Two theorems on equations with integer coefficients

By LEOPOLD KRONECKER

I. *If two roots of an integer equation in which the first coefficient is* 1 *are all imaginary and their analytic moduli are all equal to* 1*, then these have to be roots of unity.*

PROOF: Let a, b, c, \ldots denote the roots of the equation

$$
F(x) = xn - Axn-1 + Bxn-2 - Cxn-3 + ... + N = 0,
$$

in which A, B, C, \ldots, N are integers. Since the roots $a, b, c \ldots$ are all imaginary in which A, B, C, ..., N are integers. Since the roots a, b quantities of modulus 1, set (where $\sqrt{-1}$ is denoted by i):

$$
A = \cos(\alpha) + \cos(\beta) + \cos(\gamma) + \dots,
$$

\n
$$
B = \cos(\alpha + \beta) + \cos(\alpha + \gamma) + \cos(\alpha + \delta) + \dots,
$$

\n
$$
C = \cos(\alpha + \beta + \gamma) + \cos(\alpha + \beta + \delta) + \dots,
$$

\n
$$
\vdots
$$

Hence A must be a sum of n quantities, each of which is larger than -1 and smaller than = 1. Also, B is a sum of $\frac{n(n-1)}{1\cdot2}$ of such quantities, and C equals a sum of $\frac{n(n-1)(n-2)}{1\cdot 2\cdot 3}$ of such quantities, etc. But since A, B, C, ... are supposed to be integers, we see that every coefficient of the quations $F(x) = 0$ can only assume a bounded number of values, and the product of all these numbers gives the number of all those systems of values that can be assumed by the coefficients A, B, C, \ldots in the first place.

This implies that *for any given degree* n *there can only be a finite number of equations that satisfy the conditions of the above stated theorem.*

Let r denote the number of all such equations of degree n , and let further for some number k :

$$
F_k(x) = (x - a^k)(x - b^k)(x - c^k) \cdots
$$

Then $F_k(x)$ satisfies all the assumptions of the theorem stated above. For firstly, the coefficients of this equations are clearly integers as symmetric functions in a, b, c, \ldots , and secondly the analytic moduli of its roots,

$$
a^{k} = \cos(k\alpha) + i\sin(k\alpha), b^{k} = \cos(k\beta) + i\sin(k\beta), c^{k} = \cos(k\gamma) + i\sin(k\gamma), \ldots
$$

are all equal to 1. It follows that at least three among the equations

$$
F(x) = 0
$$
, $F_2(x) = 0$, $F_3(x) = 0$, \cdots , $F_{r+1}(x) = 0$

must be identical, that is, there must be two distinct numbers h and k for which $F_h(x) = F_k(x)$. The roots of $F_h(x) = 0$, namely a^h, b^h, c^h, \ldots , must coincide with the roots of $F_k(x) = 0$, namely a^k, b^k, c^k, \ldots , up to order.

For any quantity in the first row, say a^h , let now b^k denote the one in the second row that coincides with it, so that $a^h = b^k$. Similary, $b^h = c^k$, $c^h = d^k$, If we continue in this manner, we clearly encounter an equation that has a^h on the right hand side. Thus we obtain a system of equations of the following form:

$$
a^h = b^k, \quad b^h = c^k, \quad c^h = d^k, \quad m^h = a^k.
$$

If the number of equations is denote by μ , and if we eliminate from these the $\mu - 1$ quantities b, c, d, \ldots, m , then we obtain, as is easy to see:

$$
a^{h^{\mu}-k^{\mu}}=1.
$$

As remarked above, h and k are distinct integer numbers. So this equation shows that a is indeed a root of unity, and this result clearly holds for all roots of the equation $F(x) = 0$, since a was chosen arbitrarily among these.

II. *If an equation with integer coefficients of whom the leading one equals* 1 *has only real roots contained in the interval from* -2 *to 2, so that they can be represented as* $2\cos(\alpha)$, $2\cos(\beta)$, $2\cos(\gamma)$, ..., then the angles α , β , γ , ... *are all in a commensurable ratio to a right angle.*

PROOF: Let $\Phi(y) = 0$ be an equation with the given properties, and let $2\cos(\alpha)$, $2\cos(\beta)$, $2\cos(\gamma)$, ... be its roots. If now v denotes the degree of $\Phi(\gamma)$, and we set

$$
x^{\nu}\Phi\left(x+\frac{1}{x}\right)=F(x),
$$

then $F(x) = 0$ is clearly an equation in which all coefficients are integers and the leading coefficient is 1. Moreover, it is easy to see that the roots of this equation are

$$
\cos(\alpha) \pm i \sin(\alpha), \cos(\beta) \pm i \sin(\beta), \cos(\gamma) \pm i \sin(\gamma), \ldots,
$$

that is, they are all complex quantities of absolute value 1. So equation $F(x) = 0$ satisfies the conditions for the theorem established above, and by applying the very same theorem, we find that all the roots $cos(\alpha) \pm i sin(\alpha)$, $cos(\beta) \pm i sin(\beta)$, ..., are roots of unity. This result immediately implies the properties of the angles $\alpha, \beta, \gamma, \ldots$

Original: *Zwei Sätze über Gleichungen mit ganzzahligen Coefficienten*, Journal für die reine und angewandte Mathematik 53, 1857, 173-175.

Translation by Wolfgang Globke, Version of July 26, 2018.