =
x? is a homogeneous polynomial of degree 2.

Subsequently, we take the following ‘“‘algebraic” point of view when studying the
properties of the system (%)) and (xx]), respectively:

DExtended version of a talk given at the Festkolloquium in honour of the 60% birthday of
Helene Braun on the June 12, 1974.



Let & with the product (x, y) + xy be a commutative R-algebra on R”. The
associated Riccati differential equation is the system

X =x". (% % %)
Every solution x = x (&) that is differentiable in a neighborhood of £ = 0 is called
an A-solution.
2 Define the R-vector space N, of power series f that converge in a neighbor-

hood of 0 in R”,
) =) fu),
m=0

where f,, R” — R” are homogeneous polynomials of degree m. In addition,
define the subset

&, ={f € R, | f(u) = u + higher order terms}

of R,. It is well-known that every f € &, is invertible in a neighborhood of 0
and that &, is a group with respect to (f, g) +— f o g. Moreover, it is clear that
&, acts on R, as a group of endomorphisms via

SRnX@’n_)ERn, (q’f)'_)qof

For p,q € R, define p e g € R, by

n ai
(p o)y =3 2
J

j=1

q;(u),

where the indices denote indicate the components of vectors in R”. Geometrically,
p ® q is the directional derivative of p in the direction of q. Clearly, i, together
with the product (p, g) — p e g is a (non-associative) IR-algebra.

3 Asinl,let 2 be a commutative R-algebra on R”. As usual, the powers of A
are defined recursively by u™*! = yu™, u' = u. Define recursively
gmt1 = gme®p, &) =u,

where p is given by p(u) = u?, and verifies that

o0

1
ga(u) =) | —gm(u)

m=0 "
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defines an element gy of &,. Verify that
1 1
ga(u) =u+u+u+ 5(2u4 +uu?) + 8(2115 + u@u?) + 3utud) + ...

To the algebra 2 is now assigned a subset &'(2) of those f € &, for which
f(x(§)) is an A-solution if x = x(£) is. The elements of & () preserve solutions
of the associated Riccati equation of 2. One can prove that & (20) is a subgroup
of &, that contains gg;. Thus & () does not consist of the identity element only.

4 From the theory of Jordan algebras it is known that certain algebras derived
from 2 play an important role: For a € 2 define a new product on R”,

u L, v=u(a)+ v(ua) —a(uv), u,veR".

We call this algebra 2, on R” defined by the product (u,v) — u L, v the
mutation of A with respect to a. Clearly, 2, is also commutative.

In studying the group & (20) one necessarily encounters the vector subspace
J@) ={a e R" | 2u(u(ua)) + ua = 2u(u?a) + u*(ua) foru € R"}
of R”. In other places it has been shown:
Theorem A If 2 has an identity element, then
ar— gy, B=1UA,
is an isomorphism of the additive group of J () onto & ().

Due to this isomorphism the seemingly arbitrarily defined vector subspace § ()
of R” has to play an exceptional role. In the present note we will show (Theorem
that § () is indeed algebraically exceptional:

Theorem B For every commutative algebra 2 on R”, () is a Jordan subalge-
bra of 2.

The proof uses standard arguments from the theory of Jordan and Lie algebras
(compare Meyberg [2, 3, 4]). The restriction to real algebras 2 is not essential.



5 A simple special case shall be mentioned: If the commutative R-algebra 2 is
also associative (or more generally power-associative), then the differential equa-
tion can be solved explicitely. With elementary arguments we can see that
the power series gg defined in 3 is given by

ga(u) =Y u™
m=1
So if 2 has an identity element e, it follows that

gu(u) = u(e —u)~".

Thus gg is birational. The solution of the initial value problem x(0) = u of the
differential equation is then give by

x(§) = u(e —Eu)™".
We obtain a global solution whose asymptotic behaviour is easy to determine.

In the special case of a commutative and associative algebra 2 discussed here, it
follows that () = 2, so that & () is an n-dimensional vector group.

§1 Lie algebras and Jordan tripel systems

In this paragraph, let k always be a commutative ring with identity element. All
k-modules appearing here are k-left-modules of rings with identity (“unitary left-
modules™).

1 Let 2 be a Lie algebra over k with the following properties:

(Q.1) & =3 & T & MNis the direct sum of the subalgebras §, T and Jt.
(Q.2) & and N are abelian.
Q3) [F.T]Cc T [T.NNCT,[T.NcCN
We then have [§, Q] C § & T and [N, Q] C T @ N, so that
[ [5. [3. Q1] = [9¢ 9. [98. Q)] = 0. (LD
By

{a,p,b} =a,[b,p]] fora,beJ,pein,
{p.a,q} =[p.lg.a]] foraed,p,qeN,



two k-trilinear maps

SxNxJ —F, (a, p.b)—{a,p.b}, (1.2)

NxIxN->N, (p.a.q) — {p.a.q}, '
are defined. From the composition rules (Q.3) we infer that the images are indeed
contained in § and N, respectively. By (Q.2) both maps are symmetrical in the

first and third argument. Using the Jacobi identity we verify

[t.{b.q.c}] = {[t.bl.q.c} +{b.[t.q].c} + {b.q.[t.c]} (1.3)
fort € T,b,c € § and g € N. Analogously,
[t.4q.b.r}] = {{t.q].b.r} +{q.1t.0]. 7} + {q.b.[t.7]} (1.4)

fort € T,be Jandg,r € N. Asin [3, p. 19] we see:

Lemma 1.1 Fora,b,c € § and p,q,r € N:

@) tb.{p.a.q}.c} = {b.q.{a. p.ci} +{c.q.1a, p,b}} —{a. p.{b.q.c}},
(b) {qa{a’ p,b},l’} = {q,b,{p,a,r}} + {r’b’ {p,a,q}} - {p,a,{q,b,r}}.

PROOF: Sett = [a, p] in (I.3) and (I.4). &

A pair (J, ) of k-modules together with two trilinear maps (I.2)) that are sym-
metric in the first and third argument and satisfy the identities in Lemma [I.T] are
called a Jordan tripel system (or connected pair in the sense of Meyberg [2]).
From [2, Satz 2.2, Satz 2.3] we obtain:

Lemmal.2 If 9 = § & T & N is a k-Lie algebra satisfying (Q.1), (Q.2) and
(Q.3), and if the kk-module £ is divisible by 2 and 3, then:

(a) Forevery p € N, & with the product
(a,b) = {a.p.b}y =la,[b, p]]
is a k-Jordan algebra.
(b) Foreverya € &, It with the product
(p.q) = i{p.a.q; = [p.lq.all
is a k-Jordan algebra.

(c¢) The two “fundamental formulas”

{a7 {p’ {a’ Q’a}’ p}7a} = {{a’ p’a}’ q’ {a’ p’a}}’
{p.{a.{p.b. p}.a}. p} = {p.a. p}.b.{p.a. p}}
hold for alla,b € J, p,q € .



2 We now present a class of examples to illustrate the relation between certain
Lie algebras and Jordan tripel systems from 1:

Let £ be a k-Lie algebra with the following properties:

(L.1) & = @ﬁio £, is the direct sum of submodules £,,v =0,1,....

(L2) [8,,8,] CLyypy—rforallv,u>0,8-4 =0.

After a change of indices £ is then a graded Lie algebra. In particular, £, and £,
are subalgebras, and £ is abelian.

For p € &, define

Ny, ={q €L |[p.ql =0},
Ty ={t el |[p.Ip.t]l =0},
3p=1{a €L |[p.[p.[p.a]l] = 0}.

As N, is restricted to elements of £, it is not necessarily a subalgebra of £.

Lemma 1.3 Let p € £, and assume N, is an abelian subalgebra of £. Then:

(a) T, is a subalgebra of £, and fort € &, the following are equivalent:

[p.1] € Ny, (D
My, ] C Ny 2)

(b) & is an abelian subalgebra of £, and for a € £, the following are equiva-
lent:

[p.a] € T)p, (1)
My.a] C Tp. (2)

©) 2, =3p DT, &N, is a subalgebra of L that satisfies (Q.1), (Q.2) and
(Q.3).

PROOF: (a) Fort € £4,t € T, is equivalent to (1) by (L.2). Moreover, (1)
follows directly from (2) since p € N ,,. Now lett € £, with [p, t] € I, be given.
Forqg € N, [p.[q.t]] = [[p.ql.1] + [g. [p.]]. Here, [p.q] = 0 and [p,1] € N,
by (1). As ¢, was assumed to be abelian, it follows that [g, [p, ¢]] = 0 and hence
[p.[gq.t]] = 0. Then [q,t] € N, so that (2) holds. By (2), T, is a subalgebra of
L.



(b) As a submodule of £, J, is an abelian subalgebra of £. Againa € J),
is equivalent to (1), and (1) follows from (2). To prove (2), let a € £, with
[p.a] € T, be given. By (1) of part (a), [p, [p.a]] € N,. Since N, abelian, it
follows for all ¢ € N, that

0=1q.[p.[p.alll = llg. pl.[p.all + [p.[g.[p.alll = [p.[q.[p.4lll.

As [q,[p.a]] € &,, it follows that [q, [p,a]] = [p.[q.a]] € N,, so that by (1) of
part (a), [¢,a] € T,. Thus (2) holds.

(c) Conditions (Q.1) and (Q.2) have already been shown. In light of parts(2) in (a)
and (b), we only need to show [J,, T,] C Jp for (Q.3). Fora € §, andt € T,
[a,t] € £y and we have

[p.la.1]] = [[p.al.t] + la.[p.]].
By (b), [p.a] € T, and by (a), [p,t] € I ,, so that by (b) both summands lie in
T,. Thus [a,t] € §p by (1) of part (b). &

3 For later applications we summarize the results of 1 and 2:

Theorem 1.4 Let & = @2, &, be ak-Lie algebra that satisfies conditions (L.1)
and (L.2), and let p € £, be given such that )t , is an abelian subalgebra of £. If
the k-module £ is divisible by 2 and 3, then:

(@) (3p.Np) together with the two maps

(a.q.b) = {a,q.bj = [a,[b.qll,
(r.a,q) = {r.a,q} =[r.[g,a]]

is a linear Jordan tripel system.

(b) For every q € N,, §, together with the product (a,b) — {a,q,b} is a
Jordan algebra.

(c) For every a € Jp, N, together with the product (¢,r) — {q,a,r} is a
Jordan algebra.

PROOF: By (c) of Lemma|l.3| we can apply all the results from 1. &



4 The construction of the Lie algebra  ,, in 2 is based on the following: Let £
be a kk-Lie algebra and It a subalgebra of £. If we put

T={rel| [t Ch}
$={ael|MNa CT]

then T and § are subalgebras of £, and
=J+T+N

satisfies (Q.3). In general, this is not a direct sum.

However, if conditions (L.1) and (L.2) are satisfied by £ and if 9t is an abelian
subalgebra of £,, then we can define

TE) ={r ey | [ 1] CRY,
S ={a € Lo [ N.a] CTAY,

and
L) =) T & N.

Then 2 () satisfies (Q.2) and (Q.3), so we can again apply the results from 1.

§2 Commutative algebras

Throughout this paragraph, let k be an infinite field of characteristic different from
2 and 3.

1 Let B be a vector space of finite dimension n > 0 over k. An element x in
a base field extension of ‘B is called a generic element of ‘8 if the components of
x with respect to a basis of ‘¥ are algebraically independent over k. Clearly this
definition does not depende on the choice of the basis.

Let us now choose n elements 7y, ..., 7, in an extension field of k that are alge-
braically independent over k, and form the field

f{zk(rl,...,rn).

For an arbitrary vector space I8 over k let fﬁz denote the k-vector space obtained
from B by extension of the base field k to k. After choosing a basis by, ..., b,
of B,

x=1b+...+1,b,



is a generic element of ‘B that is contained in T.

If f is an element of I8, then we write f(x) instead of f and call f(x) a rational
function in x. The function f(x) is called a polynomial in x, if all components of
f(x) with respect to a basis of T over k are polynomials in 7y, . .., 7.

If u is an element in a base field extension of B and f € 53 then

d
ALf(x) = SO+ 7|0

defines a differential operator A. Compare [|1, Chapter II, §1].

2 For f,g e T,
[f:gl(x) = A5 f(x) — A[Pg(x) (2.1)

defines an anti-commutative product (f, g) + [f, g] on B. In 3,1, §1.3] and
in [4] it was shown that ¥ together with the product (f, g) — [f. g] is a k-Lie
algebra Rat ‘8.

Let Pol ‘B denote the subspace of Rat‘8 of all polynomials and 3, (°B) the sub-
space of homogeneous polynomials of degree v. Then

Pol B = (P B, (T)
v=0

is a subalgebra of Rat ‘B that satisfies (L.1) and (L.2) for £, = L, (B). In the fol-
lowing we study elements of 3, (‘B8), that is, homogeneous polynomials of degree
2, for which

Ny, =1{q € B2(B) | [p.q] =0}

is an abelian subalgebra of Pol ‘8§, compare §1.2.

3 If A together with the product (a, b) — ab is a commutative algebra defined
on the vector space ‘I, then

pu(x) = x?
defines an element py of P, (V). Conversely, for every g € B, (V) there exists
an algebra 2 on B with ¢ = pg. Therefore,

B (V) = {pu | A is a commutative algebra on V}.



Now fix a commutative algebra 2 with product (a,b) +— ab on B. For p =
pa € Pa(BW), that is p(x) = x?2, we write N(A) for N, and obtain by (2.1) for
q € By(B),v <3,

[P, q)(x) = ATDx? — A g(x).

This g defines a v-linear and symmetric map (aq,...,a,) — ¢g(ai,...,a,) from
B x VtoWviag(a,...,a) = q(a). Using the chain rule, it follows that

[par. q](x) = 2xq(x) — vq(x,..., x, x?). (2.2)

In particular,
NEA) = {g € P2(D) | xq(x) = g(x,x?)}. (2.3)

Lemma 2.1 Suppose the commutative algebra 21 on ‘8 has an identity element e.
If [par, q] = O for some g € B3(°V), then g = 0.

PROOF: Let the symmetric trilinear map g : ‘8 x B x BT — T be given by

q(x,x.x) = q(x). By 2.2),
2xq(x) = 3q(x, x, x?).
In particular, for x = e it follows that g(e) = 0. By linearization,
yq(x) + 3xq(x.x,y) = 3q(y,x,x*) + 3q(x,x,xy). (2.4)
For x = e, g(e, e, y) = 0 follows. Another linearization yields
2yq(x,x, )+2xq(x, y, ¥) = q(y, ¥, x*)+2q(y, X, xy)+2q(x, y, xy)+q (x, x, y?).

For x = e it follows that ¢(e, y, y) = 0. Finally, let y = e in (2.4) and obtain
q(x) =0, thatis, g = 0. <&

Remark 1 If k has characteristic 0, we can show analogously that [p,¢q] = 0,
q € B, (V), v > 3, already implies g = 0.

Corollary 1 9¥(2) is an abelian subalgebra of Pol ‘8.

PROOF: For q,r € N(V), [p,[q,r]] = 0 follows from the Jacobi identity. As
the [g¢, r] belong to P3(B), we obtain [g, r] from Lemma[2.1] <&
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4 By the corollary to Lemma|2.1|and the fact that Pol 8§ satisfies (L.1) and (L.2),
we can apply the results from §1 to algebras 2l on B. Write T (), §(A) for T,
& p» respectively, and obtain from §1.2

T(B) ={T € EndT | [par, [p2r, T]] = 0},
3 (B) = {a € B | [pa. [pa. [pa. all] = 0},

where we identify the elements of L3, () and End ‘8 and those of Ly (W) and V.
Since py(x) = x2,

[par, T](x) = 2x(Tx) — Tx?,
[par. a](x) = 2ax.
As usual, left-multiplication on 2 is denoted by L : % — End ‘B, that is,
xy = L(x)y.

In particular,
[pa.a] = 2L(a),
and we see that a € () if and only if L(a) € T(A). Now verify that

TA) ={T €EndB | 2x(x - Tx)+ Tx> =2x-Tx*+x*-Tx}, (2.5)
JA) ={a €V | 2x(x-xa) +ax® = 2x(ax?) + x*(ax)}. (2.6)

Lemma 2.2 If the commutative algebra 2 on ‘B has an identity element e, then
NAA) ={q | g(x) = 2x(xa) —ax? foralla € F(N)}
and a — 2x(ax) — ax? is a linear bijection of § () onto N(N).
PROOF: The defining condition [pg, ¢] = 0 for 71(A) means by (2.2)) the identity
xq(x) = q(x, x?).
Linearization leads to
yq(x) 4 2xq(x, y) = q(y,x?) + 2q(x, xy),
sothat x = e or y = e witha = ¢g(e) yields
qle.y)=ay or gq(x)=2xq(e x)—q(e,x?)
respectively. This implies
q(x) = 2x(xa) —ax?,

thatis, ¢ = [pa, L(a)]. As [px.,q] =0, L(a) € T(A), thatis, a € F(A).
Conversely, if a € §(), then ¢ = [py, L(a)] € N(A). &
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5 In addition to the left-multiplication L of 2 consider the quadratic represen-
tation
P(x) = 2L(x)*> — L(x?)

and its linearized form P(x, y). By Lemma[2.2] 92(2l) consists precisely of those
polynomials g with g(x) = P(x)a witha € ().

By the corollary of Lemma [2.1] Theorem [I.4] can be applied. From part (c) we
obtain for ¢ = pg that § () together with the product

(a,b) = {a, pu.b} = —[a. [pa. b]] = 2[L(b).a] = 2ab
is a Jordan algebra.

Theorem 2.3 If 2 is a finite-dimensional commutative algebra over a field of
characteristic other than 2 and 3, then §(21) is a Jordan subalgebra of 2.

PROOF: First assume that 2 contains an identity element. Then we just saw
that 5 (20) is a Jordan algebra with the product (a, b) — 2ab, hence also with the
product (a, b) — ab. The general case now follows by adjunction of an identity
element. <&

Remark 2 In general, §(21) = 0.

§3 Some examples

Let k be an infinite field of characteristic other than 2 and 3, and let 2 be a finite-
dimensional commutative k-algebra.
1 Asin Theorem|[2.3|we consider the Jordan subalgebra
J) ={a e A |2x(x-xa)+ax® =2x(ax?) + x*(ax)}
of . As examples we study the following classes of algebras:
(a) A is power-associative, that is, x"x" = x™*" for all m,n € IN.
(b) Ais a Lie triple algebra, that is, for x, y,z € ¥,
w(x,y.z) + y(x,w,z) = (x, yw, 2),

where the associator is defined by (x, y,z) = (xy)z — x(yz). Compare
Osborn [|5] and Petersson [6]].
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(c) U has a non-degenerate symmetric bilinear form o that is associative, that
is,o0(xy,z) =o0(x,yz) forall x,y,z € 2.

Lemma 3.1 If ¥ is of type (a), (b) or (c), then
JQ) ={a e A | x*@ax) = x(ax?)}.

4 we obtain

PROOF: Type (a): By linearization of x?x? = x
4(ax)x® = ax® + x(ax?®) + 2x(x - ax)
fora,x € A. Thus a € () is equivalent to x2(ax) = x(ax?).

Type (b): a € () is equivalent to 2x(a, x,x) = x?(ax) — ax>. The claim

follows since 2x(a, x, x) = (a, x%, x) = (ax?)x — ax>.

Type (c): By assumption, L(x) is self-adjoint with respect to . By linearization
of the defining identity for § (21) we find that

2L(x - xa) + 2L(x)L(xa) + L(x)*L(a) + L(a)L(x*) + 2L(a)L(x)?
= 2L(x%a) + 4L(x)L(a)L(a) + 2L(xa)L(x) + L(x*)L(a)

holds for a € § (). Taking the adjoint with respect to ¢ and subtracting yields
2[L(x), L(xa)] + [L(a), L(x*)] =0
and application to x yields
2x(x -ax) — 2x*(xa) + ax® — x* - xa = 0.

Comparing this with the definition of (), it follows that x2(ax) = x(ax?) for
alla € ().

Conversely, if x2(ax) = x(ax?), we obtain by linearization
2L(xa)L(x) + L(x*)L(a) = L(x%a) + 2L(x)L(a)L(x).
Again it follows that
2[L(x), L(xa)] + [L(a), L(x*)] =0

and application to x yields a € § (). &

By (a), §(A) = A is holds precisely for Jordan algebras. In the case of a Lie
triple algebra, the defining relations immediately imply that §(U) = {a € A |
(x,a,x?) = 0} is a Jordan algebra.
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2 Let B be an arbitrary k-algebra with product (x, y) — xy, and let B+ the
corresponding commutative algebra with product (x, y) > x -y = %(x y + yX).
Verify that the defining identity for § (8B 1) can be written in the form

2{(xa,x,x) — (x,x,ax) + (x, xz,a) — (a,xz, xX)}+ (ax,x,x)— (x,x,xa)
+ (x,a,xz) — (xz,a,x) + (x,x,x)a—a(x,x,x)+ x(a,x,x)—(x,x,a)x

—(x,a,x)x + x(x,a,x) =0.

If B is flexible, then Theorem [2.3]implies the curious result that the set of a € B
satisfying

3(xa, x,x)+3(ax,x,x)+4(x, x2, a)+2(x,a, xH)+x(a, x, xX)+(@a,x,x)x =0

is a Jordan subalgebra of B7.
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