The Riccati differential equation and non-associative algebras¹⁾

By MAX KOECHER

Introduction

1 The *Riccati differential equation*, that is, systems of differential equations of the form

$$\dot{x}_i = \sum_{k,l=1}^n \alpha_{ikl} x_k x_l, \quad \alpha_{ikl} \in \mathbb{R}, i = 1, \dots, n, \qquad (*)$$

often appears in problems regarding the behaviour of closed systems in biology, genetics, ecology, chemistry etc. Aside from the fact that the corresponding initial value problem has a unique solution, in the general case very little is known about the solutions $x_i = x_i(\xi)$.

In vector notation, the system (*) can be written

$$\dot{x} = p(x), \tag{**}$$

where $p : \mathbb{R}^n \to \mathbb{R}^n$ is a given vector-valued homogeneous polynomial of degree 2.

The homogeneous polynomial $p : \mathbb{R}^2 \to \mathbb{R}^2$ of degree 2 correspond bijectively to the commutative algebra structures on \mathbb{R}^n : If p is such a polynomial, we obtain via

$$xy = \frac{1}{2}(p(x+y) - p(x) - p(y))$$

an \mathbb{R} -bilinear and symmetric map $(x, y) \mapsto xy$ of $\mathbb{R}^n \times \mathbb{R}^n$ into \mathbb{R}^n . Thus we assign to every p a commutative (but not necessarily associative) algebra $\mathfrak{A} = \mathfrak{A}_p$ on \mathbb{R}^n , and $p(x) = x^2$ holds. Conversely, if \mathfrak{A} is an algebra on \mathbb{R}^n , then $p(x) = x^2$ is a homogeneous polynomial of degree 2.

Subsequently, we take the following "algebraic" point of view when studying the properties of the system (*) and (**), respectively:

¹⁾Extended version of a talk given at the Festkolloquium in honour of the 60th birthday of Helene Braun on the June 12, 1974.

Let \mathfrak{A} with the product $(x, y) \mapsto xy$ be a commutative \mathbb{R} -algebra on \mathbb{R}^n . The associated Riccati differential equation is the system

$$\dot{x} = x^2. \tag{(***)}$$

Every solution $x = x(\xi)$ that is differentiable in a neighborhood of $\xi = 0$ is called an \mathfrak{A} -solution.

2 Define the \mathbb{R} -vector space \Re_n of power series f that converge in a neighborhood of 0 in \mathbb{R}^n ,

$$f(u) = \sum_{m=0}^{\infty} f_m(u),$$

where $f_m \mathbb{R}^n \to \mathbb{R}^n$ are homogeneous polynomials of degree *m*. In addition, define the subset

$$\mathfrak{G}_n = \{ f \in \mathfrak{R}_n \mid f(u) = u + \text{ higher order terms} \}$$

of \mathfrak{R}_n . It is well-known that every $f \in \mathfrak{G}_n$ is invertible in a neighborhood of 0 and that \mathfrak{G}_n is a group with respect to $(f, g) \mapsto f \circ g$. Moreover, it is clear that \mathfrak{G}_n acts on \mathfrak{R}_n as a group of endomorphisms via

$$\Re_n \times \mathfrak{G}_n \to \mathfrak{R}_n, \quad (q, f) \mapsto q \circ f.$$

For $p, q \in \Re_n$, define $p \bullet q \in \Re_n$ by

$$((p \bullet q)(u))_i = \sum_{j=1}^n \frac{\partial p_i(u)}{\partial u_j} q_j(u),$$

where the indices denote indicate the components of vectors in \mathbb{R}^n . Geometrically, $p \bullet q$ is the *directional derivative of p in the direction of q*. Clearly, \mathfrak{R}_n together with the product $(p,q) \mapsto p \bullet q$ is a (non-associative) \mathbb{R} -algebra.

3 As in 1, let \mathfrak{A} be a commutative \mathbb{R} -algebra on \mathbb{R}^n . As usual, the powers of \mathfrak{A} are defined recursively by $u^{m+1} = uu^m$, $u^1 = u$. Define recursively

$$g_{m+1} = g_m \bullet p, \quad g_0(u) = u,$$

where p is given by $p(u) = u^2$, and verifies that

$$g_{\mathfrak{A}}(u) = \sum_{m=0}^{\infty} \frac{1}{m!} g_m(u)$$

defines an element $g_{\mathfrak{A}}$ of \mathfrak{G}_n . Verify that

$$g_{\mathfrak{A}}(u) = u + u^2 + u^3 + \frac{1}{3}(2u^4 + u^2u^2) + \frac{1}{6}(2u^5 + u(u^2u^2) + 3u^2u^3) + \dots$$

To the algebra \mathfrak{A} is now assigned a subset $\mathfrak{G}(\mathfrak{A})$ of those $f \in \mathfrak{G}_n$ for which $f(x(\xi))$ is an \mathfrak{A} -solution if $x = x(\xi)$ is. The elements of $\mathfrak{G}(\mathfrak{A})$ preserve solutions of the associated Riccati equation of \mathfrak{A} . One can prove that $\mathfrak{G}(\mathfrak{A})$ is a subgroup of \mathfrak{G}_n that contains $g_{\mathfrak{A}}$. Thus $\mathfrak{G}(\mathfrak{A})$ does not consist of the identity element only.

4 From the theory of Jordan algebras it is known that certain algebras derived from \mathfrak{A} play an important role: For $a \in \mathfrak{A}$ define a new product on \mathbb{R}^n ,

$$u \perp_a v = u(va) + v(ua) - a(uv), \quad u, v \in \mathbb{R}^n$$

We call this algebra \mathfrak{A}_a on \mathbb{R}^n defined by the product $(u, v) \mapsto u \perp_a v$ the *mutation of* \mathfrak{A} *with respect to a.* Clearly, \mathfrak{A}_a is also commutative.

In studying the group $\mathfrak{G}(\mathfrak{A})$ one necessarily encounters the vector subspace

$$\mathfrak{Z}(\mathfrak{A}) = \{a \in \mathbb{R}^n \mid 2u(u(ua)) + u^3a = 2u(u^2a) + u^2(ua) \text{ for } u \in \mathbb{R}^n\}$$

of \mathbb{R}^n . In other places it has been shown:

Theorem A If \mathfrak{A} has an identity element, then

$$a \mapsto g_{\mathfrak{B}}, \quad \mathfrak{B} = \mathfrak{A}_a,$$

is an isomorphism of the additive group of $\mathfrak{Z}(\mathfrak{A})$ onto $\mathfrak{G}(\mathfrak{A})$.

Due to this isomorphism the seemingly arbitrarily defined vector subspace $\mathfrak{F}(\mathfrak{A})$ of \mathbb{R}^n has to play an exceptional role. In the present note we will show (Theorem 2.3) that $\mathfrak{F}(\mathfrak{A})$ is indeed algebraically exceptional:

Theorem B For every commutative algebra \mathfrak{A} on \mathbb{R}^n , $\mathfrak{F}(\mathfrak{A})$ is a Jordan subalgebra of \mathfrak{A} .

The proof uses standard arguments from the theory of Jordan and Lie algebras (compare Meyberg [2, 3, 4]). The restriction to real algebras \mathfrak{A} is not essential.

5 A simple special case shall be mentioned: If the commutative \mathbb{R} -algebra \mathfrak{A} is also associative (or more generally power-associative), then the differential equation (* * *) can be solved explicitly. With elementary arguments we can see that the power series $g_{\mathfrak{A}}$ defined in 3 is given by

$$g_{\mathfrak{A}}(u) = \sum_{m=1}^{\infty} u^m$$

So if \mathfrak{A} has an identity element *e*, it follows that

$$g_{\mathfrak{A}}(u) = u(e-u)^{-1}.$$

Thus $g_{\mathfrak{A}}$ is birational. The solution of the initial value problem x(0) = u of the differential equation (* * *) is then give by

$$x(\xi) = u(e - \xi u)^{-1}.$$

We obtain a global solution whose asymptotic behaviour is easy to determine.

In the special case of a commutative and associative algebra \mathfrak{A} discussed here, it follows that $\mathfrak{F}(\mathfrak{A}) = \mathfrak{A}$, so that $\mathfrak{F}(\mathfrak{A})$ is an *n*-dimensional vector group.

§1 Lie algebras and Jordan tripel systems

In this paragraph, let \Bbbk always be a commutative ring with identity element. All \Bbbk -modules appearing here are \Bbbk -left-modules of rings with identity ("unitary left-modules").

1 Let \mathfrak{A} be a Lie algebra over \mathbb{k} with the following properties:

(Q.1) $\mathfrak{A} = \mathfrak{F} \oplus \mathfrak{T} \oplus \mathfrak{N}$ is the direct sum of the subalgebras $\mathfrak{F}, \mathfrak{T}$ and \mathfrak{N} .

(Q.2) \mathfrak{F} and \mathfrak{N} are abelian.

 $(Q.3) \ [\mathfrak{J},\mathfrak{T}] \subset \mathfrak{J}, [\mathfrak{J},\mathfrak{N}] \subset \mathfrak{T}, [\mathfrak{T},\mathfrak{N}] \subset \mathfrak{N}.$

We then have $[\mathfrak{J},\mathfrak{A}] \subset \mathfrak{J} \oplus \mathfrak{T}$ and $[\mathfrak{N},\mathfrak{A}] \subset \mathfrak{T} \oplus \mathfrak{N}$, so that

$$[\mathfrak{J}, [\mathfrak{J}, [\mathfrak{J}, \mathfrak{A}]]] = [\mathfrak{N}, [\mathfrak{N}, [\mathfrak{N}, \mathfrak{A}]]] = \mathbf{0}.$$

$$(1.1)$$

By

$$\{a, p, b\} = [a, [b, p]] \quad \text{for } a, b \in \mathfrak{J}, p \in \mathfrak{N}, \\ \{p, a, q\} = [p, [q, a]] \quad \text{for } a \in \mathfrak{J}, p, q \in \mathfrak{N},$$

two k-trilinear maps

$$\mathfrak{J} \times \mathfrak{N} \times \mathfrak{J} \to \mathfrak{J}, \quad (a, p, b) \mapsto \{a, p, b\}, \\ \mathfrak{N} \times \mathfrak{J} \times \mathfrak{N} \to \mathfrak{N}, \quad (p, a, q) \mapsto \{p, a, q\},$$

$$(1.2)$$

are defined. From the composition rules (Q.3) we infer that the images are indeed contained in \mathfrak{F} and \mathfrak{N} , respectively. By (Q.2) both maps are symmetrical in the first and third argument. Using the Jacobi identity we verify

$$[t, \{b, q, c\}] = \{[t, b], q, c\} + \{b, [t, q], c\} + \{b, q, [t, c]\}$$
(1.3)

for $t \in \mathfrak{T}$, $b, c \in \mathfrak{J}$ and $q \in \mathfrak{N}$. Analogously,

$$[t, \{q, b, r\}] = \{[t, q], b, r\} + \{q, [t, b], r\} + \{q, b, [t, r]\}$$
(1.4)

 \diamond

for $t \in \mathfrak{T}$, $b \in \mathfrak{J}$ and $q, r \in \mathfrak{N}$. As in [3, p. 19] we see:

Lemma 1.1 For $a, b, c \in \mathfrak{J}$ and $p, q, r \in \mathfrak{N}$:

(a) $\{b, \{p, a, q\}, c\} = \{b, q, \{a, p, c\}\} + \{c, q, \{a, p, b\}\} - \{a, p, \{b, q, c\}\},\$

(b)
$$\{q, \{a, p, b\}, r\} = \{q, b, \{p, a, r\}\} + \{r, b, \{p, a, q\}\} - \{p, a, \{q, b, r\}\}.$$

PROOF: Set t = [a, p] in (1.3) and (1.4).

A pair $(\mathfrak{J}, \mathfrak{N})$ of k-modules together with two trilinear maps (1.2) that are symmetric in the first and third argument and satisfy the identities in Lemma 1.1 are called a *Jordan tripel system* (or *connected pair* in the sense of Meyberg [2]). From [2, Satz 2.2, Satz 2.3] we obtain:

Lemma 1.2 If $\mathfrak{A} = \mathfrak{F} \oplus \mathfrak{T} \oplus \mathfrak{N}$ is a k-Lie algebra satisfying (Q.1), (Q.2) and (Q.3), and if the k-module \mathfrak{A} is divisible by 2 and 3, then:

(a) For every $p \in \mathfrak{N}, \mathfrak{J}$ with the product

$$(a,b) \mapsto \{a, p, b\} = [a, [b, p]]$$

is a k-Jordan algebra.

(b) For every $a \in \mathfrak{J}$, \mathfrak{N} with the product

$$(p,q) \mapsto \{p,a,q\} = [p,[q,a]]$$

is a \Bbbk -Jordan algebra.

(c) The two "fundamental formulas"

$$\{a, \{p, \{a, q, a\}, p\}, a\} = \{\{a, p, a\}, q, \{a, p, a\}\}, \\ \{p, \{a, \{p, b, p\}, a\}, p\} = \{\{p, a, p\}, b, \{p, a, p\}\}$$

hold for all $a, b \in \mathfrak{F}, p, q \in \mathfrak{N}$.

2 We now present a class of examples to illustrate the relation between certain Lie algebras and Jordan tripel systems from 1:

Let \mathfrak{L} be a \Bbbk -Lie algebra with the following properties:

- (L.1) $\mathfrak{L} = \bigoplus_{\nu=0}^{\infty} \mathfrak{L}_{\nu}$ is the direct sum of submodules $\mathfrak{L}_{\nu}, \nu = 0, 1, \dots$
- (L.2) $[\mathfrak{L}_{\nu}, \mathfrak{L}_{\mu}] \subset \mathfrak{L}_{\nu+\mu-1}$ for all $\nu, \mu \geq 0, \mathfrak{L}_{-1} = \mathbf{0}$.

After a change of indices \mathfrak{L} is then a graded Lie algebra. In particular, \mathfrak{L}_0 and \mathfrak{L}_1 are subalgebras, and \mathfrak{L}_0 is abelian.

For $p \in \mathfrak{L}_2$ define

$$\mathfrak{M}_{p} = \{q \in \mathfrak{L}_{2} \mid [p,q] = 0\},\\ \mathfrak{T}_{p} = \{t \in \mathfrak{L}_{1} \mid [p,[p,t]] = 0\},\\ \mathfrak{J}_{p} = \{a \in \mathfrak{L}_{0} \mid [p,[p,[p,a]]] = 0\}$$

As \mathfrak{N}_p is restricted to elements of \mathfrak{L}_2 , it is not necessarily a subalgebra of \mathfrak{L} .

Lemma 1.3 Let $p \in \mathfrak{L}_2$ and assume \mathfrak{N}_p is an abelian subalgebra of \mathfrak{L} . Then:

(a) \mathfrak{T}_p is a subalgebra of \mathfrak{L} , and for $t \in \mathfrak{L}_1$, the following are equivalent:

$$[p,t] \in \mathfrak{N}_p,\tag{1}$$

$$[\mathfrak{N}_p, t] \subset \mathfrak{N}_p. \tag{2}$$

(b) ℑ_p is an abelian subalgebra of 𝔅, and for a ∈ 𝔅₀, the following are equivalent:

$$[p,a] \in \mathfrak{T}_p,\tag{1}$$

$$[\mathfrak{N}_p, a] \subset \mathfrak{T}_p. \tag{2}$$

(c) $\mathfrak{Q}_p = \mathfrak{J}_p \oplus \mathfrak{T}_p \oplus \mathfrak{N}_p$ is a subalgebra of \mathfrak{L} that satisfies (Q.1), (Q.2) and (Q.3).

PROOF: (a) For $t \in \mathfrak{L}_1$, $t \in \mathfrak{T}_p$ is equivalent to (1) by (L.2). Moreover, (1) follows directly from (2) since $p \in \mathfrak{N}_p$. Now let $t \in \mathfrak{L}_1$ with $[p, t] \in \mathfrak{N}_p$ be given. For $q \in \mathfrak{N}_p$, [p, [q, t]] = [[p, q], t] + [q, [p, t]]. Here, [p, q] = 0 and $[p, t] \in \mathfrak{N}_p$ by (1). As \mathfrak{N}_p was assumed to be abelian, it follows that [q, [p, t]] = 0 and hence [p, [q, t]] = 0. Then $[q, t] \in \mathfrak{N}_p$, so that (2) holds. By (2), \mathfrak{T}_p is a subalgebra of \mathfrak{L} .

(b) As a submodule of \mathfrak{L}_0 , \mathfrak{J}_p is an abelian subalgebra of \mathfrak{L} . Again $a \in \mathfrak{J}_p$ is equivalent to (1), and (1) follows from (2). To prove (2), let $a \in \mathfrak{L}_0$ with $[p, a] \in \mathfrak{T}_p$ be given. By (1) of part (a), $[p, [p, a]] \in \mathfrak{N}_p$. Since \mathfrak{N}_p abelian, it follows for all $q \in \mathfrak{N}_p$ that

$$0 = [q, [p, [p, a]]] = [[q, p], [p, a]] + [p, [q, [p, a]]] = [p, [q, [p, a]]].$$

As $[q, [p, a]] \in \mathfrak{L}_2$, it follows that $[q, [p, a]] = [p, [q, a]] \in \mathfrak{N}_p$, so that by (1) of part (a), $[q, a] \in \mathfrak{T}_p$. Thus (2) holds.

(c) Conditions (Q.1) and (Q.2) have already been shown. In light of parts(2) in (a) and (b), we only need to show $[\mathfrak{F}_p, \mathfrak{T}_p] \subset \mathfrak{F}_p$ for (Q.3). For $a \in \mathfrak{F}_p$ and $t \in \mathfrak{T}_p$, $[a, t] \in \mathfrak{L}_0$ and we have

$$[p, [a, t]] = [[p, a], t] + [a, [p, t]].$$

By (b), $[p, a] \in \mathfrak{T}_p$, and by (a), $[p, t] \in \mathfrak{N}_p$, so that by (b) both summands lie in \mathfrak{T}_p . Thus $[a, t] \in \mathfrak{T}_p$ by (1) of part (b).

3 For later applications we summarize the results of 1 and 2:

Theorem 1.4 Let $\mathfrak{L} = \bigoplus_{\nu=0}^{\infty} \mathfrak{L}_{\nu}$ be a k-Lie algebra that satisfies conditions (L.1) and (L.2), and let $p \in \mathfrak{L}_2$ be given such that \mathfrak{N}_p is an abelian subalgebra of \mathfrak{L} . If the k-module \mathfrak{L} is divisible by 2 and 3, then:

(a) $(\mathfrak{J}_p,\mathfrak{N}_p)$ together with the two maps

$$(a, q, b) \mapsto \{a, q, b\} = [a, [b, q]],$$

 $(r, a, q) \mapsto \{r, a, q\} = [r, [q, a]]$

is a linear Jordan tripel system.

- (b) For every q ∈ 𝔅_p, 𝔅_p together with the product (a, b) → {a, q, b} is a Jordan algebra.
- (c) For every $a \in \mathfrak{F}_p$, \mathfrak{N}_p together with the product $(q, r) \mapsto \{q, a, r\}$ is a Jordan algebra.

PROOF: By (c) of Lemma 1.3, we can apply all the results from 1. \diamond

4 The construction of the Lie algebra \mathfrak{Q}_p in 2 is based on the following: Let \mathfrak{L} be a k-Lie algebra and \mathfrak{N} a subalgebra of \mathfrak{L} . If we put

$$\mathfrak{T} = \{ t \in \mathfrak{L} \mid [\mathfrak{N}, t] \subset \mathfrak{N} \}, \\ \mathfrak{J} = \{ a \in \mathfrak{L} \mid [\mathfrak{N}, a] \subset \mathfrak{T} \},$$

then \mathfrak{T} and \mathfrak{J} are subalgebras of \mathfrak{L} , and

$$\mathfrak{Q} = \mathfrak{J} + \mathfrak{T} + \mathfrak{N}$$

satisfies (Q.3). In general, this is not a direct sum.

However, if conditions (L.1) and (L.2) are satisfied by \mathfrak{L} and if \mathfrak{N} is an abelian subalgebra of \mathfrak{L}_2 , then we can define

$$\mathfrak{T}(\mathfrak{N}) = \{ t \in \mathfrak{L}_1 \mid [\mathfrak{N}, t] \subset \mathfrak{N} \},\\ \mathfrak{J}(\mathfrak{N}) = \{ a \in \mathfrak{L}_0 \mid [\mathfrak{N}, a] \subset \mathfrak{T}(\mathfrak{N}) \},$$

and

$$\mathfrak{Q}(\mathfrak{N}) = \mathfrak{Z}(\mathfrak{N}) \oplus \mathfrak{T}(\mathfrak{N}) \oplus \mathfrak{N}.$$

Then $\mathfrak{Q}(\mathfrak{N})$ satisfies (Q.2) and (Q.3), so we can again apply the results from 1.

§2 Commutative algebras

Throughout this paragraph, let \mathbb{k} be an infinite field of characteristic different from 2 and 3.

1 Let \mathfrak{V} be a vector space of finite dimension n > 0 over \Bbbk . An element x in a base field extension of \mathfrak{V} is called a *generic element* of \mathfrak{V} if the components of x with respect to a basis of \mathfrak{V} are algebraically independent over \Bbbk . Clearly this definition does not depende on the choice of the basis.

Let us now choose *n* elements τ_1, \ldots, τ_n in an extension field of k that are algebraically independent over k, and form the field

$$\widetilde{\Bbbk} = \Bbbk(\tau_1,\ldots,\tau_n).$$

For an arbitrary vector space \mathfrak{W} over \Bbbk let $\widetilde{\mathfrak{W}}$ denote the $\widetilde{\Bbbk}$ -vector space obtained from \mathfrak{W} by extension of the base field \Bbbk to $\widetilde{\Bbbk}$. After choosing a basis b_1, \ldots, b_n of \mathfrak{V} ,

$$x = \tau_1 b_1 + \ldots + \tau_n b_n$$

is a generic element of \mathfrak{V} that is contained in $\widetilde{\mathfrak{V}}$.

If f is an element of \mathfrak{W} , then we write f(x) instead of f and call f(x) a rational function in x. The function f(x) is called a polynomial in x, if all components of f(x) with respect to a basis of \mathfrak{W} over k are polynomials in τ_1, \ldots, τ_n .

If *u* is an element in a base field extension of \mathfrak{V} and $f \in \widetilde{\mathfrak{V}}$, then

$$\Delta_x^u f(x) = \frac{\mathrm{d}}{\mathrm{d}\tau} f(x + \tau u)|_{\tau \to 0}$$

defines a differential operator Δ . Compare [1, Chapter II, §1].

2 For $f, g \in \widetilde{\mathfrak{V}}$,

$$[f,g](x) = \Delta_x^{g(x)} f(x) - \Delta_x^{f(x)} g(x)$$
(2.1)

defines an anti-commutative product $(f,g) \mapsto [f,g]$ on $\tilde{\mathfrak{V}}$. In [3, I, §1.3] and in [4] it was shown that $\tilde{\mathfrak{V}}$ together with the product $(f,g) \mapsto [f,g]$ is a \Bbbk -Lie algebra Rat \mathfrak{V} .

Let Pol \mathfrak{V} denote the subspace of Rat \mathfrak{V} of all polynomials and $\mathfrak{P}_{\nu}(\mathfrak{V})$ the subspace of homogeneous polynomials of degree ν . Then

$$\operatorname{Pol} \mathfrak{V} = \bigoplus_{\nu=0}^{\infty} \mathfrak{P}_{\nu}(\mathfrak{V})$$

is a subalgebra of Rat \mathfrak{V} that satisfies (L.1) and (L.2) for $\mathfrak{L}_{\nu} = \mathfrak{P}_{\nu}(\mathfrak{V})$. In the following we study elements of $\mathfrak{P}_2(\mathfrak{V})$, that is, homogeneous polynomials of degree 2, for which

$$\mathfrak{N}_p = \{q \in \mathfrak{P}_2(\mathfrak{V}) \mid [p,q] = 0\}$$

is an abelian subalgebra of Pol I, compare §1.2.

3 If \mathfrak{A} together with the product $(a, b) \mapsto ab$ is a commutative algebra defined on the vector space \mathfrak{V} , then

$$p_{\mathfrak{A}}(x) = x^2$$

defines an element $p_{\mathfrak{A}}$ of $\mathfrak{P}_2(\mathfrak{V})$. Conversely, for every $q \in \mathfrak{P}_2(\mathfrak{V})$ there exists an algebra \mathfrak{A} on \mathfrak{V} with $q = p_{\mathfrak{A}}$. Therefore,

$$\mathfrak{P}_2(\mathfrak{V}) = \{p_{\mathfrak{A}} \mid \mathfrak{A} \text{ is a commutative algebra on } \mathfrak{V}\}.$$

Now fix a commutative algebra \mathfrak{A} with product $(a, b) \mapsto ab$ on \mathfrak{B} . For $p = p_{\mathfrak{A}} \in \mathfrak{P}_2(\mathfrak{A})$, that is $p(x) = x^2$, we write $\mathfrak{N}(\mathfrak{A})$ for \mathfrak{N}_p , and obtain by (2.1) for $q \in \mathfrak{P}_{\nu}(\mathfrak{A}), \nu \leq 3$,

$$[p_{\mathfrak{A}},q](x) = \Delta_x^{q(x)} x^2 - \Delta_x^{x^2} q(x).$$

This q defines a v-linear and symmetric map $(a_1, \ldots, a_v) \mapsto q(a_1, \ldots, a_v)$ from $\mathfrak{V} \times \mathfrak{V}$ to \mathfrak{V} via $q(a, \ldots, a) = q(a)$. Using the chain rule, it follows that

$$[p_{\mathfrak{A}}, q](x) = 2xq(x) - \nu q(x, \dots, x, x^2).$$
(2.2)

In particular,

$$\mathfrak{N}(\mathfrak{A}) = \{ q \in \mathfrak{P}_2(\mathfrak{A}) \mid xq(x) = q(x, x^2) \}.$$
(2.3)

Lemma 2.1 Suppose the commutative algebra \mathfrak{A} on \mathfrak{V} has an identity element *e*. If $[p_{\mathfrak{A}}, q] = 0$ for some $q \in \mathfrak{P}_3(\mathfrak{V})$, then q = 0.

PROOF: Let the symmetric trilinear map $q : \mathfrak{V} \times \mathfrak{V} \times \mathfrak{V} \to \mathfrak{V}$ be given by q(x, x, x) = q(x). By (2.2),

$$2xq(x) = 3q(x, x, x^2).$$

In particular, for x = e it follows that q(e) = 0. By linearization,

$$yq(x) + 3xq(x, x, y) = 3q(y, x, x^2) + 3q(x, x, xy).$$
 (2.4)

For x = e, q(e, e, y) = 0 follows. Another linearization yields

$$2yq(x, x, y) + 2xq(x, y, y) = q(y, y, x^{2}) + 2q(y, x, xy) + 2q(x, y, xy) + q(x, x, y^{2}).$$

For x = e it follows that q(e, y, y) = 0. Finally, let y = e in (2.4) and obtain q(x) = 0, that is, q = 0.

Remark 1 If k has characteristic 0, we can show analogously that [p,q] = 0, $q \in \mathfrak{P}_{\nu}(\mathfrak{V}), \nu \geq 3$, already implies q = 0.

Corollary 1 $\mathfrak{N}(\mathfrak{A})$ is an abelian subalgebra of Pol \mathfrak{V} .

PROOF: For $q, r \in \mathfrak{N}(\mathfrak{V})$, [p, [q, r]] = 0 follows from the Jacobi identity. As the [q, r] belong to $\mathfrak{P}_3(\mathfrak{V})$, we obtain [q, r] from Lemma 2.1.

4 By the corollary to Lemma 2.1 and the fact that Pol \mathfrak{V} satisfies (L.1) and (L.2), we can apply the results from §1 to algebras \mathfrak{A} on \mathfrak{V} . Write $\mathfrak{T}(\mathfrak{A})$, $\mathfrak{J}(\mathfrak{A})$ for \mathfrak{T}_p , \mathfrak{J}_p , respectively, and obtain from §1.2

$$\mathfrak{T}(\mathfrak{V}) = \{T \in \operatorname{End} \mathfrak{V} \mid [p_{\mathfrak{A}}, [p_{\mathfrak{A}}, T]] = 0\},\\ \mathfrak{J}(\mathfrak{V}) = \{a \in \mathfrak{V} \mid [p_{\mathfrak{A}}, [p_{\mathfrak{A}}, [p_{\mathfrak{A}}, a]]] = 0\},\$$

where we identify the elements of $\mathfrak{P}_1(\mathfrak{V})$ and $\operatorname{End} \mathfrak{V}$ and those of $\mathfrak{P}_0(\mathfrak{V})$ and \mathfrak{V} . Since $p_{\mathfrak{A}}(x) = x^2$,

$$[p_{\mathfrak{A}}, T](x) = 2x(Tx) - Tx^2,$$

$$[p_{\mathfrak{A}}, a](x) = 2ax.$$

As usual, left-multiplication on \mathfrak{A} is denoted by $L : \mathfrak{A} \to \operatorname{End} \mathfrak{B}$, that is,

$$xy = L(x)y.$$

In particular,

$$[p_{\mathfrak{A}}, a] = 2L(a),$$

and we see that $a \in \mathfrak{J}(\mathfrak{A})$ if and only if $L(a) \in \mathfrak{T}(\mathfrak{A})$. Now verify that

$$\mathfrak{T}(\mathfrak{A}) = \{T \in \operatorname{End} \mathfrak{A} \mid 2x(x \cdot Tx) + Tx^3 = 2x \cdot Tx^2 + x^2 \cdot Tx\}, \quad (2.5)$$

$$\mathfrak{F}(\mathfrak{A}) = \{ a \in \mathfrak{V} \mid 2x(x \cdot xa) + ax^3 = 2x(ax^2) + x^2(ax) \}.$$
(2.6)

Lemma 2.2 If the commutative algebra \mathfrak{A} on \mathfrak{V} has an identity element *e*, then

$$\mathfrak{N}(\mathfrak{A}) = \{ q \mid q(x) = 2x(xa) - ax^2 \text{ for all } a \in \mathfrak{J}(\mathfrak{A}) \}$$

and $a \mapsto 2x(ax) - ax^2$ is a linear bijection of $\mathfrak{F}(\mathfrak{A})$ onto $\mathfrak{R}(\mathfrak{A})$.

PROOF: The defining condition $[p_{\mathfrak{A}}, q] = 0$ for $\mathfrak{N}(\mathfrak{A})$ means by (2.2) the identity

$$xq(x) = q(x, x^2).$$

Linearization leads to

$$yq(x) + 2xq(x, y) = q(y, x^{2}) + 2q(x, xy),$$

so that x = e or y = e with a = q(e) yields

$$q(e, y) = ay$$
 or $q(x) = 2xq(e, x) - q(e, x^2)$

respectively. This implies

$$q(x) = 2x(xa) - ax^2,$$

that is, $q = [p_{\mathfrak{A}}, L(a)]$. As $[p_{\mathfrak{A}}, q] = 0$, $L(a) \in \mathfrak{T}(\mathfrak{A})$, that is, $a \in \mathfrak{F}(\mathfrak{A})$. Conversely, if $a \in \mathfrak{F}(\mathfrak{A})$, then $q = [p_{\mathfrak{A}}, L(a)] \in \mathfrak{N}(\mathfrak{A})$. **5** In addition to the left-multiplication L of \mathfrak{A} consider the quadratic representation

$$P(x) = 2L(x)^2 - L(x^2)$$

and its linearized form P(x, y). By Lemma 2.2 $\mathfrak{N}(\mathfrak{A})$ consists precisely of those polynomials q with q(x) = P(x)a with $a \in \mathfrak{J}(\mathfrak{A})$.

By the corollary of Lemma 2.1, Theorem 1.4 can be applied. From part (c) we obtain for $q = p_{\mathfrak{A}}$ that $\mathfrak{J}(\mathfrak{A})$ together with the product

$$(a,b) \mapsto \{a, p_{\mathfrak{A}}, b\} = -[a, [p_{\mathfrak{A}}, b]] = 2[L(b), a] = 2ab$$

is a Jordan algebra.

Theorem 2.3 If \mathfrak{A} is a finite-dimensional commutative algebra over a field of characteristic other than 2 and 3, then $\mathfrak{F}(\mathfrak{A})$ is a Jordan subalgebra of \mathfrak{A} .

PROOF: First assume that \mathfrak{A} contains an identity element. Then we just saw that $\mathfrak{J}(\mathfrak{A})$ is a Jordan algebra with the product $(a, b) \mapsto 2ab$, hence also with the product $(a, b) \mapsto ab$. The general case now follows by adjunction of an identity element. \diamondsuit

Remark 2 In general, $\mathfrak{J}(\mathfrak{A}) = \mathbf{0}$.

§3 Some examples

Let k be an infinite field of characteristic other than 2 and 3, and let \mathfrak{A} be a finitedimensional commutative k-algebra.

1 As in Theorem 2.3 we consider the Jordan subalgebra

$$\mathfrak{J}(\mathfrak{A}) = \{a \in \mathfrak{A} \mid 2x(x \cdot xa) + ax^3 = 2x(ax^2) + x^2(ax)\}$$

of \mathfrak{A} . As examples we study the following classes of algebras:

- (a) \mathfrak{A} is *power-associative*, that is, $x^m x^n = x^{m+n}$ for all $m, n \in \mathbb{N}$.
- (b) \mathfrak{A} is a *Lie triple algebra*, that is, for $x, y, z \in \mathfrak{A}$,

$$w(x, y, z) + y(x, w, z) = (x, yw, z),$$

where the *associator* is defined by (x, y, z) = (xy)z - x(yz). Compare Osborn [5] and Petersson [6].

(c) \mathfrak{A} has a non-degenerate symmetric bilinear form σ that is associative, that is, $\sigma(xy, z) = \sigma(x, yz)$ for all $x, y, z \in \mathfrak{A}$.

Lemma 3.1 If \mathfrak{A} is of type (a), (b) or (c), then

$$\mathfrak{J}(\mathfrak{A}) = \{ a \in \mathfrak{A} \mid x^2(ax) = x(ax^2) \}.$$

PROOF: Type (a): By linearization of $x^2x^2 = x^4$ we obtain

$$4(ax)x^{2} = ax^{3} + x(ax^{2}) + 2x(x \cdot ax)$$

for $a, x \in \mathfrak{A}$. Thus $a \in \mathfrak{J}(\mathfrak{A})$ is equivalent to $x^2(ax) = x(ax^2)$.

Type (b): $a \in \mathfrak{F}(\mathfrak{A})$ is equivalent to $2x(a, x, x) = x^2(ax) - ax^3$. The claim follows since $2x(a, x, x) = (a, x^2, x) = (ax^2)x - ax^3$.

Type (c): By assumption, L(x) is self-adjoint with respect to σ . By linearization of the defining identity for $\mathfrak{J}(\mathfrak{A})$ we find that

$$2L(x \cdot xa) + 2L(x)L(xa) + L(x)^{2}L(a) + L(a)L(x^{2}) + 2L(a)L(x)^{2}$$

= 2L(x²a) + 4L(x)L(a)L(a) + 2L(xa)L(x) + L(x^{2})L(a)

holds for $a \in \mathfrak{J}(\mathfrak{A})$. Taking the adjoint with respect to σ and subtracting yields

$$2[L(x), L(xa)] + [L(a), L(x^2)] = 0$$

and application to x yields

$$2x(x \cdot ax) - 2x^{2}(xa) + ax^{3} - x^{2} \cdot xa = 0.$$

Comparing this with the definition of $\mathfrak{J}(\mathfrak{A})$, it follows that $x^2(ax) = x(ax^2)$ for all $a \in \mathfrak{J}(\mathfrak{A})$.

Conversely, if $x^2(ax) = x(ax^2)$, we obtain by linearization

$$2L(xa)L(x) + L(x^{2})L(a) = L(x^{2}a) + 2L(x)L(a)L(x).$$

Again it follows that

$$2[L(x), L(xa)] + [L(a), L(x2)] = 0$$

and application to x yields $a \in \mathfrak{J}(\mathfrak{A})$.

By (a), $\mathfrak{F}(\mathfrak{A}) = \mathfrak{A}$ is holds precisely for Jordan algebras. In the case of a Lie triple algebra, the defining relations immediately imply that $\mathfrak{F}(\mathfrak{A}) = \{a \in \mathfrak{A} \mid (x, a, x^2) = 0\}$ is a Jordan algebra.

 \diamond

2 Let \mathfrak{B} be an arbitrary \Bbbk -algebra with product $(x, y) \mapsto xy$, and let \mathfrak{B}^+ the corresponding commutative algebra with product $(x, y) \mapsto x \cdot y = \frac{1}{2}(xy + yx)$. Verify that the defining identity for $\mathfrak{J}(\mathfrak{B}^+)$ can be written in the form

$$2\{(xa, x, x) - (x, x, ax) + (x, x^{2}, a) - (a, x^{2}, x)\} + (ax, x, x) - (x, x, xa) + (x, a, x^{2}) - (x^{2}, a, x) + (x, x, x)a - a(x, x, x) + x(a, x, x) - (x, x, a)x - (x, a, x)x + x(x, a, x) = 0.$$

If \mathfrak{B} is flexible, then Theorem 2.3 implies the curious result that the set of $a \in \mathfrak{B}$ satisfying

 $3(xa, x, x) + 3(ax, x, x) + 4(x, x^2, a) + 2(x, a, x^2) + x(a, x, x) + (a, x, x)x = 0$ is a Jordan subalgebra of \mathfrak{B}^+ .

References

- [1] H. Braun, M. Koecher: *Jordan-Algebren*, Springer Berlin, Heidelberg, New York, 1966
- [2] K. Meyberg: Jordan-Tripelsysteme und die Koecher-Konstruktion von Lie-Algebren, Mathematische Zeitschrift 115, 1970, 58-78
- [3] M. Koecher: An elementary approach to bounded symmetric domains, Rice University, Houston, Texas, 1969, and Appendix 1970
- [4] M. Koecher: *Gruppen und Lie-Algebren von rationalen Funktionen*, Mathematische Zeitschrift 109, 1969, 349-392
- [5] M. Osborn: *Commutative algebras satisfying an identity of degree four*, Proceedings of the American Mathematical Society 16, 1965, 1114-1120
- [6] H. Petersson: Zur Theorie der Lie-Tripel-Algebren, Mathematische Zeitschrift 97, 1967, 1-15

Original: *Die Riccati-sche Differentialgleichung und nicht-assoziative Algebren*, Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg 46, 1977, 129-141

Translation by Wolfgang Globke, Version of June 25, 2017.