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Preface

This text grew out of a set of lecture notes for a second course on Linear Algebra for
Computer Scientists given by me in the summer term 2012 at the Karlsruhe Institute of
Technology in Karlsruhe, Germany. It has been adapted to fit the Australian curriculum
by adding an introductory section on algebraic structures such as groups, rings and fields.
As these topics are not part of the compulsory first year courses, I decided to give the
text the new title Advanced Linear Algebra, which also indicates that some knowledge of
abstract vector spaces and linear maps is assumed.

The aim of this text is to teach teach those advanced topics of linear algebra which are
of the greatest importance to computer scientists and engineers. The first of these is the
theory of matrix canonical forms, which is precluded by a solid introduction to divisibility
in Euclidean rings. Even though it is possible to introduce canonical forms without this
strong algebraic underpinning, I believe the additional work invested in understanding it
will greatly benefit the reader, for this approach provides a deeper insight into the structure
of endomorphisms and the beautiful interplay of algebra and geometry involved. More-
over, this sets the foundation to understanding the basic principles of coding theory and
cryptography. The second part of the text then studies the geometry of Euclidean vector
spaces. We explore how the notion of an inner product is derived from the metric prop-
erties of Euclidean geometry in the plane, and introduce isometry groups of Euclidean
spaces. Eventually, this leads to an introduction to self-adjoint endomorphisms.

The appendix contains some additional information which is not part of the lecture itself,
but can facilitate the understanding in some parts.

For helpful comments on the original German text I am grateful to my colleagues Sandra
Lenz and Diego De Filippi at the Karlsruhe Institute of Technology, as well as the students
Felix Benz-Baldas and Michael Tobias.

For the English translation I owe gratitude to...
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Prerequisites and Notations

For this text, some prior knowledge of fundamental Linear Algebra is required. In
this section, we will provide an overview over the facts which are assumed to be
known throughout the text, and we will also introduce some notation that will be
used throughout.

Vector Spaces
A vector space V over a field" KK, is a set V with two operations
+:VxV >V and -:KxV >V

with the following properties:

(@) v1 + (v2 +v3) = (v1 +vy) + v3 forall vy, v, v3 € V.

(b) vi + v = vy + vy forall vy,v, € V.

(c) There exists an element 0 € V such thatv + 0 = v forallv € V.

(d) Forevery v € V there exists an element —v satisfying v + (—v) = 0.
() A-(vi4+vy)=A-vi+A-vyforall A € Kandall v;,v, € V.

) A1+ A)-v=A1-v+Ay-vforallA;,A, e Kandallv € V.

(g) If 1 denotes the identity element in K, then 1 - v = v forallv € V.

In the terminology of chapter ??, properties (a) to (d) state that (1, +) is an abelian
group. The properties (e) and (f) are the laws of distributivity.

The basic example of a vector space is K", the space of the column vectors

X1
x=1:1, x1,....x, €K,
Xn

with 7 entries from K. The operation + is the usual componentwise addition, and
the multiplication by a scalar A € K is by multiplying all components by A.

DFor the definition of a field, see ??. The reader yet unfamiliar with fields may assume K = R
orK =C.



A vector subspace of a vector space V' is a subset U C V which satisfies the
above properties (a) to (g) for the operations + and - inherited from V. In parti-
cular, U is closed under addition and mutliplication with scalars. Equivalently, a
vector subspace is a subset U € V which is not empty and such that x,y € U
implies x —y € U. If U, W are vector subspaces of V', then so are U N W and
U+W={u+w|uelUweW},. IfUNW = {0}, then the sum U + W is
called a direct sum of vector spaces, written U @& W . In this case, every element
x € U & W is uniquely represented asasum x = u + w withu e U, w € W.

Given vectors vy, ..., U € V, one obtains new vectors as linear combinations
of these vectors,
V=A10; + ...+ Ak

with A1,...,Ax € K. For a given set of vectors S C V, the set of all possible
linear combinations is called the span (or linear hull) of S, which we write as

span(S) = {A vy + ...+ Apvr |k e NA; e K, v; € S}

It is a vector subspace of V.

The vectors vy, ..., vg are linearly independent if the identity
A+ ...+ A =0

implies 0 = Ay = ... = Ax. Geometrically, this means that none of the v; can be
written as a linear combination of of the remaining ones. The vectors are called
linearly dependent if they are not linearly independent.

A basis B of V' is a maximal set of linearly independent vectors in V', or equi-
valently, a generating set of V' (meaning span(B) = V') of minimal cardinality.
The cardinality of B is called the dimension of V', written dim V. The dimension
of a vectors space V' is an invariant of V', meaning that all bases of V' have the
same cardinality.

We will be mostly concerned with vector spaces of finite dimension, concisely
indicated by dim V' < oco. For example, K" is of dimension 7, and its canonical
basis consists of the vectors

€e1L=1.1,.--,6n =
0 1
In finite dimensions, for vector subspaces U, W C V, the important dimension
formula holds:

dim(U + W) =dimU +dim W —dim(U N W).



If the sum is direct, this means
dim(U & W) = dimU + dim W.

Given a basis B = {by, ..., b,} of a finite dimensional vector space V', we can
write each element v € V' as a linear combination

U:/11b1+...+/’\nbn,

where the scalars A1,...,A, € K are uniquely determined by v (for the given
basis B). This gives rise to a coordinate representation oz (v) of elements v € V
by column vectors in [K":

Al
QB(Albl + ...+ )Lnbn) = /\161 4+ ...+ )&nen =
An
In particular, the basis vectors by, ...,b, in V are represented by the canonical
basis vectors ey, . .., e, in K. In the terminology introduced below, the map op

is a vector space isomorphism from V' to K".

It is important to understand how to transform basis representations for different
bases into one another. So let B = {by,...,b,},C = {c1,...,c,} be bases of V.
Every element of B can be expressed as a linear combination of the elements of
the basis C:

by =pii-ci+ ...+ pnt - Ca,

bn:/fbln'cl+---+,unn'cn

for suitable scalars p;; € K. If we replace the ¢; by their respective column vector
representations oc (¢;) = e;, we now find

Mii
oc(b;) = pyi-oc(cr) + ...+ pni - 0c(cn) =
Mni
fori = 1,...,n. Let Mg = (nij) € K™, the matrix whose colums are the

oc(b;). So multiplying M2 with the ith canonical basis vector ¢; = 0p(b;)
yields oc¢ (b;). By linearity of matrix multiplication, this means

oc(v) = ME - 0p(v)

is the change of basis from B to C for v € V. The reverse change of basis from
C to B is given by multiplication with the matrix

Mg =ME).



Linear Maps and Matrices

Let V and W be K-vector spaces. A IK-linear map (or homomorphism of IK-
vector spaces) @ : VV — W is a map with the following properties:

(a) @(vy + vy) = D(vy) + @(vy) forall vy, vy € V.

(b) ®(A-v) =A-P(v)forallA e Kandv e V.

The property (a) means @ is a homorphisms of groups from (V, +) to (W, +).
Linearity of a map encodes the notion compatibility with the algebraic structures
of V.and W.

The set of all K-linear maps V' — W is denoted by Homy (V, W). Itis a IK-vector
space when addition and scalar multiplication are defined pointwise,

(D1 + P2)(x) = D1(x) + P2(x), (A-P)(x) = A P(x).

If @ has an inverse linear map @~! : W — V, then @ is called an isomorphism
of vector spaces. If V' = W, alinearmap @ : VV — V is called an endomor-
phism of V', and an endomorphism which is also an isomorphism is called an
automorphism of V. The vector space of endomorphisms of V' is denoted by
End(V). It is also closed under composition of endomorphisms, so it is even a
K-algebra. The set of all automorphisms of V is denoted Aut(}) or GL(V).?
With composition of maps as a product, it forms a group.

The image im @ of @ is a vector subspace of W, and the rank of @ is
rk @ = dimim ®.
The kernel of @ is the vector subspace of V'
kerd ={veV|®w) =0}

The linear map @ is injective if and only if its kernel is trivial, ker @ = {0}.

Assume V is of finite dimension. For a linear map @ : V' — W the following
dimension formula holds:

dimV =rk ® + dimker ®.

A linear map is completely defined by its images on a basis of V. As noted above,
if V and W are of finite dimensions dimV = n, dimW = m, we can choose
bases B of V' and C of W, respectively, and identify V' with K" and W with K™

DThe notation GL(V) indicates GL(V') = GL,, () for an n-dimensional IK-vector space V.



via coordinate representations og : V — K" and o¢ : W — K™. To find a
compatible coordinate expression of the linear map @, we express the images of
b1, ...,b, € B aslinear combinations of elements of C,

Qb)) =ay-c1+ ...+ Api - Cm,
qp(bn):O[ln'cl"'--""O[mn'cma

for sutiable scalars «;; € K. Mapping these expression isomorphically to K™ via
oc, we find

o1
oc(@(b))) =oayi-e1+ ...+ ami-ey = ,
Omi

the ith column of the m x n-matrix

11 o Uip

The ith column is also obtained as
A-e; = A-0p(bi),

so that in the coordinates defined by C in W and B in V', @ is represented by the
matrix multiplication
x—A-x, xeK"

That is to say, the following diagram commutes:

V—2.w

o e

KI’! _>]I<m

x—>Ax

We use the notation
0d(®) =4

to indicate that A is the matrix representing @ with respect to the bases B and C.
The identity map idy : V' — V is represented by the identity matrix /,,.



If B’ and C’ are other bases in V' and W, respectively, then the representation
matrix Qg:(@) is obtained by composition with the respective changes of basis,

08/ (®) = ME, - 0&(P) - M§ .

The composition of two linear maps ¥ o @ corresponds to the product of the
representation matrices,

op(¥ o @) = 5 (¥) - 0 (P),
where B, C, D are suitable bases in the corresponding vector spaces.

Conversely, every matrix A € K"™*" defines a linear map @4 : K" — K" via
DPy(x)=A-x.
Therefore, Homy (V, W) is isomorphic to the vector space IK™*" of m xn-matrices,

both as a vector space and as a ring.

Due to the correspondence of matrices and linear maps, we define the terms rank
rk A, kernel ker A and image im A by the corresponding notions for the linear
map P4.

Systems of Linear Equations

A linear equation in the unknowns x, ..., x, is a an equation in which only first
powers of the x; appear,

ar-x1+...+a,-x,=b

with scalar coefficients a; € K and the right hand side » € K.
Accordingly, a system of linear equations is a collection of m linear equations in
the same unknowns x1, . .., x, which are to be solved simultaneously,

a11-x1+...+a1n-xn=b1,

Am1 X1+ ...+ amn - Xn = by

The system is homogeneous if 0 = b; = ... = b,, and inhomogeneous other-
wise.

By collecting the coefficients a;; € IK in a matrix A = (a;;) € K™*” and the b; in
a vector b = (b;) € K™, the system of linear equations is conveniently expressed

as a matrix-vector equation
A-x=b.



This system can be conveniently solved by the well-known Gauf8 Algorithm,
which by means of elementary row operations transforms the extended matrix
(A, b) to a form (A, b) from which the solutions can be easily inferred. Each
elementary row operation can be realised by a multiplication on the left with a
certain invertible m X m-matrix, so that

S - (A4,b) = (A, b)

holds for some S € GL,,(K).

In general, a solution to A - x = b exists if and only
rk(A,b) =1k A.

This means b is a linear combination of the columns of A. The set of solutions is
described by the following:

(i) For a homogeneous system A - x = 0, the set of solutions is the kernel of
A. In particular, the vector x = 0 is always a solution in this case.

(i1) If one particular solution xo of A - x = b is known, then the set of all
solutions is given by
xo + ker A.

(iii) If m = n and A € GL, (K), there is precisely one solution given by

x=A""1.b.

Duality

Associated to each vector space V is its dual vector space V'*, the space of lin-
ear map from V to K. The elements of V* are called linear forms or linear
functionals.

For finite dimensional vector spaces it holds that dim V' = dim V'*, and for each
basis B = {b1,...,b,} of V there exists a dual basis B* = {b7,....b;} of V'*
defined by the property

1 ifi =k

b*(br) = bix = e ’
 (be) ik 0 ifi #k.

In particular, for V' = K", the linear functionals are represented by 1 xn-matrices,

or row vectors. The dual basis of the canoncial basis eq,...,¢e, of V is then

represented (with respect to the canoncial basis) by the tranposes of these vectors,



e ,...,e, . The operation of every § € (IK")* can be written as the product of a

row and a column vector,

X1

Ex) = (& - &)

Xn

Given two vector spaces V, W, for every linear map @ : V' — W, there exists a
dual map @* : W* — V™ defined by

O W > V* (Lo d.

If V and W are finite-dimensional with respective bases B and C, then @* has a
matrix representation with respect to the dual bases C* and B* given by

05: (%) = 0B(@)T.

The bi-dual space V** of V is the dual space of V*. If V is finite-dimensional,
then there exists a canonical isomorphism

V—>V*™ x> x*,
where for every x € V the linear form x** on V'* is defined as
XV > K, £ E(x).

However, for vector spaces of infinite dimension, V', V* and V** are not iso-
morphic in general.
Determinants

The determinant det(A) of an n x n-matrix A = (a;;) € K™ (with columns
ai,...,a,)isamap det : K" — IK defined by the properties

(a) det is multilinear, that is,

det(ay,...,a; + b;,...,a,) =det(ay,...,ai,...,a,) +det(ay,....,b;,...

det(ay,...,A-aj,...,ay) = A-det(ay,...,a;,...,a,)
forall A € Kanday,...,a,, b, € K".
(b) det is alternating,

det(ay,...,aj,...,ag,...,a,) = —det(ay,...,ar,...,a;,...,dy,).

,an)



(c) detis normalised such that

det(1,) = 1.

From these properties, it can be inferred that the function det is unique and given
by the Leibniz formula:

det(A4) = Z sgn(o) * Aig(1) ** * Ano(n)-

g€S,

For practical purposes, the recursive Laplace expansion by the ith row (or jth
column) is helpful:

det() = Y2 (1) e det(ie) (= Y1 deti) )

where A;x € KO~DX0=1 denotes the matrix obtained from A by deleting the ith
row and kth column. It is easily seen from this that

det(A) = det(A").

Because det is alternating, the determinant of a matrix does not change when a
column a; of A is replaced by a linear combination of a; and the other columns.
In particular, det(A4) = 0 if the columns of A are linearly dependent. The analogue
statements hold for the rows of A.

A matrix A € K™ is invertible if and only if det(4) # 0, so the general linear
group can be characterised by

GL,(K) = {4 € K™ | det(A) # 0}.
This implies that a system of # linear equations in 7 unknowns, given by
A-x=>b withd #0,

has a solution if and only if det(A) # 0. In this case, the solution x = (x;) € K”
of this system can be given in closed form by Cramer’s rule:

_ det(Ap))
" det(A4)
where A[;) is the matrix obtained from A by replacing the ith column of A by

b. Note though that the computational complexity of Cramer’s rule is in O(n!)
compared to the GauB Algorithm’s O(n?).
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From Cramer’s rule one can also deduce a closed form for the inverse of a matrix
A € GL,(K), given by
1
-1 #

= det(A)

where the matrix A* = (a};) is obtained from A by setting

afj = (—I)H_j det(A,-j).
The determinant satisfies
det(AB) = det(A) - det(B),

in particular, the determinant of a matrix B € IK"*” does not change under conju-
gation by a matrix A € GL, (K),

det(ABA™!) = det(B).

A geometric interpretation of the determinant in R” is given as follows: If the
sides of a parallelepiped P in R" are spanned by vectors ay,...,a, € R", then
its volume is given by

vol(P) = | det(A)|,

where A is the matrix with columns aq, ..., a,. In this sense, matrices with deter-
minant +1 describe volume-preserving linear transformations of R”.

Eigenvalues and Eigenvectors

Given an endomorphism @ : V' — V of some K-vector space V, an eigenvector
x with eigenvalue A € K of @ is a vector x € V'\{0} satisfying

D(x) =A-x.

The set of all eigenvalues of an endomorphism @ is called its spectrum Spec @.

The eigenspace of @ for the eigenvalue A is the span of all eigenvectors for A,
E;(®) =span{x € V | ®(x) = Ax}.

Note that in particular
Eo(®) = ker @.

Eigenvectors, eigenvalues and eigenspaces for a matrix A € IK"*” are defined via
the corresponding linear map @4(x) = A - x.



11

If x is an eigenvector for the eigenvalue A of a matrix 4, then A -x = A - x is
equivalent to
A-I,—A)-x=0.

In other words, the matrix A — A - I, has non-trivial kernel and therefore is not
invertible. But then
det(A-1I,, —A) =0

holds. So replacing A by a variable X yields a polynomial in X of degree n,
fa=det(X - I, — A),

and the zeros of this polynomial f4 are precisely the eigenvalues of A. We call
f4 the characteristic polynomial of A (as determinants are invariant under con-
jugation, and all representation matrices of an endomorphism @ are conjugate
by some base change, we can define the characteristic polynomial of @ by that
of any of its representation matrices 05 (®)). By the famous Cayley-Hamilton
Theorem, the characteristic polynomial annihilates A,

fa(4) =0.

The characteristic polynomial provides us with a tool to determine the eigenvalues
of A (at least in principle), and once the eigenvalues are known, the eigenspaces
can be computed as

E;(A) =ker(A- I, — A)
using the Gauf3 Algorithm.
An endomorphism @ or a matrix A can have at most n distinct eigenvalues in [
(as the degree of f4 in n). Eigenspaces E,(®), E,(®) for two different eigen-

values A, u € Spec @ have trivial intersection, E;(®) N E,(®) = {0}. An
endomorphism @ is called diagonalisable if

V=FEp (D) ®...0 Ep(P),

that is, V' completely decomposes into a direct sum of eigenspaces, and there
exists a basis B of V' consisting of eigenvectors of @. With respect to this basis,
@ is represented by a diagonal matrix

Ay
05 (P) = e K™,
Ak
where the eigenvalues A; can appear on the diagonal with multiplicities given by

dim £, (®). A matrix A is diagonalisable if the endomorphism @4 is, and in this
case A is conjugate to a diagonal matrix.
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Part I
Polynomials and Endomorphisms

We choose to go to the moon in this decade and do the other things,
not because they are easy, but because they are hard.

— JOHN F. KENNEDY

Our aim in this part of the text is to derive a complete classification of the con-
jugacy classes of complex matrices. This means that every matrix A € C™" is
conjugate to a unique matrix A whichis of a particularly simple form and depends
only on the conjugacy class of A. This is the Jordan canonical form of A. Itis a
generalisation of the well-known diagonal form of diagonalisable matrices.

The Jordan canonical form is intimately connected with the characteristic poly-
nomial f4 of A. For this reason, we will first study the structure of the polyno-
mial rings IK[X] more closely in chapter 1. In doing so, we will emphasise the
analogies to the rings 7Z of integer numbers and the modular rings Z/nZ. As an
added benefit, these investigations enable us to already understand a few simple
cryptographic methods.

1 Divisibility in Rings

Unless stated otherwise, R is assumed to be a ring with unit 1 throughout this
chapter.

1.1 Units, Ideals and Divisibility

One of the simplest rings known to us is the ring Z of integer numbers. The only
elements of Z with an inverse with respect to multiplication are —1 and 41, and
every element n € 7 can be written as a product

— V1 Vi
n=pipg

of distinct prime numbers pq,..., pr. This representation is unique up to the
order and multiplication of some p; with a factor —1; for example,

60 =2%2.3.5=(=5)-2%.(=3).

The multiples of a number a form a set aZ, and if n is a multiple of a as well as
of b, then
neaz NbZ.
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In particular, the above decomposition of 7 into primes means:

nep'Zn...NpkL.

If |a| > |b| holds for two non-invertible elements a,b € Z\{£1}, we can apply
division with remainder to obtain

a=q-b+r,

where the remainder r satisfies |r| < |b|. Expressed in the language of congru-
ences, this means

a =rmodb (ora =71 €Z/bZ)

and a is divisible by b if and only if r = 0 holds. By repeated application of
division with remainder (this time to b and r), we can determine the greatest
common divisor of a@ and b (Algorithm 1.29).

So we can compute comfortably in the ring Z. In this chapter we will study
rings R with similar benign properties. To this end, we will generalise the above-
mentioned properties of 7 to abstract rings, and study the class of rings with
these generalised properties (which we will come to know as Euclidean rings). Of
particular interest to us is the ring IK[X] of polynomials over a field K.

At first, we study the multiplicatively invertible elements of R.

Definition 1.1 Let R be a ring with unit. An element x € R is called a unit if
there exists an element x’ € R such that

x-x'=1=x"-x.

We write x~! for x’. The set of all units of R is called the group of units and is
denoted by R*.

The name is justified by the following lemma:

Lemma 1.2 The group of units R* with the ring multiplication of R is a group
with neutral element 1.

PROOF: The multiplication in R is associative, as R is aring. We have 1 € R*, as
1-1 = 1. By definition of R* there exists an inverse x~! € R* for every x € R*.
By associativity, for x, y € R* it holds that

) 'xTH) =1=(""x Hxy),

so (xy)~! = y~!x~!. Therefore, R* is closed under multiplication. &
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Example 1.3 (Groups of units)

(a) For R = 7,
7> ={—1,1}.

(b) Let R = Z/6Z. For aclass n = n + 67 to be a unit in Z/6Z, there needs
to exist a m € Z satisfying

nem=1,
which is equivalent to
n-m=q-6+1
for a suitable g € Z. Among the numbers from 1 to 6, this is satisfied by 1
and 5:
1-1=0-6+1,
5-5=4-6+41.

The other numbers n = 2, 3,4, 6 each have a common prime factor p (ei-
ther 2 or 3) with 6. Thusn -m = g - 6 4 1 is equivalent to

n-m—q-6=1¢ pZ,
~—————
€EpZ

a contradiction. Therefore,
(Z)67) = {1,5}.

(¢) Inafield K all elements x € IK\{0} are invertible by definition. Thus
K* = K\{0}.
(d) In the polynomial ring K[X] over a field IK, the invertible elements are
precisely the constant polynomials # 0, that is,
KX = K*.
(e) In the ring K" of n x n-matrices over a field K the group of units is (by
definition) the general linear group
(K"™"™")* = GL,(K) = {4 € K™ | det(A4) # 0}.

More generally, for n x n-matrices with coefficients in a commutative ring
R with unit, the group of units is given by

GL,(R) = {4 € R™" | det(A) € R*}.

This can be seen from the closed expression for the inverse of a matrix,
which is defined if and only if division by the determinant is possible.  ©
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We will now determine which properties a ring R should have in order to have
divisibility properties similar to Z. Firstly, we require that R be commutative, for
otherwise the equality

a-b = ¢ (for some suitable b)
would not automatically imply
b’'-a = ¢ (for some suitable b’).

Therefore, we would have to make an inconvenient distinction between “left-
divisors” and “right-divisors”. Moreover, for all a € 7Z, the cancellation law

“a#0anda-b=a-c imply b = ¢”,

holds, and we want to keep this law in the more general case R. We thus require
the ring R to be free of zero divisors, as this implies the cancellation law.

Definition 1.4 An integral domain (or integral ring) is a commutative ring with
unit which does not contain zero divisors.

Example 1.5 The rings 7Z and K[X] are integral. If n is not a prime number, the
rings 7Z/n7 contain zero divisors and are therefore not integral. But as they are
quotients of the integral domain 7, several properties of 7Z/n’7 can be deduced
from the divisibility properties in Z (as it was done in Examples 1.3 (b)). Q

Definition 1.6 Let R be an integral domain.

(a) Let x,y € R. We say x divides y (written x | y), if there exists ag € R
such thatg - x = y.

(b) Let x1,...,x;r € R. Anelement g € R is called greates common divisor
of x1,...,xx (written g = gcd(xy, ..., xx)), if the following holds:
e gisadivisor of each xq, ..., xx,
e if d € R is another divisor of each x1, ..., xx, then d is also a divisor
of g.

(c) If ged(xq,...,xx) = 1 holds, then xy, ..., xx are called coprime.

Remark 1.7 Note that the gcd is only determined up to multiplication with a unit
in R, so the notation gcd(x, y) = g means that for every u € R™ the element u - g
is also a gcd of x and y.
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Convention: For R = 7, gcd(a, b) will always mean the positive greatest com-
mon divisor of a and b; for R = K[X], gcd(a, b) will always denote the nor-
malised polynomial which is a greatest common divisor of a and b. Thereby, the
notation becomes unambiguous.

Remark 1.8 For all x € R it holds that 1 | x and x | 0. On the other hand, for
x # 0 it always holds that 0 } x (“division by 0 is not allowed”).

Exercise 1.9 The divisibility relation | is a quasiorder on R, that is, it is reflexive
and transitive.

Exercise 1.10 From x | y and x | z it follows that x | y + z.
Remark 1.11 It holds that
ng(x1 » X2, x3) = ng(ng(Xl ’ -x2)7 x3)’

as every divisor d of gcd(xy, x) and x3 satisfies d | x, d | x5 in particular, and
consequently d | gcd(xy, X2, x3) by the definition of greatest common divisors.

Lemma 1.12 (Cancellation Law) Let R be an integral domain anda, x,y € R,
a#0.Ifa-x =a-y, then already x = y.

PROOF: The conditiona - x = a - y is equivalenttoa - (x —y) = 0. Asa # 0
and R has no zero divisors, it follows that x — y = 0. Sox = y. &

Definition 1.13 Let R be a commutative Ring with unit. A subset 3 C R is called
an ideal in R if the following holds:

(1) 3 is an additive subgroup of R, thatis, 0 € 3 and x, y € 3 implies —x € §
andx +y € 3.

(i) Forallr € Rand x € J itholdsthatr - x € J.

Note that ideals are not subrings of R, as we do not require 1 € ¥ (in fact, R itself
is the only ideal containing 1).

Definition 1.14 For x € R we call
(x)={r-x |reR}
the principle ideal generated by x in R. More generally,
(X1, xp)={r1-x1+...4+r-Xp | r1,....,7n € R}

denotes the ideal generated by the elements x1,...,x, € R.
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Example 1.15 (Ideals)

(a)
(b)

(©)

(d)

(e)

In every ring R, R itself and {0} are ideals, the trivial ideals.

In the ring 7Z of integer numbers, for every n € 7 the set n’ is an ideal, as
fora,b € 7
an+bn = (a+b)n € nZ

and
a(bn) = (ab)n € nZ

hold. The ideal n% is the principle ideal generated by n.
Let R = K[X]. Forx € K,

(X —a) ={h- (X —a) | h e K[X]}
is the ideal of all polynomials with a zero at «.

More generally, every polynomial f € IK[X] generates an ideal (f) in
K[X] containing the multiples of f. If deg(f) = 0, thatis, f € K\{0},
then ( /) = K[X]. Otherwise, ( /) is a proper ideal in K[X].

The vector subspace generated by f in IK[X] is a proper subset of the

ideal( f):

span(f) = {A- f A €K} G {h- f | h e K[X]} = (f).

Let ® : V — V be an endomorphism of a finite-dimensional K-vector
space V. Then

So = {f € K[X]] f(®) =0}

is an ideal in the polynomial ring IK[X]. More precisely, it is the kernel of
the evaluation map

K[X] = End(V), [+ f(D).

By the Cayley-Hamilton Theorem, the characteristic polynomial fg of @ is
an element of J¢. It follows from Theorem 1.35 that 3 is a principle ideal.
The normalised generator of S is called the minimal polynomial of . O

Lemma 1.16 Let & : Ry — R, be a homomorphism of rings. Then ker ® =
{x € Ry | ®(x) = 0} is an ideal in R;.
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PROOF: Letr € Ry and x, y € ker @. As @ is a homomorphism,

Px+y)=Px)+P(y)=0+0=0,
D(r-x)=@(r) - @(x)=@(r)-0=0.

Sox + y,r-x € ker @, that is, ker @ is an ideal. &
Exercise 1.17 If 3, and 3, are ideals in R, so are 31 + 35, 31 - 3> and 37 N 3.
Exercise 1.18 An ideal ¥ contains a unit ¥ € R* if and only if 3 = R.
Exercise 1.19 If K is a field, the only ideals in KK are the trivial ideals.
Divisibility in integral domains can be characterised by means of ideals:

Theorem 1.20 Let R be an integral domain and x,y € R.

(a) x | y ifand only if (y) C (x).
(b) (x) = (y)ifandonly if x = u -y foraunitu € R*.

(c) If(x,y) = (g), then g = gcd(x, y).
(d) If(x,y) = R, then x, y are coprime.

PROOF:

(a) We have y = r - x for some r € R if and only if y is an element of (x).

(b) If x = u - y holds, then so does y = u~! - x. With part (a) it now follows

that (x) C (y) and (y) C (x), thatis (x) = (y).
Conversely, if r - x = y and s - y = x, then srx = x. Cancelling x yields

sr =1, and thus r, s € R*. So the unit u = s satisfies x = u - y.

(c) Asx,y € (g), g divides x and y. By assumption there exist a,b € R such
that g = ax + by. For every common divisor d of x and y this implies
d | g. Therefore g = ged(x, y).

(d) Follows from (c) and Exercise 1.18. &

The corresponding statements hold for any number of elements xy, ..., x; € R.

By a prime number one often means a p € N which is “only divisible by itself
and 1. When studying the ring 7Z D N, we have to admit —1 as a divisor as well.
More generally, in a principle domain R we want to allow all units as divisors of
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prime elements, where the condition to be “prime” shall mean that p is coprime to
all elements in R\ R*. We will give an even more general definition here, which
we will find later to precisely reflect this property in the cases of interest to us.
For practical reasons, units are excluded from the definition to begin with.

Definition 1.21 Let R be an integral domain and p € R\R*, p # 0.

(a) p is called irreducible if in every decomposition p = x - y one of the
elements x or y is a unit.

(b) p is called prime if p | x - y for some x, y € R implies p | x or p | y.
Lemma 1.22 If p € R is prime, then p is irreducible.

PROOF: Let p = x - y, in particular, p divides x - y. As p is prime, there exists
a € R, such that (without loss of generality) p - a = x holds. Then

p=x-y=p-a-y

and by the cancellation law
l=a-y.

Hence y € R*. This means p is irreducible. &
Example 1.23 (Prime elements)

(a) The prime elements in Z are precisely the elements & p, where p runs
through the set {2, 3,5,7, 11, ...} of prime numbers.

(b) In C[X] the prime elements are precisely those polynomials
p =a1X + ao,

with a; € C*, ag € C. This is a consequence of the Fundamental Theorem
of Algebra and will be taken up again in Section 1.3.%

(¢) In R[X] the irreducible polynomials are of the form
p=a1X +ay oder q=>5b,X>+b X + by,

where ay, b, € R*, ag, b1, by € R, such that the polynomial ¢ has no real
zero (otherwise ¢ could be factored into a product of two polynomials of
degree 1 by polynomial division). For example, the polynomial X2 + 1 is
irreducible in R[X], as its only zeros i and —i are elements of C\R.

¥When referring to polynomials, it is customary to use the term irreducible instead of prime.
In this case, the two notions are equivalent by Theorem 1.35.
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(d) In polynomial rings IK[X] over fields I other than R or C it is in gen-
eral not easy to characterise the irreducible polynomials. The polynomials
a1 X + agp of degree 1 are always irreducible, but in general there are many
more. There exists a few criteria to test for irreducibility, see for example
Chapter 2.8 in Bosch [1]. Also, in general there is no bound to the degree
of irreducible polynomials. For example, for every prime number p € N
the polynomial X?~1 + X772 + ... + X + 1 is irreducible in Q[X], and
the polynomial X7 — X — 1 is irreducible in ' ,[ X]. Q

In the language of ideals, primality can be expressed as follows:

Definition 1.24 An ideal 8 in a ring R is called a prime ideal if for all x, y € R
it holds that x - y € 3 implies x € P or y € L.

Lemma 1.25 Let R be an integral domain and p € R prime. Then the principle
ideal (p) is a prime ideal.

PROOF: x -y € (p) means p | x - y by definition. So p | x or p | y, and this
again means x € (p) ory € (p). &

To further generalise the properties of the integer numbers 7 (such as the unique
prime factorisation or the ability to compute a gcd), we have to further restrict the
class of rings we study. In particular, we want to be able to perform a division
with remainder. These rings are the subject of the following section.

1.2 Euclidean Rings

Definition 1.26 An integral ring R is called a Euclidean ring if there exists a
function § : R — N, with the following property: For all @,b € R there exists a
representation

a=q-b+r (1.1)

withg,r € R, where r = 0 or §(r) < 6(b).

In other words: In Euclidean rings division with remainder is possible. If the
division leaves a remainder, then this remainder r is “smaller” (with respect to &)
than the divisor b.

Example 1.27 (Euclidean rings)

(a) The ring 7Z is a Euclidean ring with §(n) = |n|. For the division of integers
we us the notation ¢ = a + b, with g, a, b as in (1.1).
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(b) The polynomial ring IK[X] is a Euclidean ring with §( /) = deg(f) with
f # 0and §(0) = 0. This is seen by means of the polynomial division: Let
f. g € K[X]\{0} and

fzame+...+a1X+a0, g:ann++b1X+bo

with a,,, b, # 0, where we assume m > n (so that deg(f) > deg(g)).

Then set a
qo = b_me—n

n

and obtain (after multiplying and collecting terms)
am m Am m—1
flzf_qo'g: am — bn X"+ am—l__bn—l X + ...
by b,
N’

=0

If fi =0,thenr = f; and ¢ = g satisfy the condition (1.1). Otherwise
f1 # 0 and deg(f;) < m —1 < deg(f). By induction on m = deg(f)
we may assume, that there exists a decomposition f; = ¢; - g + r such that
deg(r) < deg(g) holds. Now

f=@i+q)-g+r

is the desired decomposition (1.1) for f with deg(r) < deg(g) and g =
41 + qo. Q

Example 1.28 Let f = 2X* + X2 —-3X +2,¢ = - X2+ X —1 € R[X].
Following Example 1.27 (b), we determine the elements g, r € R[X] by means
of polynomial division, such that f = g - g 4 r holds:

e Setgo = —2X2. Then fi = f —qo-g =2X>— X? —-3X +2.
e Setq; = —2X.Then f, = fi —q,-g = X?—5X +2.

e Setq, = —1.Then f3= f, —q>-g = —4X + 1. Now deg( f3) < deg(g)
andforqg = go +q1 + g» = —2X?> —2X — I:

—A4X+1=f3=/fr—q2-8
=(/1—91°8)—q2-8=f1—(q1+q2)- ¢
=(f—q0-8)—(q1+q2)-¢
=f—(Qo+q1+q)-g
=f-q-¢

The remainder of the division is therefore r = f3 = —4X + 1. Q
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Algorithm 1.29 (Euclidean Algorithm) Let R be a Euclidean ring and ag, a; €
R. Divide with remainder,

ai—1 = qi - a; + aj+q (with §(a;) > 6(a;j4q)) fori =1,...,n, (1.2)
until the remainder a,+; = 0 is obtained after finitely many steps. Then

a, = ged(ao, ar).

PROOF: The sequence 6(a;) is strictly decreasing and > 0, so the algorithm ter-
minates after a finite number of steps.

The loop invariant of the algorithm is ged(a;—1,a;) = gecd(a;,a;4q) fori =
1,...,n: If g = gcd(a;,ai+1), then d | g for every common divisor d € R of a;
and a;+;. By definition of @; 4+ in (1.2), d is a common divisor of a; and a; 1, if
and only if d is a common divisor of a; and a;_;. Hence d | g for every common
divisor d of a; and a;_1, that is, g = gcd(a;—1, a;).

In the last iteration of the algorithm, the condition
gcd(ag,ay) = ged(ay,az) = ... = ged(ay, an+1) = ged(a,,0) = ay,
holds. &

Euclid’s algorithm can be extended to give a constructive proof of Bézout’s Lemma:

Corollary 1.30 (Bézout’s Lemma) Let R be a Euclidean ring and a,b € R.
There exist s,t € R such that

gcd(a,b) = sa + tb. (1.3)
The proof is immediate from the extended version of Euclid’s algorithm:

Algorithm 1.31 (Extended Euclidean Algorithm) Let R be a Euclidean ring and
ap,a; € R. Divide with remainder,

ai—1 = qi - a; + Aj+q (with §(a;) > 6(a;j4q)) fori =1,...,n, (1.4)

set A9 = I, and

Qi:((l) —141) A=Ay fori=1,....n, (15

until the remainder a,1; = 0 is obtained after finitely many steps. Then
a, = ged(ag, ay) = sag + tay,

where A4, = (S ’).

s’
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PROOF: Algorithm 1.29 computes a sequence of remainders
i1 = aij—1 —¢; - aj, i=1,...,n

where a, = gcd(ag,a;) and a,+1 = 0. We can express this by means of the

matrices Q;:
a; a;—1 0 1
= Q; - for Q; = .
(ai+1) O ( i ) Qi (1 _‘li)

In the extended version of Euclid’s algorithm, in each step compute the matrix
A; = Q; - Ai—1, where Ay = I,. Once the algorithm terminates after n steps,

ged(ag.ar)\ _ ( an \ _ ap\ a
(5 ) = ) = 00 (02) = ()

holds. So the elements s, 7 are now the entries in the first row of 4, = (5 /). <

Remark 1.32 Even though the Euclidean Algorithm for R = 7 is one of the old-
est and simplest algorithm of all, its analysis is by no means easy. The complexity
of this algorithm is determined by how often the division with remainder (1.2) is
performed. Assume 0 < a; < ay. For the sequence of remainders in (1.2) it holds
that

ap>a,>...>a, > 0.

The quotients g; = a;—; =+ a; of the division with remainder thus satisfy
gi>1forl <i <n-1, g¢q,>2. (x)
For1 <i <n —1 this yields
aj—1 = a,qi +ai+1
> aiv14i T Ait1
=a;+1(¢i + 1)

and therefore
n—1 n—1
[Taior > [Jaivalqi + 1.
i=1 i=1

The factors a,, as, ..., a,—, appear on both sides and can be cancelled:

n—1

apdy > Ap—1ay H(Qi +1)

i=1

n—1
= a;%Qn l_[(Qi +1).

i=1
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By (x) and a¢ > a; we can further estimate this as

ag > apdq
>qZ.2.2"!
= 2" gcd(ao, a1)?
> 2",

It follows that
2log(ag) > n.

Hence the number of loop iterations is in O(log(m)) for m = max{|ao|, |a1|}.
The worst case occurs for ged( f,+1, fn), Where f, is the nth Fibonacci number
(defined by fr,+1 = fu + fu—1 With fi = 1, fo = 0). In this case, the algo-
rithm performs precisely n — 1 loop iterations for n > 1. For an in-depth analysis
see Knuth [8], Section 4.5.3. For a polynomial ring, the complexity of the Eu-
clidean algorithm is in O(m?), where m = max{deg(a,), deg(a;)}, see Lipson
[10], Section VIIL.2.2.

Remark 1.33 By Remark 1.11, the (Extended) Euclidean Algorithm can be used

to compute the gcd of any number of elements a4, ...,ax € R and find elements
S1,...,5¢ € R satisfying
gced(ay,...,ax) = s1ay + ... + sgay. (1.6)

Example 1.34 We demonstrate the Extended Euclidean Algorithm 1.31 by two
examples:
(a) Leta =21,b =8 € Z.

e ag =21,a; = 8gives q; = 2, a, = 5 and the matrix 0; = (9 ).

1)
).
).

1

e a; = 8,a, =5 gives g, = 1, a3 = 3 and the matrix Q» = (¢
e ar =5,a3 =3 gives q3 = 1, as = 2 and the matrix Q3 = (¢
e a3 =3,a4 =2givesqq = 1,as = 1 and the matrix Q4 = ((1’

e a, = 2,a5s = 1 gives gs = 2, ag = 0 and the matrix Q5 = (‘1’ _12).
The algorithm terminates in this step, as ag = 0.

Hence
gcd(21,8) =as =1

and

As = 05040:0:0: = (L) (0 2) ()LL) =(F 5).
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The entries in the first row of A5 satisfy

1=(-3)-21+8-8.

(b) In R[X], let
a=XB4+X2-2X°bh=-X—-X>+X*+X3+2X%>-2

(the polynomial divisons performed in each of the following steps are not
written out explicitely):

e dp = X+ X12_2X% 4, = —XS— X5+ X*+ X3 +2X2—2
givesq; = —X'—X°—X3>—X,a, = X° + X*—2X and the matrix
0 1
01 = (} X7+X5+X3+X)'
o a; =X - X34+ X4+ X342X%2-2,a, = X° + X*—2X gives
¢> =—X,a3 = X* + X*—2 and the matrix 0, = (9 }).

e a, = X°+X*—-2X,a3 = X*+ X3 —2givesqs = X, a4 = 0
and the matrix Q3 = (¢ _ ). The algorithm terminates in this step,
asas = 0.

Hence

ged( X1+ X122 —2X°, — X —X° 4+ X4+ X3 4+2X%2-2)
=a;=X*"+X>-2

and
— — (0 1 01)(0 1 _ X X8+XO+X4+X2+1

A3 = 030204 _(1—X)(1X)(1X7+X5+X3+X)_(1_X2 -Xx° )

The elements in the first row of A3 satisfy

X+ Xx3-2
:X'(X13+X12—2X9)
+ X+ X+ X+ X2+ D) (X - X+ X+ X3 +2X%2-2).0

Theorem 1.35 Let R be a Euclidean ring.

(a) Every ideal § in R is a principle ideal (that is, there exists x € R such that
3= (x)).

(b) Anelement p € R is irreducible if and only if p is prime.
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PROOF:

v

(a) Choose x € 3, x # 0, so that §(x) is minimal among all elements in ¥
(this is possible, as § only assumes values in Ng). As R is Euclidean, for
every y € J there exist elements ¢, € R such that y = gx + r, where
8(r) < d(x)orr =0. Butnowr = y —gx € 3, so that r = 0 by the
minimality of x. Hence y € (x), and as y is arbitrary, I = (x) follows.

(b) A prime element is irreducible by Lemma 1.22.

Now let p be irreducible and let p | xy for certain x,y € R. Assume
p + y. Weneed to show p | x. Let g = gcd(p, y). As p is irreducible
and g | p, we have p = hg with g € R*orh € R*. If h € R*, then
h~!p would be a divisor of y and thus p a divisor of y, contradicting the
assumption. So g € R*. By means of the Extended Euclidean Algorithm
we can determine elements s, € R satisfying

g=s5p+ty.
As g is a unit, we can multiply this expression by xg~! and obtain
x =xg 'sp+xg ity =xg7 sp + g M txy.

By assumption, p divides both summands on the right-hand side, and hence
p | x. So we have shown that p | xy implies that p divides at least one of
the elements x or y. Therefore, p is prime. &

Theorem 1.36 (Unique Prime Factorisation) Let R be a Euclidean ring. Every
element x € R\R*, x # 0, has a factorisation

X = pi1- Pk, (1.7)

where the p;, ..., pr are prime in R. This factorisation is unique up to the order
and multiplication of the p; by units in R*.

PROOF: First, we prove the existence:

Let x € R\R*, x # 0. By Theorem 1.35, the prime elements in R coincide
with the irreducible elements. If x is irreducible itself, then x = p;. Otherwise,
x is a product x = x;y; with x1,y; € R*. If xy, y; are not both irreducible,
then factorise them further until all factors are irreducible and obtain the prime
factorisation in this way. This procedure terminates after a finite number of steps:
For a sequence of elements x; € R\ R* with the property x; | x;—; fori =1...,n
and x¢ = Xx, it holds by Theorem 1.20 that

(x0) C {x1) C(x2) C...
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Then 3 = | J72,(x;) is an ideal in R and by Theorem 1.35 it is even a principle
ideal. So there exists z € R with

() =3 = Jtx).
i=0

But then z € (x,,) holds for some m > 0, and this means (z) = (x;) foralli > m.
So by Theorem 1.20 (b) the x; (for i > m) differ from x,, only by a factor in R*.
This leads to a contradiction if we assume the above procedure can be repeated
indefinitely.

Next, we show the uniqueness:

Let x = q;---q; be another prime factorisation of the form (1.7), where we
assume k > j without loss of generality. We prove the assertion by induction
over k: If k = 1, then x itself is prime, so j = 1l and p; = ¢q; = x. If k > 1,
the prime factor py divides one of the ¢g;; say ¢q,;. As gq; is prime itself (hence
irreducible), g; and pj differ only by a factor u € R*. By the cancellation rule
(Lemma 1.12),

P pk) =q1--qjo1

Now the left-hand side consists of k — 1 prime factors, so that the induction hypo-
thesis applies to it. Then k —1 = j — 1 and p; = u;qo(;) for u; € R* and a
suitable permutation 0 € Si_;. Together with px = ugy, the uniqueness of the
factorisation follows. <&

As an application of the Unique Factorisation Theorem we prove one of the oldest
and most famous theorems in mathematics:

Theorem 1.37 (Euclid) There exist infinitely many prime numbers in N (in Z).

EUCLID’S PROOF: Assume there are only finitely many prime numbers p, ..., p,
in N. Set

k=14 py-- pa.

Fori = 1,...,n it holds that ¥ = 1 mod p;, so k is not divisble by any of the
pi. But k also is not one of the units £1 in Z. Therefore, the prime factorisation
of k must contain additional prime numbers other than the py,..., p,, which
contradicts our assumption. <&

Exercise 1.38 In a similar manner one can prove that the polynomial ring K[X]
contains infinitely many irreducible polynomials (this is obvious if K is not a finite
field, as all polynomials X + a with a € K are irreducible).
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We give a different proof of Theorem 1.37 due to Euler which uses ideas from
analysis.

EULER’S PROOF: Assume there exist only finitely many prime numbers p; <
P2 < ... < py. By the formula for the geometric series,

sz

l—pl

holds for 1 < i < n, and the series converges because 0 < |p;'| < 1. Asa
consequence, the following expression is a well-defined product of real numbers:

! — .“1—1p;1 — (i Pl_k)"'(i pn—k)

I=n kn=0

i:: —kl... _k")_z Z T

k=0  kn=0P1 pn

o0
i :

— m’
The last equality holds because by Theorem 1.36 the expressions p]f‘ e p,lf" run
through all natural Zahlen m € N. But the series Y ,_, % diverges, so it does
not represent a real number. This contradiction implies the existence of infinitely
many prime numbers. <&

1.3 Zeros of Polynomials

In the Euclidean ring R = KK[X ] we find some important relations between divisi-
bility properties and zeros of polynomials.

Theorem 1.39 Let f € K[X] and «, B € K. Then the following holds:

(a) Letg € K[X], g # 0, such that g(a) = 0. If r = f — qg is the remainder
after polynomial division, then

r(a) = f(a).

(b) X — « divides f if and only if f(«) = 0.

(¢) X —a, X — B are coprime if and only if o« # f.



30 1 Divisibility in Rings

(d) Ifn = deg(f), then f has at most n zeros in IK.

PROOF:

@ fla) = fl@)—0= fla) —g(a)g(a) =r(a).

(b) For g = X — « in part (a), the remainder r is the constant r = f(«).
Moreover, X — « divides f if and only if the remainder is r = 0.

(c) The remainder after polynomial division of X —a by X — B is B — «.

(d) According to part (b), every zero A of f gives rise to an irreducible divisor
X — A of f. The zeros are uniquely determined because the prime factori-
sation is unique. If f had m > n zeros, then the product of m linear factors
would be of degree m > deg( f'), a contradiction. &

Recall the Fundamental Theorem of Algebra, whose proof is beyond the scope of
linear algebra. It can be found in Bosch [1], Section 6.3.

Theorem 1.40 (Fundamental Theorem of Algebra) Every polynomial in C[X]
of degree > 1 has a zero in C.

Corollary 1.41 Every polynomial f € C[X] of degreen > 1 factors into n linear
factors,
f=a-(X=X1) (X =1,

witha € C*, where Ay, ..., A, € C are not necessarily distinct.

PROOF: According to the Fundamental Theorem of Algebra, f has a zero A, and
hence by Theorem 1.39 (b) a divisor X — A;. So there exists a polynomial /2 of
degree n — 1 with f = (X — A;) - h. Now one concludes by induction on n that
h decomposes into n — 1 linear factors, which proves the claim. &

1.4 Quotient Rings

One can think of Z/nZ arising from Z by introducing the new arithmetic law
“n = 0”in Z. Surely, with this new law, all multiples kn are identical to 0, and
elements a,b € 7 which only differ by a multiple of n (that is, a = b + kn for
a suitable k), are no longer distinguishable with the new law. We express this by
the notation

a =bmodn.
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Such elements are collected in the residue class @ = a + nZ. Then Z/nZ is the
set of all these residue classes, and Z/nZ is a ring with the operations + and -
induced by Z.

We want to extend this notion of “introducing new arithmetic laws” to arbitrary
rings. To this end, we reflect how the above example of 7Z/n’Z can be expressed
by the concepts introduced in the previous sections: We observe that n’7Z = (n) is
the ideal generated by n, and the canonical projection 7 : Z — Z/n%Z,a — a
is a homomorphism of rings with ker7 = nZ. The condition @ = bmodn is
equivalentto a — b € n’Z.

This can be generalised to an arbitrary ring R, by choosing an ideal ¥ C R
and consider those elements a,b € R as equivalent, which statisfy a — b € 3.
Here, the idea is that 3 contains precisely those elements which are set to 0 when
introducing new arithmetic laws. Therefore, the generators of 3 are often called

relations and 3 the ideal of relations.

Theorem 1.42 Let R be a commutative ring and 3 an ideal in R. Then the set
R/S={Xx=x+4+3 |xe€R} (1.8)

is also a commutative ring, if + and - are defined via representatives x,y € R:

y y
The canonical projection w : R — R/3J, x > X is a surjective homomorphism
of rings with kernel kerm = 3.

PROOF: The ring properties of R/3 are readily inherited from R. What remains
to prove is that the definitions of + and - are independent of the choice of repre-
sentatives x, y (“well-defined”): Let x — x’, y — y’ € 3. Then

X+y=x+y=x—-x)+(Q—y)+x+y =x—x+y—y +x'+y =x'+y.

Y

€3

So the addition is well-defined. To show that the multiplication is well-defined,
the fact 3 is an ideal is crucial:

x-y=x-y=((x—-x)+x)-((y—y)+)
=@x—=x)- =)+ =Xy +x"-(y=y)+x"y
€3 SR} SR}
=@—=x)- =)+ x=x)y +x-(=y)+x)y
€3

=x-y=x-y
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The map 7 is a surjective homomorphism by construction and it kernel is ker 7 =
{(xeR|n(x)=0}={xeR|x+3=3}=3. &
Definition 1.43 The ring R/3 is called the quotient ring of R over 3.

2

We also call this ring “R modulo 3 and write

Y

X =ymod3

for equivalent x, y € R. If 3 is a principle ideal with generator f, then we write
(in analogy to Z/n7.)
x = ymod f

or even shorter
X =f ).

Exercise 1.44 If B is a prime ideal in R, then R/% contains no zero divisors.
Exercise 1.45 If R is a Euclidean ring and 8 is a prime ideal, then R /3 is a field.
Theorem 1.46 (Homomorphism Theorem for Rings) Let R, S be commutative
rings and @ : R — S a homomorphism of rings. Then there exists a unique
homomorphism of rings @ : R/ ker ® — S such that @ is injective and

Do =, (1.9)

that is, the following diagram commutes:

|

R/ ker @

PROOF: Define @ by
D (x) = D(x)

for x € R. This is equation (1.9).

e @ is well-defined, for if x — x’ € ker @, then

(X)) =P(x)=P(x —x' +xX)=P(x —x)+P(x) = d(x') = D(X).

=0
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e @ is a homomorphism of rings: For x, y € R,
PE+7)=P(x +y) = P(x +y) = P(x) + P(y) = P(X) + P(F)
and similarly o o o
O(x-y) =) 2(y).
o Dis injective: Let X € ker @, that is,
0=dX) = P(x).
Then x € ker @, so X = ker @ = 0. Hence ker @ = {0}. &

Corollary 1.47 (Isomorphism Theorem for Rings) If ¢ in Theorem 1.46 is sur-
Jjective, then @ is an isomorphism. In particular,

R/ker® =~ S. (1.10)

PROOF: @ is injective, and as im @ = im ® = S holds, @ is bijective. &

The Euclidean Algorithm provides us with the means to test for invertibility of
elements in quotient rings.

Lemma 1.48 Let R be a Euclidean ring and a, x € R. The elementx € R/{a)
is invertible if and only if gcd(a, x) = 1.

PROOF: If ged(a, x) = 1, then by means of the Extended Euclidean Algorithm
we can determine elements s, ¢ € R satisfying

1 =sx +1ta.

In other words,
s-x = 1lmoda, ()

thatis, 5 = X ' in R/(a).
Conversely, if X is invertible in R/ (a) with inverse s, it follows from () that every

gcd of a and x is a divisor of 1, meaning it is an element of R*. In particular, 1 is
then a gcd of @ and x. &

The quotient map allows us to do some interesting constructions, as the following
examples demonstrate.

Example 1.49 (Evaluation map) Let R = R[X]and ¥ = (X—A). To determine
the image of f = a, X" + ... 4+ a1 X + ao under the canonical projection, we
divide with remainder,

f=(X-A)-h+r
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where deg(r) < deg(X — A) = 1, so that r € R. It holds that
fAD=A=A)-h+r=r.

As(X —A)-hes, B -
f=7=fQ).

The image of m consists precisely of the residue classes of the constant poly-
nomials. If we identify each f with the constant representative f(1), then we
can identify the canonical projection with the evaluation map f +— f(4). The
Isomorphism Theorem then gives us

R[X]/S = R. ©

Example 1.50 (Complex Numbers) Let R = R[X]and 3 = (X2 + 1). Every
polynomial f € R[X] is of the form

f=X>+1)-h+ (@ X +ao),

so that
f =a1X +apmod X* + 1.

In particular, it holds for the polynomial X that

X X=X =X (CiD)=X X _1=_1,
that is, X = +/—1 in R[X]/3. This motivates defining the map
R[X] = C, [ ag+ia;.

It is a surjective homomorphism of rings, and according to the Isomorphism Theo-
rem,

R[X]/(X?+1)=C. ©

At the end of this section we want to study a construction for finite fields. A finite
field I¥ is necessarily of characteristic p (prime). We already know the finite fields
F, =7/pZ.

Lemma 1.51 If I is any finite field of characteristic p, then the field I, is a
subfield of IF'.

PROOF: The map @ : Z — T, n — sgn(n) - Zl’il 1 is a homomorphism of
rings with ker @ = pZ. By the Homomorphism Theorem there exists an injective
homomorphism of fields @ : Z/pZ — T, thatis,F, @ im® C F. &
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Corollary 1.52 If I is a finite field of characteristic p, then I’ is a vector space
over the field F . In particular, |F| = p*, where k = dimgp, FF.

PROOF: By Lemma 1.51, I, is a subfield of I'. So the elements of I can be
multiplied by scalars from I ,, making IF into a I’ ,-vector space. As [ is finite,
F' must be of some finite dimension k over IF,. Then there are pk possibilities
to form linear combinations out of any given basis of I, which means that [ has
precisely p* elements. 0

Aus Aufgabe 1.38 folgt, dass es in I ;[ X] irreduzible Polynome vom Grad k > n
fiir alle n € IN geben muss. Das ermoglicht uns die folgende Konstruktion:

Example 1.53 (Finite fields) Let R = I',,[X] and f € F,[X] be an irreducible
polynomial of degree k. Write

Fpe = Fp[XT/{f)-

As f is irreducible, every element in pk has an inverse (Lemma 1.48), so that
IF 5« is indeed a field. Write x = X. The elements 1, x, x2,..., x*! generate
IF ,«. They are linearly independent, for if

2 k—1
agp +a1x +ax“+...+ar_1x =0

for ag,...,ax—1 € TF,, this implies that the polynomial 7 = a¢ + a; X +
...+ ar—1 X*7 1 is an element of the ideal ( f) and as such a multiple of f. As
deg(f) = k > k — 1, it follows that 4 must be the zero polynomial. So the set
{1,x,x2,...,xk 1} is a basis of IF j« as an I ,-vector space.

Remark 1.54 One can show that every field with p* elements is isomorphic to
one of the I' )« constructed in Example 1.53. This is the Fundamental Theorem of
Galois Theory for finite fields, see Bosch [1], Section 3.8, Theorem 2.

1.5 The Chinese Remainder Theorem

The process of solving a complicated problem can be simplified if the problem can
be parallelised. This means that the problem can be divided into several partial
problems which are easier to solve, and a solution of the original problem can be
constructed out of the solution of the partial problems.

The following example serves to illustrate this idea:

Example 1.55 (Integer determinants) We want to compute the determinant of a
matrix A € Z*4. We assume that the absolute value of the coefficients of A4 is
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known to be bounded by a constant c¢. The Leibniz formula for determinants then
provides us with the following estimate®

| det(A)| < dlc?.

By virtue of this upper bound we may assume that our computations take place

not in 7 but in the ring 7/m?Z for some odd integer m > 2d!c?. Here, the factor
2 is necessary because the numbers ’”T_l 4+ 1,...,m — 1 in Z/mZ7 are meant to
represent the numbers —mT_l, ...,—1l in Z. For large m, the computation of the
determinant on a computer is extremely time- and memory-intensive. However,
if one could instead project the problem to 7/ pZ for small p, the computations
are sped up significantly. For this idea to work, two things have to be taken into

consideration:

(i) The projection Z/m7Z — 7/pZ must map the computations in Z/mZ
to computations in 7Z/ pZ, that is, it has to be a homomorphism of rings.
Therefore, p must be a divisor of m.

(i1) In order to prevent a loss of information, one has to compute in several
Z]p1Z,..., 7] pxZ, such that in total one can encode m numbers (the ele-
ments of Z/mZ). Together with (i) this means p; - -- px = m must hold.

The problem is thus translated from Z/m7Z to 7./ p17Z X --- X 7./ px 7., where it is
solved “componentwise”.

: Lo :
| Prob : i Sol i
mod}; ZipZ |1 1| Z/piL \
| | [} |
Problem : : : : 0 Solution
z : N | z
| : . /
mod py 1 lem [ ution !
| t .
' /i Lo 2k :
| |

- e - == ) - e - - ===

The computation of the determinants via the 7/ p;7 can be executed in paral-
lel. The question is, if and how these partial solutions can be used to reconstruct
the original determinant det(A) in Z/m#Z. We will see that this is the case if

YBetter estimates are known.
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D1, - - -, Pk are chosen to be mutually coprime (for example, a prime factorisation
of m). Q

Before we prove this general results, we want to understand the reconstruction of
an element in Z/mZ from elements in Z/ p;Z by means of a simple numerical
example.

Example 1.56 (Simultaneous congruences) Given the elements 3 mod 8 € 7 /87
and 7mod 21 € Z/217Z, find x € Z satisfying

X = 3modS8,

x = 7mod 21.
So this problem is about solving a system of simultaneous congruences. We make

the following ansatz for x:
x=34+b-8.

Then the first congruence is satisfied in any case. Now it remains to determine b
such that the second congruence is satisfied as well:
34+b-8="7Tmod2l
< b-8=4mod2l.
As 8 and 21 are coprime, we can compute the inverse of 8 modulo 21 by means
of the Extended Euclidean Algorithm, as was already done in Example 1.34 (a):

1 = (-3)-21 4+ 8-8, so 8 itself is the inverse of 8 modulo 21. Multiplying both
sides of the above congruence by 8, we obtain

b=4-8=11mod?2l1.

Hence
x=34+11-8=91
satisfies both congruences. The set of all possible solutions is
x4+ (8-21)Z =91 4 168Z.

In the situation of Example 1.55, we are interested in the smallest solution between
0 and 168, which is meant to represent an element in 7Z/168%. This smallest
solution is already x = 91. Q

We now consider this situation for arbitrary Euclidean rings. Firstly, note that for
rings Ry, ..., Ry the product Ry X --- X Ry is again a ring, if we define the ring
operations componentwise:
(e X)) + e i) = (e Y1 Xk + D),
(X1, ee s Xk) - 1y oo k) = (X1 Y1y ooy XK 0 VE)-
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Theorem 1.57 (Chinese Remainder Theorem) Let R be a Euclidean ring and
D1, .-, Pk € R mutually coprime. For g = py - -+ pk, the map

VY :R/{g)— R/{(p1) x---x R/{pr), amodg > (amod pq,...,amod pi)
(1.11)
is then an isomorphism of rings.

PROOF: The map is well-defined in every component: For ¢ = &’ mod g there
exists # € R, such that

a—a =hq=h(pi-pr) = (hpa--- pr)p1,

so @ = a’mod p; and similarly for p,,..., px. Clearly, ¥ is then a homo-
morphism of rings.

¥ is injective: If amodg € ker¥, thena = Omod p; fori = 1,...,k. Soaisa
multiple of each p;. As the p; are coprime by assumption, a is also a multiple of
their product p; --- pr = q. Hence ker ¥ = {Omod ¢} is trivial and ¥ injective.

The surjectivity of ¥ follows if we can compute a preimage in R/(q) for every
element (a; mod pq,...,a;r mod pi) of R/(p1)x---x R/{px). This is equivalent
to solving the following system of simultaneous congruences:

X = a;mod p,

X = ax mod py.

Then x mod g is the preimage we are looking for. Given the assumptions of the
theorem, this system of congruences can be solved explicitely via Algorithm 1.58
(or Algorithm 1.59) below. &

Algorithm 1.58 (Newton Interpolation) Let R be a Euclidean ring, and let the
following system of congruences to be solved for x € R be given:

X = a;mod pq,

X = ax mod pg,
where the pq, ..., px are mutually coprime. Make the ansatz
X =X1+X2p1 +X3p1p2+ ...+ XkP1 " Pk—1 (1.12)

and determine the unknown Xx; iteratively:
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e In the first step,
!
X = Xx; = a; mod p;

holds, and we may choose x; = a;.

e Assume, X1, ..., X;—1 have already been determined. Then

X=x1+xap1 +x3p1pa+ ...+ xip1- pi-1 = a; mod p;
holds. So

Xip1-++Pi-1 =Q; — X1 — XoP1 — X3P1P2— ... — Xij—1P1-* Pi—pmod p;.

All elements on the right-hand side are already known at this stage in the
algorithm. We can therefore solve for x; if the p;--- p;—; are invertible
modulo p;. As the pi,..., pr are mutually coprime, this is possible by
Lemma 1.48, and the inverse can be computed with the Extended Euclidean
Algorithm. Let s; denote the inverse of p; --- p;—; modulo p;. Set

X; = (a; — X1 — X2p1 — X3p1P2— ... — Xi—1P1" " Pi—2)  Si.

After k of these steps, the algorithm terminates and returns a solution x.

Algorithm 1.59 (Lagrange Interpolation) Let R be a Euclidean ring, and let the
following system of congruences to be solved for x € R be given:

X = a;mod pq,

X = ax mod pg,
where the p1, ..., px are mutually coprime. Make the ansatz

X =ai1q1 +azq> + ...+ arqr, (113)
where

qi = Ui pr--Pi—1" Pi+1° " Pk
with unknown u; € R. Then

!
X =a;q; = a; mod p;.

Consequently, u; has to be chosen such that
gi = Ui P1+ Pi—1 Pi+1--- Pk = I mod p;

holds. As p; and py--- pi—1 - pi+1--* pr are coprime by assumption, such a u;
can be computed by the Extended Euclidean Algorithm (Lemma 1.48). After
computing uy, ..., U, and ¢4, .. ., gk, the expression (1.13) yields a solution x.
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Remark 1.60 Once one has found a solution x of the congruences, the set of all
solutions is

x4+ (p1-- pr).

This follows from the injectivity of ¥ in the Chinese Remainder Theorem 1.57.

Remark 1.61 An advantage of Newton Interpolation over Lagrange Interpola-
tion is that when an additional congruence x = ax4; mod pg4; is added, one
can simply continue the computation with the result for the first k congruences
by performing an additional iteration of the algorithm (whereas in the Lagrange
Interpolation, all of the ¢; need to be computed again). On the other hand, the
advantage of Lagrange Interpolation over Newton Interpolation is that the ¢; do
not depend on the a;. So for fixed py, ..., pk, they have to be computed only once
in order to solve systems of congruences with arbitrary and possibly varying a;.

In numerical analysis the terms Newton Interpolation and Lagrange Interpolation
denote methods to solve the interpolation problem for polynomials: Find the poly-
nomial f of lowest degree assuming prescribed values

f(ai) = Bi i=1,...,k,

at given points o1, . . ., ®x. This is a system of linear equations in the coefficients
of f, and by the usual methods of linear algebra one shows that this system always
has a solution for pairwise distinct «;.

The relation to the Chinese Remainder Theorem becomes evident once we recall
Example 1.49: The condition

Sflai) = B
is equivalent to
f =Bimod X — ;.

The interpolation problem can thus be expressed by simultaneous congruences in
the polynomial ring:

f =B modX —a,

f = Brmod X — g,

where the X — «; are mutually coprime if the «; are mutually distinct (Theorem
1.39 (c)). By applying Algorithm 1.58 or 1.59 in this special case, one obtains the
classical algorithms from numerical analysis.
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Example 1.62 (Polynomial Interpolation) Given the points —1, 0, 1 and the val-
ues

f=H) =2, fO=-1 f()=1,

find a polynomial f € R[X] of degree 2, assuming these values at the given
points. The ansatz of Newton Interpolation is

f=hA+AX+D+ (X +DX.

Determine the f;:

e Wehave f = fi =2mod X + 1. Set f; = 2.

e Wehave f =2+ fo(X+1)=—-1modX. As X + 1 = 1 mod X, we do
not need to compute an inverse in this step. Set f, = —1 —2 = —3.

e Wehave f =2-3(X+1)+ f3(X+1)X =1mod X —1, where X + 1 =
2mod X —1 and X = 1 mod X —1, thatis,2—3-2+ f3-2-1 = 1 mod X —1.
Set f3=2(1-24+6)=2

Then

5 5 1
f:2—%X+1%+?X+1ME:?W—§X—L

We show how to obtain the same result by Lagrange Interpolation. The ansatz is
f=2u- XX-D+CFDus- X+DX -1+ 1-usz-(X +1X.
To determine 1, U, U3, note that

X(X—-1)=2mod X + 1,
X+1D(X—-1)=—-1mod X,
X+DH)X=2mod X — 1,
sosetu; = %,uz =—1,u; = % Then
1 1
f:2-E-X(X—l)—l—(—l)-(—l)-(X—l-1)(X—1)+1-§-(X—|—1)X
5

——XZ—lX—l V)
2 2 '

Finally, we return to a concrete instance of to the introductory Example 1.55:
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Example 1.63 (Integer determinants) Let

(17 23\
A_(—s 22)GZ

with | det(4)| < 2!-23% = 1058. For the first three prime numbers p; = 11,
p2> = 13, p3 = 17 it holds that

11-13-17 =2431 > 2-1058 + 1 = 2117.

(i) Consider det(A) as an element of 7 /24317, where the numbers 1215,. ..,2430
represent the negative solutions in Z.

(i) We parallelise the computations by distributing it on Z/117Z, 7 /137 and
Z,/177Z. Compute the determinants of the modular images of the matrix A:

A = (g %) (Z/117Z)>*?  with det(Ay;) = 5,
9 10 )2 T

Az = g § S (Z/13Z) with det(A13) =1,
6 6 2x2 . 17
A17 = E g (Z/17Z) with det(A17) = 13.

(iii) Now we reconstruct det(4) mod 2431 from the congruences

det(4) = 5mod 11,
det(4) = 1 mod 13,
det(A) = 13 mod 17.

The ansatz for Newton Interpolation is
det(A) =ay +a-11 +a5-11-13.

e Seta; = 5.

e We have 5 + a, - 11 = 1 mod 13. With the Extended Euclidean Algo-
rithmwe find 1 = 6-11 — 5-13, so 6 is the inverse of 11 modulo 13.
Now we can solve for a,: a, = (1 —5) -6 = 2mod 13. Set a, = 2.

e Wehave 5+2-11+a3-11-13 = 13mod 17. The inverse of 11-13 = 143
modulo 17is 5. Soaz = (13—5—-22)-5 = 15mod 17. Setaz = 15.

Thendet(4) =54+2-11 4+ 15-11-13 = 2172 mod 2431.
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(iv) As 2172 > 1214, we have to interprete this result as a negative number in
Z. Then
det(A) = 2172 — 2431 = -259. ©

Further applications of the Chinese Remainder Theorem to number theoretic and
computer algebraic problems can be found in Lipson [10].

For the sake of completeness we state a more general form of the Chinese Remain-
der Theorem for arbitrary rings. However, this generalise form does not provide
us with an algorithm to compute the inverse of the isomorphism.

Theorem 1.64 (Chinese Remainder Theorem for Arbitrary Rings) Let R be a
. ~ ~ .. : ko o
ring and 31, ..., 3 mutually coprime ideals in R. Moreover, let $ = ﬂjzl 3

(this is also an ideal in R). Then the map

U:R/H —> R/31 x--XR/Jk, xmod$ +> (xmodZ3y,...,xmodSk)
(1.14)
is an isomorphism of rings.

For a proof, see Bosch [1], Theorem 12 in Section 2.3.
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2 The Jordan Canonical Form

2.1

Invariant Subspaces

Throughout this section let I be a [K-vector space.

Definition 2.1 Let @ : V — V be an endomorphism. A vector subspace U of V
is called @-invariant, if

o) cCU.

If U is @-invariant, then the restriction @ |y is an endomorphisms of U'.

Definition 2.2 Let U be a @-invariant subspace of V. A subspace W of V' satis-
fying V. = U @ W is called a vector space complement for U. If W is also
@-invariant, then we call W an invariant complement for U.

Example 2.3 (Invariant subspaces)

(a)
(b)

©

(d)

The subspaces {0} and V' are invariant for every endomorphism.

Every eigenspace (in particular the kernel) of @ is invariant. If £ is the
eigenspace for the eigenvalue A, then every eigenvector x € E) spans an
invariant subspace span{x} of E;.

Every 1-dimensional invariant subspace is an eigenspace.

Let ey, e5, e3 denote the canonical basis of R3, and let @, the rotation by
the angle « in the e,, e3-plane. Then the subspace [e,, €3] is invariant under
®,, as the rotation takes place within this plane. The axis of rotation is the
ep-axis, that is, @4 (e;) = e1. So this axis is an eigenspace, and as such an
invariant complement for the plane of rotation. We can thus write R> as the
direct sum of two invariant subspaces:

R> = span{e;} @ span{e,, e3}.

This invariance is manifest in the block form of the matrix representing @,

1| 0 0

0| cos(w) —sin()

0| sin() cos(x)
The map

P(x) = ((1) }) - X
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has the invariant subspace span{e }.

In this example, there does not exist an invariant complement for span{e; },
for there was, it would be of dimension dim R? — dim span{e;} = 1 and
hence an eigenspace. As @ has the sole eigenvalue 1, @ would then be
diagonalisable with eigenvalue 1, that is, @ = idr2, which is obviously not
the case. Q

These examples hint at a more general principle (in finite dimension n): Let U
be a @-invariant subspace and By = {by, ..., by} a basis of U. Complete By to
a basis B = {by,...,bg,Ck+1,...,cn} of V. Invariance means that the images
@ (b;) take the following form with respect to the basis B:

SDi) =Ar-bi+ ...+ A b +0-cxy1+...+0-cp.

It follows that the matrix Qg (@) representing @ with respect to the basis B has
the following block form:

By
o) = (w0 M)

for suitable matrices N € K—K)x(n—k) pr c Knx(n—=k) Thig representation can
be made even more precise: If

D(Ck4i) = M1i ~br 4+ ..o+ ki bk + Vi Chp1 + oo F Vn—ki - Ca, (%)

then the p;; are precisely the coefficients of the matrix M and the v;; are the
coefficients of the matrix N. As U is @-invariant, @ induces and endomorphism>

®:V/U—->V/U x+Uwr d(x)+U.
A basis C of V/U is given by the classes of the basis vectors cx+1, ..., Cy:
Gi=c1+U ., Gk =ca+ U

As the elements by, . . ., by are contained in U, they project to 0 in V/U. Hence
the representation of @ in the basis C is derived from () as

D(C;) = p1i b1+ ...+ fri bk AV Tt A Vaeki ek
=0 =0

=vi-CL+...+ Vn—k,i *Cn—k,

5The invariance of U crucial for @ to be well-defined.
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that is, the matrix representing @ with respect to C is

0&(®) = N.
In total, we therefore have
By
B _ (9B (@lv) M
. (@)—( 7 ). @
5 0 0 (D)

From this matrix form we immediately obtain the following lemma:
Lemma 2.4 ForU, &, ® as above, the following holds:
(@) det(®) = det(®|y) - det(P).
(b) The characteristic polynomials satisfy
Jo = Joiu - fo
In particular, fg|, is a divisor of fg.
(c) Spec @ = Spec @ |y U Spec @.

If U has an invariant complement W, then the basis By can be complete to a basis
B of V by a basis By of W. In this case, the matrix representation (2.1) of @
with respect to B is of the form

Ay O

0 A4,)°

where A is a matrix representation of @|y and A, is a matrix representation of
@ |w . This motivates the following notation:

Definition 2.5 Let U, W be vector subspaces of V', such that U & W = V holds.
For endomorphisms @y : U — U and @y : W — W, define their direct sum

Py P Pw:V >V
via
(Py & Pw)(u) = Py(u) foru e U,
(Py & Pw)(w) = Pw(w) forw e W.

Accordingly, we define the direct sum of matrices A € K"*” and B € K™ as

_ (A O (n-+m)x (n-+m)
AP B = (0 B) e K .
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Define the direct sum @, & ... P (or A; & ... D Ag) of k endomorphisms (or
matrices) accordingly.

With this notation, we can express the results obtained previously:

Lemma 2.6 Let U be a ®-invariant subspace of V with invariant complement
W, then

D=y ®Plw.

If By is a basis of U and By a basis of W, then @ is represented with respect to
the basis B = By U By of V by the matrix

05(®) = 050 (P1v) ® oy (Plw).
Theorem 2.7 Let ®,¥ € End(V') and assume @ oW = ¥ o @. Then:
(a) Every eigenspace E;(®) of @ is ¥-invariant.
(b) ker @ is ¥-invariant.
(c) im @ is ¥-invariant.
PROOF:

(a) Letx € Ex(®), x # 0. By assumption,
A-VXx)=P(A-x) =V (P(x)) = P(¥(x)).
So ¥ (x) is either O or an eigenvector of @, that is, W (E,(®)) C E (D).
(b) ker® = Ej.
) Y(imP)=im(¥Yo®)=im(@oV¥) = (imV¥) C imP. &
The analogous statements hold for pairs of commuting matrices.

Exercise 2.8 (Schur’s Lemma) Let V' be a C-vector space, dim V' < oo, and
® € End(V), such that ® o ¥ = ¥ o @ for all ¥ € End(V) holds. Then there
exists A € C, such that

® = A-idy.
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2.2 Nilpotent Endomorphisms
Definition 2.9 An endomorphism @ : V' — V is called k-step nilpotent, if
@& =0 forsomek € N,

and @™ # 0 for m < k. Accordingly, a matrix A € K"*" is called nilpotent, if
A¥ = 0 for some k € N, and A™ # 0 for m < k. We also call k the degree of
nilpotency of @ (or A, respectively).

Example 2.10 (Nilpotent matrices) The matrix
01
=0 o)

is 2-step nilpotent. More generally, every upper triangular n X n-matrix of the
form

0 1 0
A=

1

0 0

0 0 1 0 (00 ,? 1 0
A2: 1 ,A3: 1 , ,
0 o
0 0 h
\0 0/
0O --- 0
A = 9 ,A"=0. ©
0 0

Remark 2.11 The nilpotency of the matrices in Example 2.10 is reflected in their
characteristic polynomial: Itis f4 = X", and by the Cayley-Hamilton Theorem
fa(4) = A" = 0.

Theorem 2.12 Let V' be an n-dimensional vector space. @ € End(V) is nilpotent
if and only if its characteristic polynomial is fp = X".
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PROOF: The proof is by induction on n: For n = 1, the theorem is obviously
true. Now let n > 1. As 0 is a zero of fg, there exists an eigenvector x of @ for
the eigenvalue 0. If we complete {x} to a basis of V', then @ is represented by a
nilpotent matrix respect to this basis,

0 % - %

A= ; e K™
: B

0
with B € K®~D*=1_ From this we see:
Jo =X f.
As A¥ = 0 holds for some k > 0, B¥ = 0 holds as well. Multiplication by B

therefore defines a nilpotent endomorphism of IK”~!. By the induction hypothesis,
fB = X" 1 holds. It follows that fp = X - X"~ ! = X", &

Corollary 2.13 If @ is k-step nilpotent, then k < n.

PROOF: The characteristic polynomial of @ is X". By the Cayley-Hamilton
Theorem, @" = 0 holds. Hence k < n. &

Example 2.14 The two 4 x 4-matrices

0100 0100
0010 00O0O0
A= 000 1] B = 00 01
00O0O0 0000

are nilpotent. Here, A is 4-step nilpotent and B is 2-step nilpotent. Both matrices
have the characteristic polynomial f4 = fg = X*. For A there is no polynomial
0# p= po+ p1X + p2X? + p3X3 of smaller degree satisfying p(4) = 0,
because

Po P1 D2 D3
0 po p1 p2
A) = 0.
p(A) 0 0 po pi #
0 0 0 po

For B on the other hand, we have B> = 0. The polynomial 7 = X? is the
polynomial of minimal positive degree satisfying #(B) = 0, as for 0 # p =
Po+ piX,

po p1 0 O
0 po 0 O
B) = 0. V)
p(B) 0 0 po pi #

0 0 0 po
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By means of the characteristic polynomial one can determine whether a matrix is
nilpotent or not. But as Example 2.14 shows, it gives no clues on the degree of
nilpotency. This motivates the following definition:

Definition 2.15 Let V' be a vector space of finite dimension n. Moreover, let
® € End(V). We call hg € K[X] the minimal polynomial of @, if &4 satisfies:

(i) ho(P) =0.
(ii) hg is normalised.

(iii) hg is the polynomial of minimal degree with properties (i) and (ii).
The minimal polynomial 4 4 of a matrix A € IK"*” is defined accordingly.

Example 2.16 In Example 2.14, the matrices A and B have the respective mini-
mal polynomials hy = X* = f4and hp = X2 v

Remark 2.17 Recall that in K[ X] every ideal is a principle ideal (Theorem 1.35).
Then the normalised generator / of the ideal

So =1{f e K[X]| f(®) =0} = (h) (2.2)

is just the minimal polynomial of @. In particular, this shows that for every @
there exists a unique minimal polynomial.

Lemma 2.18 Let hg be the minimal polynomial @ € End(V'). Then:

(a) For every matrix representation A = o5 (®) of @, we have hy = he.

(b) he is a divisor of the characteristic polynomial fg.
PROOF:

(a) 0% : End(V) — K™ is an isomorphism of vector spaces and of rings.
Hence heo(A) = ho (05 (@) = 05(he(P)) = 0. Moreover, hg is nor-
malised and there exists no polynomial p with 0 < deg(p) < deg(hg)
satisfying p(A) = 0, for such a polynomial would also satisfy p(®) =
(Qg)_l(p(A)) = 0, contradicting the fact that hg is the minimal poly-
nomial of @. Hence hy = he.

(b) fo €3¢ = (hoe). &
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Theorem 2.19 Let V' be an n-dimensional vector space. ® € End(V) is k-step
nilpotent if and only if its minimal polynomial is hg = X*.

PROOF: ®% = 0 means X* € S, so X¥ is a multiple of /¢ and all prime factors
of he must be prime factors of X*. As X is the only prime factor of X*, it follows
that hg = X™ for some m > 0. As @™ # 0 for m < k and deg(hg) is minimal
in 3p, it follows that he = X*.

Conversely, if hg = X*, then ¥ = 0 and @™ # 0 for m < k by definition of
the minimal polynomial. &

2.3 The Programme

Deriving the Jordan canonical form is a somewhat arduous endeavour and cer-
tainly easier to keep track of if we know what we are looking for beforehand.
Therefore, we shall sketch the steps necessary to derive the Jordan canonical form
in this section.

We will see that every endomorphism @ of an n-dimensional C-vector space V
can be represented by its Jordan canonical form

Al A11 . \

’ /11. 1
Al

Ar 1
A 1

J(@) = - A;Z. 1 S Cnxn,
A2

A 1
A 1

\ )

where the A; are not necessarily distinct.

The boxes appearing in the matrix J(®) are called the Jordan boxes
A1
A1
Jni(ki) — e mixni
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of size n; for the eigenvalue A;. We can write J(®) more concisely as

J(db) = Jnl(/xl) @ an(AZ) D...P Jnk(/\k)-

The matrix J(@) is the sum

J(@)=D+N

of the diagonal matrix D with the A; as entries and the nilpotent matrix

N =J0,(0)D Jn,(0) ® ... ® Jy, (0).

Knowing J (@) is thus equivalent to knowing D and N.

We now investigate how to determine a Jordan basis B in which @ is represented

by its Jordan canonical form J(®).

1. First, find out how D can be determined from @. Clearly, D and J(®) (and

hence @) share the same characteristic polynomial

fo =det(X -idy — @) = (X —A)"" (X — 1) - (X — Ap)"* = fp,

as the diagonal entries of D are precisely the eigenvalues of @ (where the
Fundamental Theorem of Algebra assures us that fg indeed decomposes
into linear factors). The exponent n; of an eigenvalue A; determines how

often A; appears on the diagonal of D or J(®).

2. As the A; in J(@) are not necessarily distinct, @ might have less than k

distinct eigenvalues, say Aq, . .

., Am withm < k. If an eigenvalue A appears

with multiplicity @ on the diagonal of J(®) or D, then D has an eigenspace

V, C V of dimension «.

3. The Jordan boxes for the same eigenvalue A can be collected (after re-
ordering the basis if necessary) into a Jordan block:®

(

\

i)

c @(m1+...+mr)x(m1+...+mr)

®The distinction between Jordan boxes and Jordan blocks is not standard in the literature.
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or more concisely

myA) = T, (M) & ... D Jp, (1) € C*

.....

with m; + ... + m, = «. As can be seen from the canonical form J(®),
the space V), is invariant under @ and the restriction @ |y, is represented by

.....

. If, for every eigenvalue A;, we know this basis By, of V},, we obtain the

desired basis B of V' as their union

B =B, U...UB,,.

. In order to determine the basis B, for a given eigenvalue A, we consider the

endomorphism
® —A-idy.

The restriction (@ — A - idy)|y, is represented by the Jordan block

and is thus nilpotent of a degree < «. We obtain
V) = ker(® — A -idy)?.

This does not yet determine the basis B, but we have reduced the problem
of determining the Jordan canonical form to the case of nilpotent endomor-
phisms. This case will be studied in Section 2.5.

For a matrix A € C"*" we define its Jordan canonical form J(A) as the Jordan
canonical form of the endomorphism @4(x) = Ax.

2.4 The Primary Decomposition

In this section, we will initially consider vector spaces V' of finite dimension over
an arbitrary scalar field K.

Theorem 2.20 Let @ € End(V), and let g, h € IK[X] be coprime and f = gh,
such that f(®) = 0 holds. Set U = ker g(®) and W = ker h(®). Then:

@V=UsW.

(b) U =imh(®) and W = im g(P).
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(c) U and W are @ -invariant.

PROOF: As g and & are coprime, we can determine polynomials r, s € K[X] by
means of the Extended Euclidean Algorithm, such that

l=rg+sh
holds. Plugging @ into this expression, we obtain

idy = r(®) 0 g(®) + 5(P) 0 h(P) (%)
=g(®@)or(®)+ h(®) os(P).

(a) By assumption 0 = f (@) o r(®) = (hg)(®@) o r(P) = h(P) o (gr)(P)
and analogously 0 = g(®) o (hs)(®). By plugging x € V into (x) we find

x = g(®)(r(®)(x)) + h(®)(s()(x)).

eker h(P) €ker g (D)

soV =U+W.Ifx e UNW,thatis, g(®)(x) = 0 = h(®P)(x), then
plugging this into (x) yields x = 0, sothat V =U & W.

(b) If x € U, then (*) means
X = h(@)(s(<15)(x)) € imh(P).
Conversely, for x = h(®)(y) the following holds:

g(@)(x) = g(@)(M(@() = ((M(P))(y) = f(P)(y) =0,
thatis x € U. Hence im h(®) = U. Analogously im g(®) = W holds.

(c) By (b), ®(U) = ®(h(®)(V)) = h(®)(®(V)) C h(®)(V) = U and
analogously @(W) Cc W. <&

The unique prime factorisation (Theorem 1.36) allows to decompose a polynomial
f € K[X] into a product of powers of irreducible normalised polynomials p;,

Corollary 2.21 Let ® € End(V) and f € K[X]. Moreover, let f = q;---qm be
a factorisation with mutually coprime ¢; € IK[X]. Then

ker f(®) =kerq (@) & ... ® kerg,, (D). (2.3)
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PROOF: Clearly, ker f(®) is a @-invariant subspace of V and f(®)|ker r(@) = 0
holds. By Theorem 2.20 (applied to the vector space ker f(@®)) it follows that

ker f(®) = kerqy(®) @ ker(qa - gm)(®).
Then it follows by induction over n that
ker(qz -+ qm) (D) = kerq(D) & ... & ker g (D),

and hence the assertion holds. &

Theorem 2.22 Let V be a K-vector space of dimension n and @ € End(V).
Further, let fo = p{'--- p%m be the prime factorisation of the characteristic poly-
nomial of . Then

V=V&.. &V, (2.4)

with V; = ker pf” (@) is a decomposition of V' into @ -invariant subspaces.

PROOF: The Cayley-Hamilton Theorem implies V' = ker f$(®) = ker0. Thus
the theorem follows from Corollary 2.21, applied to f = fp and ¢; = pj*. <

The decomposition (2.4) of V' into @-invariant subspaces coarsens the prime
factorisation of fg and is thus called the primary decomposition of V' with re-
spect to @.

Corollary 2.23 Let @ € End(V). Every prime factor of the characteristic poly-
nomial fg of @ is also a prime factor of the minimal polynomial hg of ®.

PROOF: If V = V; & ... @ V,, is the primary decomposition of V' with respect
to @, then p;"(®|y,) = 0 by definition of V;. Hence the minimal polynomial
hi = hg),, of @[y, divides pit, and in particular we have h; = pf " for some
ki <a;. But he(P|y,) = 0 holds as well, hence A; is a divisor of h¢. &

The proof of Corollary 2.23 implies plk" (@|v,) = 0, where k; is the exponent of
pi in the minimal polynomial. This also means p} (®|y,) # 0 for r < k;. We can
therefore conclude:

Corollary 2.24 The statement of Theorem 2.22 remains true if fg is replaced by
the minimal polynomial hg. In particular, V; = ker pf (D).

Remark 2.25 If By, ..., B, are bases of the invariant subspaces V1, ..., V,, and
B = B;U...UB, abasis of VV, then
o5 (@)

B>
(0
Qg((p): QB2( |V2)

op” (®ly,,)
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In the following, we study the primary decomposition in the special case K = C.

By Corollary 1.41 the irreducible polynomials in C[X] are the polynomials X — A
of degree 1. The prime factorisation of the characteristic polynomial of @ is
therefore a product of linear factors p; = X — A;,

fo =X =A% - (X = Am)™",

where the A; are the distinct eigenvalues of @ with algebraic multiplicity «;. By
Corollary 2.23, the minimal polynomial is a product of the same linear factors,

ho = (X = A -+ (X — Am)*"

with 0 < k; < «; fori = 1,...,m. The ®@-invariant subspaces in the primary
decomposition (2.4) are thus the subspaces

V; = ker pl{"‘ (@) = ker(® — A; -idv)ki-

So every space V; is determined by a certain eigenvalue A;. If k; = 1, then V; even
coincides with the eigenspace E,, = ker(X — A; -idy). We define accordingly:

Definition 2.26 Let V' be C-vector space of dimension n and @ € End(V). If A
is an eigenvalue of @ and k the exponent of X — A in the minimal polynomial of
@, then

Vi = ker(® — A -idy)¥ (2.5)

is called the generalised eigenspace of @ for the eigenvalue A.
In the complex case, Theorem 2.22 takes the following form:

Theorem 2.27 Let V be a C-vector space of dimension n and @ € End(V).
Further, let A1, ..., Ay be the distinct eigenvalues of @. Then

V=V,&...&W, (2.6)
where V), is the generalised eigenspace for the eigenvalue A;.
Lemma 2.28 Fori = 1,...,m it holds that:
(@) E;, SV,
(b) CD|VM —A; - idVA,. is nilpotent of degree k;.

(c) dimV,, = «a;.



58 2 The Jordan Canonical Form

PROOF:

(a) Follows directly from the definition.

(b) The minimal polynomial of ¢|VA,- is h; = (X — A;)%i. The claim holds,
because /1;(P@|y, ) = 0 and h; is the polynomial of lowest degree with this
property.

(¢) As @|y,. — A; -idy, is nilpotent by (b), its characteristic polynomial is
det(X -idy, — @|y, + A; -idy, ) = X" by Theorem 2.12. Hence

f;' = det(X . idVM — ¢|V)~i) = (X — ki)dimV)‘i

is the characteristic polynomial of ¢|VA,-' Morever, fo = fi-- fi - fm
and the linear factor X — A; with exponent ; in fg appears in f; and in

none of the f; with j # i, so thatdim V), = «;. &
Remark 2.29 If B;,, ..., B,, are arbitrary bases of the generalised eigenspaces
Vay,....Va,,,and Ay, ..., A, the matrices representing the respective ¢|VA,- in

the bases B,,, then

A= . — A DAD... D An 2.7)
Am

is the matrix representation of @ with respect to the basis B = By, U...U B, .
This matrix can be seen as a first step towards the Jordan canonical form. Here,
the blocks A; correspond to the Jordan blocks J (A;). In order to actually obtain
A; = J (A;), we have to choose special bases B,,. To find these bases, we will
study the restriction @ | v,, for every eigenvalue Ai. As the matrix representation
A; of (D|VA,» corresponds uniquely to a matrix representation A; — A; [y, of the
nilpotent endomorphism @ | v,, —Ai-idy, , we can study this nilpotent map instead.
For if A; — Aily, = f(O) is a Jordan block, then A; = f(O) +Aily, = f()t,-)
is a Jordan block as well. The advantage of this approach is that we only have to
study nilpotent endomorphisms.

2.5 The Canonical Form of Nilpotent Endomorphisms

In this section we will prove that every nilpotent endomorphism @ of a finite-
dimensional [K-vector space V' has a matrix representation A of the form
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Throughout this section, we assume @ to be k-step nilpotent (that is, ®* = 0 and
@K1 £ ).

Definition 2.30 An element x € V is of degree j (with j > 1), if
@/ (x) =0 and &/"(x) #O0.

As @ is nilpotent, its only eigenvalue is 0. Clearly the eigenvectors of @ with
eigenvalue 0 are elements of degree 1. As @¥~1 £ 0, there exist elements of
degree k (but none of higher degrees, as ®* = 0).

Lemma 2.31 Let @ € End(V) be nilpotent and x an element of degree j. Then
the elements '
@/ 1(x),...,P(x), x

are linearly independent.

PROOF: Let .
0:/\0X+kl®(x)+...+)\,j_1@]_l(x) (*)

with Ao, ..., A;—; € K. Apply @/~! to this:

0=®0) =A@’ ")+ A DT (xX)+... + A PY2(x) = Ao DT ().
N—— N—— N—— —
=0 =0 £0

Hence Ao = 0 and (*) becomes
0=1P(x)+... + 1,1 &' (x).
Now apply @772 to this to obtain A; = 0. Repeat in this manner, until we obtain
A=A =...=1j_1 =0.

This means .
X, P(x),..., 9 (x)

are linearly independent. &

This immediately implies:
Corollary 2.32 If x € V is an element of degree j, then

By = {®/7Y(x),...,®(x), x} (2.8)
is a basis of the @ -invariant subspace

Vy = span{®’~1(x),..., ®(x), x}. (2.9)
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The matrix representing ® |y, with respect to By, is
0 1 0

J;(0) = "'f e K/, (2.10)

We call x a generator of V.

Example 2.33 (Nilpotent canonical forms)

(a) Let @ € End(R*) be given by

®(x) =

The matrix is
J1,3(0) = J1(0) & J3(0)

and this already is the Jordan canonical form of @. The fourth canonical
basis vector e4 is a generator of degree 3, the vectors e; and e, are eigen-
vectors, and thus generators of degree 1. Moreover, V,, = span{e;} and

Ve, = span{ey, e3, ez} D Ve, = span{es, ex} D V,, = span{es}.

(b) If @ is given by

d(x) =

then there are no generators of degree 3 or 4, as @ is 2-step nilpotent. Here
also the matrix is already the Jordan canonical form

J22)(0) = 1,(0) @ J5(0).
Generators of degree 2 are e, and e4. Here,

Ve, = span{ey,e1} D V,, = span{e;},
Ve, = span{eq, e3} D V,, = span{es}.
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(c) If @ is given by

S O O
S O =
S = O
- o O

P(x) =
0000

then @ is 4-step nilpotent and the matrix is already the Jordan canonical
form. A generator of degree 4 is e4. We have

R* = V,, = span{e4, e3,e2.e1}
D Ve, = span{es, ez, €1}
D V., = span{e,, e1}
D V., = span{e;}. Q

Next, we will prove that V' has a basis B which is the union of bases By, , ..., By
of type (2.8). Then the matrix representation Qg (@) takes the desired form:

r

I (0)
J(m1 ..... mr)(o) =
er (O)

In the following we describe the construction of this decomposition for a given @
and how the basis B is determined. We write

K’ = ker &’ (2.11)
for short. Because of nilpotency,
0)=K°cK'cK?’c...ckKFlckKkrF=V (2.12)
and for all j . .
&K'y c K7L (2.13)

The elements of degree j are precisely the elements contained in the set K/\ K/~

Choose a vector subspaces Wy C V such that
V=W &K

Then W}, consists of elements of degree k. Now we can also choose a subspace
Wi—1 in K*~! such that

Kk—l — Wk—l P Kk—Z
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and Wj_; consists of elements of degree kK — 1. By proceeding in this manner, we
obtain a decomposition of V' of the following form

V =W, K1
= Wi @ Wi ® KF72

=Wi®Wi 1 ®...0 W, ® K
=WidWi1®...0 W, W;.

By means of this decomposition we can construct the desired basis of V':

Lemma 2.34 IfW is a vector subspace of V with W N K/ = {0} for some j > 0,
then @ |w is injective.

PROOF: For j > 0 we have ker® = K' C K/. Then ker ®| = {0} follows

from the assumption, which means @ | is injective. &
For j =1,...,k set

dj = dim Wj.
Let bgk], e bg;] be a basis of Wy. As @|, is injective by Lemma 2.34, the

elements

o1 (bl o), b
S*1 (YY), .. (YY), b

k=1 [k] [k]y 2 [k]
D" (b ). P, by,
are linearly independent. Moreover, ®* (bl-[k]) € Wj_;, and in particular
k k
(b1, ... obL))

are linearly independent in Wj_;. If these elements do not already constitute a
basis of Wj_;, we can complete them to a basis of Wi_; by choosing suitable
elements

bgk—l] b[k—l]

sy Ysp 0

where s;_1 = di_1 — dg. It follows from Lemma 2.34, that

ok 2y e@* T N =1 s
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are linearly independent. Proceed in this manner until a basis for V' has been
constructed according to the following pattern:

Wi bgk] k bS[i] k k k
Wi | @) o o@lh bl by
R (s BT L (0 Bl G A BT L (e SRS
Here,
S =dr und s; =d;i —Sit1—Sit2—...— Sk. (2.14)

To obtain a Jordan basis B for @, we order these basis vectors first from bottom
to top and then from left to right:

B = {o b, b ek ), e ek bl

> Ysk

= Bbgk] U...uU Bb‘gl;;] U Bbgkfl] Uu...uU BbEI] Uu...uU Bb‘gll].

Theorem 2.35 The matrix representation Qg (@) of @ is the Jordan canonical
form J(®):

(/i (0)

|

Ji(0)
Ji-1(0)

Sk—1

o1 (0) (2.15)

51

\ Ry

This canonical form is unique up to the order of the Jordan boxes.

PROOF: That o8(®) = J(®) holds is an immediate consequence of the pre-
ceding construction. Uniqueness (up to order) follows from the fact that the num-
bers sk, ..., s1 given by (2.14) are uniquely determined by the dimensions of the
kernels K’ (as d; = dim W; = dim K’/ — dim K/~ !). These kernels are uniquely
determined by &. <&

by

plil

s “s1

j
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Remark 2.36 As K! = W, is the eigenspace E, of @ for the eigenvalue 0,

dmEg = sg + Sk—1 + ...+ 51
= number of Jordan boxes in J(®P).

Furthermore, @¥~! =£ 0, so that at least one Jordan box Ji(0) of size k must
appear in J(®). But as ®* = 0, there cannot be any larger Jordan box. We can
characterise this via the minimal polynomial 7¢ = X*:

size of the largest Jordan box = k = deghg.

As a Corollary of Theorem 2.35 we immediately obtain the corresponding result
for nilpotent matrices:

Theorem 2.37 Every nilpotent matrix A € K"*" is conjugate to a matrix of the
form (2.15). The conjugacy class of A is uniquely determined by the numbers
(Sk»Sk—1,---,S1). In particular, there are only finitely many conjugacy classes of
nilpotent matrices in [K"*".

2.6 The Jordan Canonical Form

Now, the moment has come to combine the results of Sections 2.4 and 2.5.

Let V be a C-vector space of dimension n and @ € End(}'). Moreover, let
A1, ..., Am be the distinct eigenvalues of @, let Vy,,..., Vy, be their respective
generalised eigenspaces and let oy, ..., o, be their algebraic multiplicities (in
particular, ; = dim V).

By ¥; denote the nilpotent endomorphisms (Lemma 2.28)
v, = ¢|VAJ- —Aj -idVAj.

Theorem 2.38 (Jordan canonical form) There exists a basis B of V', such that
the matrix representation Qg (@) of @ has the following form:

Aly, + J(¥1)
J(P) = (2.16)
Amla,, + J(¥n)

This canonical form is unique up to the respective orders of the A; and the Jordan
boxes within the J(¥;).
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PROOF: By Theorem 2.22, the primary decomposition V=V, & ... ® V,,, is
uniquely determined (up to order) by the characteristic polynomial’s prime factor-
isation. This decomposition is @-invariant, so it is sufficient to consider the re-
strictions of @ to the V. For these,

¢|V/\i =A;- idVAl- + Y;

holds. We choose a Jordan basis B; for this nilpotent endomorphism of V; as in
Theorem 2.35. As A; - idVAi is represented by A; I, in any basis, it follows that
D v,, 1s represented by the matrix

J(@lv,,) = Ailo, + J (i)

with respect to the basis B;. By Theorem 2.35, this matrix is unique (up to the
order of the Jordan boxes). Then @ then has the matrix representation (2.16) with
respect to the basis B = By U...U B, of V. &

The basis B in Theorem 2.38 is called a Jordan basis of V' for &.
Remark 2.39 Considering Remark 2.36, we find

dim V), = algebraic multiplicity o; = size of the Jordan block for the eigenvalue A;,
dim £, = number of Jordan boxes in J(®) for the eigenvalue A;,

exponent k; of X — A; in hg = size of the largest Jordan box for the eigenvalue A;.

We rephrase Theorem 2.38 for complex matrices:

Corollary 2.40 Every matrix A € C™" is conjugate to a Jordan canonical form
(2.16). The conjugacy class of A is uniquely determined by its Jordan canonical
form.

There are infinitely many possibilites for the eigenvalues of a complex matrix,
but for a given eigenvalue, it follows by reduction to the nilpotent case (Theorem
2.37) that there are only finitely many possibilities for the Jordan canonical form
of the restriction @ |VA,- . We thus obtain the following corollary:

Corollary 2.41 There are infinitely many conjugacy classes of matrices in C"*".
However, there are only finitely many conjugacy classes of matrices in C™*" with
the same characteristic polynomial.

An exhaustive study of conjugacy classes of matrices over arbitrary fields can be
found in Sections 11.6 and 11.7 of Brieskorn [2].
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Remark 2.42 Diagonal matrices are a special case of Jordan canonical forms.
Here, all Jordan boxes are of size 1, and the generalised eigenspaces coincide
with the eigenspaces.

Algorithm 2.43 To compute a Jordan basis for @, proceed as follows:

(i) Determine the characteristic polynomial fg and its zeros Aq,..., A, the
eigenvalues of @.

(i1) Fori = 1,...,m execute the following steps:

(ii.a) Determine the smalles number k;, such that
ker(CP —A; - idV)ki = ker((p —Ai- idv)ki+1,

Then also ker(® — A; - idy)* = ker(® — A; -idy)" = Vj, holds. The
number k; is the exponent of X — A; in the minimal polynomial /.
If the kernels here are determined via the Gaull Algorithm, for one
obtains, fors = 1,..., k;, a basis Bi[s] of ker(® — A; -idy )’ consisting
of elements of degree < s. In particular, Bl-[k" I'is a basis of Vy, (which
in general will not be a Jordan basis). This facilitates the next step.
(i1.b) To begin, let L; be an empty list of basis vectors.
For s = k;, ..., 1 execute the following steps:

As long as there exists a b € V), of degree s which is not contained in
the span of the elements so far contained in L;, compute

(@ —A;-idy)’ (b), j=s—1,...,0

and add these elements in this order to the list L;. Otherwise, proceed
with degree s — 1.

In the end, the list L; contains a Jordan basis of V, for @ |VA,- .

(iii)) Combine the elements of the lists Ly, ..., L,, from step (ii) to a basis B,
so that B is a Jordan basis for @. Obtain the Jordan canonical form as
J(®) = 03(®).

If one is only interested in determining J(®) (without the basis), step (ii.b) can
be omitted and in step (ii.a) one can determine the number of Jordan boxes of a
given size for the eigenvalue A; via the differences in the dimensions of the kernels
ker((b —A,i 'idv)j, j = 1,...,ki.

We now give two examples of matrices A and B which have the same eigen-
values, the same characteristic polynomial and the same minimal polynomial, but
nevertheless have distinct Jordan canonical forms.
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Example 2.44 Let

1 100

[-1300 s

A=1¢9 02 0of|€C
0 00 2

e The characteristic polynomial of 4 is
fa=det(XI, — A) = (X —2)*.
So A has the sole eigenvalue 2 of algebraic multiplicity 4.

e By means of the GauB Algorithm determine ker(4—2-1,) for j = 1,2,...
and observe

ker(A —2-1;) # C* ker(A—2-1,)*> =C*
Hence the minimal polynomial is 74 = (X — 2).
e Choose a vector bgz] € C*\ ker(A —2- 1), say bgz] = e1. As the first two
vectors of the Jordan basis we choose

—1
-1
o |
0

(A—2-1y) b7 = b =

S oo =

As dimker(4 — 2 - I4)?> — dimker(A —2 - I4) = 4 — 3 = 1, there do not
exist any further linearly independent vectors of degree 2.

e Complete the Jordan basis with the linearly independent vectors bgl] = e3
and bg] = ey4 from ker(A — 2 - I4). Our Jordan basis for A is thus:

—1 1 0 0

—1 0 0 0

oO1’1o1’1t11’1o

0 0 0 1

e The Jordan canonical form of A4 is
2 11010
0 21010
JA=1570T2T0 ©

0 0|02
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Example 2.45 Let

9 —7 0 2
7 =50 2]
B=1s 4 2 1|

0 0 02

e The characteristic polynomial of B is

fp =det(XI, — B) = (X —2)*.
So B has the sole eigenvalue 2 of algebraic multiplicity 4.

By means of the Gaull Algorithm determine ker(B —2- 1)’ for j=12,...
and observe

ker(B —2-1;) # C* ker(B—2-1,)* =C*
Hence the minimal polynomial is hg = (X — 2)2.

Choose a vector b?] € C*\ ker(B —2- 1), say bF] = e;. As the first two
vectors of the Jordan basis we choose

(B—2-1,)- b = b =

b

NG
co o~

0

We have dimker(B —2- I4)> —dimker(B —2-1;) = 4—2 = 2, so we can
choose another vector of degree 2 linearly independent to the ones above.

The vector bgz] = e4 is in C*\ ker(B — 2 - I4) as well and clearly linearly
independent of the two vectors in the previous step. We complete our Jordan
basis by the vectors

2 0
B-2-1)- b2 =[], pP =Y
1 0
0 1
e Hence our Jordan basis for B is:
7 1 2 0
7 0 2 0
41°101°111°10
0 0 0 1
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e The Jordan canonical form of B is

2

J(B) = 8
0

Finally, we want to study an example of a Jordan canonical form for a matrix with
two different eigenvalues.”

Example 2.46 Let

2 0 -2 0 —1
0 3 0 0 0

A=| -1 =1 1 0 -1 |eC®®
2 =2 0 3 2
-1 2 2 0 2

e The characteristic polynomial of 4 is
fa4 =det(XIs — A) = (X — 1)*(X = 3)°.
So A has the two eigenvalues A; = 1 and A, = 3.

e Firstly, compute a Jordan basis for the generalised eigenspace V;.

I 0 -2 0 -1

O 2 0 0 O

A-1-Is=| -1 -1 0 0 -1 |, rank4.
2 =2 0 2 2
-1 2 2 0 1

This means the eigenspace is of dimension dim £; = 1, and by recalling
Remark 2.39 we already know that dim V; = o7 = 2. To determine a
Jordan basis, we need to find a vector in ker(4 — 1 - I5)?\ ker(4 — 1 - I5):

4 0 —-400
0 4 0 00
(A=1-Is)>=| 0 —4 0 0 O |, rank3,
4 —4 0 4 4
—4 4 4 00

To avoid “death by notation” in the following example, we slightly deviate from the previous
notation for Jordan basis vectors and simply list them in order of appearence as by (1), b2(1), ...
for any given eigenvalue A of A.
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—1 -1
0 0
ker(A —1-15)* = span{ -1 1,] -1 }
1 0
0 1
Set
—1
0
by(1) =| =1 | eker(4—1-1s5)*\ker(4—1-1s)
1
0
and
1
0
bi(l) = (A—1-1Is5)-ba(1) = 1
0
—1
We now have a Jordan basis for V,
1 —1
0 0
By = {by(1).by(1)} = % T }
0 1
-1 0

e Next, we determine a Jordan basis for the generalised eigenspace V.

-1 0 -2 0 -1

O 0 0 0 o
A-3.-Is=| -1 -1 -2 0 -1 |, rank3.

2 =2 0 0 2

-1 2 2 0 -1

Again, the eigenspace is only of dimension dim £3 = 1, and the dimension
of V3 is now dim V3 = a3 = 3. Determine ker(A4 — 3 - I5)?> first:

4 0 4 0 4

0 0 0 0 O
(A=3-Is)>’=| 4 0 4 0 4 |, rank2,

-4 4 0 0 —4

0 —4 —40 0
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—12 4 -8 0 —I2
0 0 0 0 O

(A=3-Is)*=| —-12 4 -8 0 —12 |, rank2.
8 -8 0 0 8

4 4 8 0 4
As the rank did not change in the last step, it holds that

Vs =ker(A —3 - I5)*> = ker(A — 3 - I5)°,

and a basis of V3 is given by

—1 0 —1
—1 0 0
ker(A — 3 - Is)? = span 1 |[.]o].] o
0 1 0
0 0 1
Set
—1
—1
b(3)=| 1 | eker(4d—3-1Is5)*\ker(A—3-1Is),
0
0
and
—1
0
bi(3) =(A—-3-I5)-b(3)=| O
0
1

As dim V3 = 3, one basis vector is still missing. Choose a second eigen-
vector linearly independent of by (3):

0

b3(3) = e ker(A—3-15)

o = O O

So a Jordan basis of V3 is given by

B3 = {b1(3).b2(3),b3(3)} =

-0 O O
—
S - o O O
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e Finally, combine the bases B and Bj to obtain a Jordan basis of C? for A:

1 —1 —1 -1 0
0 0 0 -1 0
B = B1 U B3 == 1 . —1 , 0 , 1 , 0
0 1 0 0 1
-1 0 1 0 0

The matrix for the base change from the Jordan basis B to the canonical
basis of C° is given by

I -1 -1 -1 0
0O 0 o0 —-120
S = I -1 0 1 0},
0O 1 0 0 1
-1 0 1 0 O

and the Jordan canonical form of A is

1 1/0 0 0
0 1/0 0 0
JA)=814.-S=]100[(310 |=Jpl)®JonB3). ©
0 0|0 30
0 0|0 0 3

2.7 The Jordan Decomposition

For an endomorphism @ of an n-dimensional C-vector space V' we already noted
in Section 2.3 that its Jordan canonical form decomposes as a sum

where D is a diagonal matrix with the eigenvalues of @ on the diagonal, and N is
a nilpotent upper triangular matrix. As J(@) represents @ in a Jordan basis, the
matrices D and N represent a diagonalisable endomorphism @, and a nilpotent
endomorphism @, in the same Jordan basis, respectively. In this section, we will
study these endomorphisms.

Lemma 2.47 Let ®,, ¥, € End(V) be nilpotent endomorphisms, and assume that
@, 0¥, = ¥, o @, holds. Then A®, + uW¥, is also nilpotent for any A, u € C.

PROOF: Let m be the maximum of the degrees of nilpotency of @, and ¥;,. Be-
cause @, and ¥, commute, we can make use of the binomial formula to evaluate
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the following expression:

2m i 2m 2m—j ,, j H2m—j j
AD, + pd)™ =Y |7 | ok 0wl
J

j=1

In each summand, one of the powers @2™~/ or ¥/ has exponent > m and thus
equals 0. So
(AP, + pu¥,)>" =0

and A®, + uY, is nilpotent of degree < 2m. &

Lemma 2.48 Let &4, ¥; € End(V') be diagonalisable endomorphisms, and as-
sume that @3 o ¥y = ¥4 o @4 holds. Then @y and ¥y are simultaneously dia-
gonalisable (meaning there exists a basis B of V' such that both are represented
by diagonal matrices in this basis B). In particular, A®y + uWy is diagonalisable
forany A, u € C.

PROOF: The proof is by induction on n = dim V. For n = 1, all endomorphisms
are diagonalisable.

So now assume n > 1. Let
V= E/l[(@d) ®©...0 Ekk(cpd)

be the eigenspace decomposition for @4. Because @4 and ¥4 commute, we find
for every eigenvector v; € E,, (®y) that

Dy(Va(vi)) = Ya(Pa(v;)) = Ai - Wa(v;),

that is, ¥4(v;) is again an eigenvector for the eigenvalue A;. So the eigenspaces
E,,(®q) are Yy-invariant. If dim £, (Pg) = n, then @3 = A; - idy, so that @4
is represented by a diagonal matrix in any basis B of V. Choose B such that ¥y
is represented by a diagonal matrix, and the claim follows. If dim E;,(®4) < n,
then by the induction hypthesis, the restrictions of @] Ex, (@) and ¥q| Ej, (@) are
represented by diagonal matrices in some basis B; of E;(®4). Then the union
B = B; U...U By is a basis of V such that &; and ¥, are both represented by
diagonal matrices in B.

For the last statement note that any linear combination of diagonal matrices is
again a diagonal matrix, so A®y 4+ ¥, is diagonalisable. <

In the following, let V' be an n-dimensional C-vector space.
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Theorem 2.49 (Jordan decomposition) For an endomorphism @ € End(V') there
exist polynomials pq4, p, € C[X] such that py(®) = @4 is a diagonalisable endo-
morphism, p,(®) = @, is a nilpotent endomorphism, @4 o ®, = &, o ®4, and

D =Py + D, (2.17)

holds. Moreover, ®; and @, are uniquely determined by these properties.

PROOF: To construct the polynomial p4, consider the following system of con-
gruences in the ring C[X]:

pa = Aymod(X — A)%,

Pa = Ax mod(X — Ag)%,

where Aq,..., A are the distinct eigenvalues of @ with algebraic multiplicities
ap,...,a. The polynomials (X —A;)% are coprime for distinct A;, so this system
of congruences has a solution according to the Chinese Remainder Theorem 1.57.
By construction, such a solution pq satisfies

pa=Aj+qj- (X =A%
for a suitable polynomial g; € C[X], and hence
pa(@)(v) = A v +¢;(P)(v;) (@ —A; -idy)* (v))

for every v; in the generalised eigenspace V; ; of @. Recall from the definition of
V3, that (® — A; -idy)*/ (v;) = 0, so that

pa(@)(v;) = Aj - v,
for all j. In other words, V. = Ej;  (pa(P)), so that
V=FE (D) ®...®&E (Pg)

is decomposition into eigenspaces of @y = py(P), so @, is diagonalisable.
Now set
pn - X - pdv

and p,(®) = ® — &y = P,. Clearly, ® = &4 + D, holds. Since powers of @
commute,

Py o Py = pa(P) © pa(P) = pu(P) 0 pa(P) = Py 0 Py.
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We show that @, is nilpotent: By construction of @,, the generalised eigenspaces
V,, of @ are @,-invariant, and @, restricted to V}, is

¢n|VAi = (pr,’\,— - ¢d|VAi = ¢|VAZ» _Ai 'idV/\,—'
Recall that this means (Q>n|VM)“f = 0, and since V is the direct sum of the V}, it
follows that @max{@1-+-@k} — () and @, is nilpotent.
It remains to prove the uniqueness of @4 and @,. So let ¥4 and ¥, be two endo-
morphisms satisfying the conditions of Theorem 2.49. Then
Py + Dy =D =Y + ¥,

or

@d—lpd = q/n_¢n-

By Lemma 2.47, ¥, — @, is nilpotent and by Lemma 2.48, &3 — ¥, is diagonal-
isable. So the two can only coincide if both equal 0. This means &3 = ¥, and
&, = ¥, proving the uniqueness. &

The following corollary is the matrix version of Theorem 2.49:

Corollary 2.50 For A € C™*" there exist polynomials pq, p, € C[X] such that
pa(A) = Ay is diagonalisable, p,(A) = A, is nilpotent, A4A, = A,Aq4, and

A= Aq+ A, (2.18)
holds. Moreover, A4 and A, are uniquely determined by these properties.

The proof of Theorem 2.49 shows that to compute the Jordan decomposition,
one needs to know the eigenvalues of @ (or A, respectively) and an algorithm
to solve a system of simultaneous congruences as given in Section 1.5. Compu-
ting a Jordan basis also gives the Jordan decomposition, but it does not yield the
polynomials p4 and p,.

Example 2.51 Consider the matrix

2 0 =2 0 -1
0 3 0 0 0

A= -1 =1 1 0 -1 |eC®®
2 =2 0 3 2
-1 2 2 0 2

From Example 2.46 we know that A has the eigenvalues A; = 1 with multiplicity
a1 = 2 and A, = 3 with multiplicity o, = 3.
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We find the polynomial p4 as solution to the simultaneous congruences

Pa = 1mod(X — 1),
pa = 3mod(X — 3)°.

The solution computed via Algorithm 1.59 is

3 7 45 27 51
= X'— X4+ XX+ .
Pa=gt 34 Ty 24T
Then 3 7 45 29 51
n= =Xt oXP - X4 X -
=34 T3 R T
and
3 -2 -200 -1 2 0 0 -1
0O 3 0 00 0O 0 O0O0 O
p =] 0 =2 1 00|, po)=| -1 1 00 —1
2 =2 0 3 2 0O 0 00 O
-2 4 2 01 I -2 0 0 1
is the Jordan decomposition of A. V)

For invertible @, there exists also a multiplicative version of the Jordan decom-
position.

Definition 2.52 An endomorphism @ € End(V) is called unipotent if the endo-
morphism @ — idy is nilpotent. Accordingly, a matrix A € K™*” is called uni-
potent if A — I}, is nilpotent.

Theorem 2.53 (Multiplicative Jordan decomposition) For an automorphism @
of V there exists a diagonalisable automorphism @, and a unipotent automorphism
&, such that

@ =@;0P, (2.19)

and @4 o @, = P, o 4. Moreover, P4 and D, are uniquely determined by these
properties.

PROOF: Let @4, @, be as in Theorem 2.49. As @ is invertible, all its eigenvalues
are different from 0, and as @4 has the same eigenvalues as @, it is also invertible.
So we can write

¢:¢d+¢n=q§do(idv—|—q)d_loq§n).
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Set @, = idy + ;! o @,. Proving that @, is unipotent now amounts to proving
that @; ! o @, is nilpotent. Let m be the degree of nilpotency of @,. As @4 and &,
commute,

(@' o @) = (7)o" =0

and therefore @, is unipotent.

To see the uniqueness, observe that from any pair @y, @, satisfying the properties
in the theorem the Jordan decomposition @ = @4 + P, can be reconstructed by
setting @, = @4 o (P, — idy). Thus uniqueness of the pair @y, @, follows from
the uniqueness of @4, @,,. &

Corollary 2.54 For a matrix A € GL,(C) there exists a diagonalisable matrix
Aq € GL,(C) and a unipotent matrix A, € GL,(C) such that

A=Ay A, (2.20)

and Aq - Ay = Ay - Ag. Moreover, Aq and A, are uniquely determined by these
properties.

So far we studied the Jordan canonical form for a matrix A or an endomorphism
@ defined over the field C. This was necessary because we needed the primary
decomposition into generalised eigenspaces in Theorem 2.27 to derive the Jordan
canonical form. Naturally, one wants to know in how far these results hold if A or
@ is defined over some subfield IK of C, such as K = @@ or K = R.

By going through the arguments leading up to Theorem 2.27, one finds that this
primary decomposition also exists for a [K-vector space provided all eigenvalues
of A or @ are elements of K. So in this case, Theorem 2.38 and Corollary 2.40
hold for @ and A, respectively. But if the eigenvalues...........

2.8 The Real Canonical Form

NOT YET WRITTEN

2.9 The General Canonical Form

NOT YET WRITTEN
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Part 11
Applications: Codes and Chiphers

The philosophers have only interpreted the world in various ways;
the point, however, is to change it.

— KARL MARX

3 Cryptography

Alice wants to send a secret message m to Bob. However, she cannot be sure
that the channel on which m is to be sent is safe from eavesdropping. Therefore,
she has to devise a method to encrypt her message in such a way that only Bob
can decrypt and read it. The art of constructing and investigating such methods
is known as cryptography. More precisely, one studies the following situation:
Given is a set M of “plaintext” messages which are to be mapped to a set of
“ciphertexts” € by means of an encryption function

enc: M — €.

The code € is supposed to unreadable for anyone without the proper authorisation.
A legitimate recipient of a message on the other hand should be able to use a
decryption function

dec : € - M

to obtain the original plaintext from the ciphertext. That is,
dec o enc = id

holds. One possibility to achieve this is for Alice and Bob to use procedure enc
and dec which they keep as a secret among themselves. However, the problems
with this approach are obvious: Once the methods become known via betrayel or
negligence, they become worthless. Moreover, for each additional participant in
the communication, a new method would have to be devised. It is therefore the
philosophy of public key cryptography to employ publically known algorithms
whose security relies on an additional parameter, the key. Every party involved
has its own key. The key consists of two components, the public key for en-
cryption and the secret key for decryption.

Most algorithms in public key cryptography exploit the algebraic properties of
the integer numbers (or other integral domains) in some ingenious way. In this
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section, we want to explore some simple cryptographic procedures which can be
easily understood based on the knowledge acquired in the previous chapters. To
begin, we study some properties of finite groups and the units in Z/nZ.

In this section we follow the convention that data which are to be kept secret are
set in typewriter font m, k, . . ..

3.1 Lagrange’s Theorem

PUT THIS IN A SEPARATE CHAPTER

Definition 3.1 Let G be a group and g € G. The order of G is
ord(G) = |G].

The order of g is
ord(g) = ord((g)),

that is, the order of the cyclic subgroup (g) = {1, g, g%, g3,...} generated by g.

Theorem 3.2 (Lagrange) If G is a finite group and H a subgroup of G, then
ord(H) | ord(G).

In particular, ord(g) | ord(G) forallg € G.

PROOF: For every g € G itholds that |H| = |gH|,as H — gH,h +— ghisa
bijection.

For g, g, € G either g1 H = g, H holds, or g1 H N g, H = @: If there exists
a € g1H N gyH, then g1hy = a = g,h, for suitable i, h, € H. This means
g1 = gzhzhl_l. Then every element g;h € g H can be written as

g1h = ga(hah'h) € g, H.

Hence g1 H C g, H and analogusly g, H C g1H,sothatg1H = g, H.

As every element g € G is contained in some gH , it follows that G is the disjoint
union of certain finite subsets g1 H, ..., gx H. Hence

k k
Gl=|J e H|=) lg;H| =klH],
j=1

Jj=1

that is, | H | divides |G/|. &
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Lemma 3.3 Let G be an abelian group and g, h € G. Moreover, let ord(g) = m,
ord(h) = n and gcd(m,n) = 1. Then ord(gh) = mn.

PROOF: Assume r = ord(gh). As G is abelian,
(g™ = (™))" =1-1=1,

that is, r < mn. By Corollary 1.30 there exist s,f € Z such that sm + tn = 1.
This means

gr — (gsm+tn)r — ( gm )sr(gn)tr — (gn)tr — (gnhn)tr — ((gh)r)tn — 1.
=

So m divides r, and in the same way one shows that n divides r. Now gcd(m,n) =
1 and the uniqueness of prime factorisation imply that mn is a divisor of r, in
particular mn < r. Hence mn =r. <

Lemma 3.4 Let G be a finite abelian group and g € G an element of maximal
order m = ord(g). Then the order ord(h) of any h € G divides m.

PROOF: Let n = ord(h). Assume n { m. Then there exists a prime factor p
appearing in the factorisation of n with a larger exponent than in the factorisation
of m, say

m=pa, n=p'b

with r < s and p } a,b. This means o_rd(gl’r) = a and ord(h?) = p*. As
ged(p®,a) = 1, Lemma 3.3 gives ord(g? h?) = p*a. But p*a > p"a = m, so
that gprhb has a higher order than g, contradicting our choice of g. >

3.2 Unitsin Z/nZ

Theorem 3.5 The group of units in Z,/nZ. is

(Z/nZ)* = {k € Z/nZ | ged(k,n) = 1}. (3.1

PROOF: If k and n are coprime, then by Lemma 1.30 ther exist elements s,¢ € 7Z
such that sk + tn = 1. This means

sk = 1modn.

Hence k = 5! is a unit.
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Conversely, if sk = 1 mod n for some suitable s € Z, then sk = 1+ mn for some
m € 7. If d divides k and n, say ad = k and bd = n, then sad = 1 4+ mbd.
This is equivalent to

1 = (sa—mb)d.
Hence d € Z* = {—1, 1} and as a consequence k, n are coprime. &
Definition 3.6 The function
¢:N—->N, n [(Z/nZ)"| (3.2)

is called Euler’s totient function (or Euler’s ¢ function).
By Theorem 3.5, ¢(n) is the number of integers 0 < k < n coprime to 7.
Theorem 3.7 (Euler) Letn € N, n > 2. For every number a coprime to n,

a®™ = I modn. (3.3)

PROOF: If gcd(a,n) = 1, then @ is a unit in Z/nZ. We have ord((Z/nZ)*) =
¢(n) and therefore there exists a k € IN with k - ord(a) = ¢(n) by Lagrange’s
Theorem. This means

5(0(?1) — (aord(ﬁ))k — lk — 1

which is equivalent to (3.3). &

A special case of Euler’s Theorem is known as Fermat’s Theorem.

Theorem 3.8 (Fermat) Let p be a prime number. Then for all a € 7 which are
not multiples of p,
a?”!' = 1 mod p. (3.4)

Remark 3.9 Fermat’s Theorem allows us to test if ¢ is not a prime number. For
if (3.4) is not satisfied for any 0 < a < ¢, then ¢ is not prime. However, it is
not valid to make the converse conclusion that g is prime if (3.4) holds for all
0 < a < ¢q. There are numbers satisfying this without being prime numbers,
called Carmichael numbers. The three smallest Carmichael numbers are 561,
1105 and 1729. In Forster [5] the properties of Carmichael numbers and some
effective primality tests are discussed.

Theorem 3.10 below is of fundamental importance in cryptography.

Theorem 3.10 If p is prime, then (Z./ pZ)* is cyclic.
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PROOF: As p is prime, Z/ pZ is a field and (Z/ pZ)™ has p — 1 elements.

Let g be an element of maximal order m < p — 1 in (Z/pZ)*. Then g is a zero
of the polynomial X™ — 1. As a consequence of Lemma 3.4,

a” =1

holds for all a € (Z/ pZ)*, so that all the other p — 1 elements of (Z/pZ)™ are
zeros of X — 1 as well. By Theorem 1.39,

m=deg(X"—-1)>p—1

holds. Therefore, m = p — 1 and (g) = (Z/ p7)*. &

3.3 Diffie-Hellman Key Exchange

Alice and Bob wish to exchange a common key k via an unsafe channel. To this
end, they need to exchange a “partial key” via this channel from which k can be
generated. They can proceed as follows:

Algorithm 3.11 (Diffie-Hellman protocol) Let g be a generator of (Z/pZ)*,
where p is some large prime number.

(1) Alice picks a secret random number a and sends g* to Bob.
(ii) Bob picks a secret random number b and sends g® to Alice.
(iii) Alice receives g* and computes k = (g*)?.

(iv) Bob receives g® and computes k = (g?)".

So Alice and Bob generated the common key k, which was not transmitted via the
unsafe channel.

Remark 3.12 The security of the method relies on the difficulty of computing
the discrete logarithm in (Z/p7Z)™ (for this, a very large p is to be chosen). An
attacker could use the discrete logarithm to obtain a and b from the intercepted
partial keys g* and g°, and then compute k. An algorithm to compute discrete
logarithms in cyclic groups is introduced in §8 of Forster [5].

Remark 3.13 In principle, the Diffie-Hellman protocol works with any finite
cyclic group, such as elliptic curves (Forster [5], §20).
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3.4 ElGamal Encryption

An idea similar to the Diffi-Hellman protocol is the basis of EIGamal’s encryption
method. For simplicity we assume that the set of plaintexts is M = (Z/pZ)™ and
the set of ciphertexts is € = (Z/pZ)™ as well.

Algorithm 3.14 (ElGamal encryption) Alice wants to send a secret message m
to Bob. Let g be a generator of (Z/ p7Z)>, where p is a large prime number.

(i) Bob picks a secret random number b (the secret key) and computes x = g°
(the public key).

(i1) Alice picks a secret random number a satisfying ged(a, p — 1) = 1.
(iii) Alice computes y = g® and z = x°m, and sends (y, z) to Bob.

(iv) Bob can use his secret key b to decrypt the message:
2577 = 2((g)) 7 = 2(g) T = x'm(x) T = m.

Again, the security of the method relies on the difficulty of computing discrete
logarithms. The condition ged(a, p — 1) = 1 is not required for the method to
work. However, if a and p — 1 had a large common divisor the computation of
the discrete logarithm of g would become significantly easier.

3.5 RSA Encryption

The RSA algorithm is named after its inventors Rivest, Shamir and Adleman.
Exercise 3.15 For prime numbers p,q € N, ¢(pq) = (p — 1)(¢ — 1) holds.

Algorithm 3.16 (RSA encryption) Alice will eine Nachricht m an Bob schicken.

(i) Bob picks two secret large prime numbers p, g and publishes n = pq.

(i) Bob picks a number e coprime to ¢(n) (the public key). By means of the
Extended Euclidean Algorithm he determines a number d (the secret key)
satisfying ed = 1 mod ¢(n).

(iii) Alice can encrypt a message m € Z/nZ by means of the public data as
follows:
enc:7Z/n7 — 7/n7, mr>mn.

She then sends this encrypted message m¢ to Bob.
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(iv) Bob can decrypt the ciphertext m® by means of his secret key d:
dec:Z/n% — Z/nZ, x> x°.
Then dec(m®) = m®® = m.

PROOF: We need to show that the statement in step (iv) is true.

Let x € Z/n7. According to the Chinese Remainder Theorem there exists an
isomorphism

U :Z/nt, — L]pZ x Z]qZ.
Now let (x1,x2) = ¥(x). If x; = 0, then trivially x{* = x;. If x; # 0, then
X1 is a unit in Z/pZ. By Exercise 3.15, ¢(n) = (p — 1)(g — 1), and hence also

ed = Ilmodp — 1 and ed = 1 mod g — 1. Moreover, ¢(p) = p — 1, so that it
follows from Euler’s Theorem that

ed __ 1+tko() _

Analogously, x5¢ = x,. This means
(x1, X2) = (x7%, x5%) = (x1, x2),
and hence
x4 = U ((x1, %)) = ¥ (xq, x2) = x.

This proves dec o enc = idyz/,7. &

One might wonder why the proof takes a detour using the Chinese Remainder
Theorem rather then applying Euler’s Theorem directly to conclude that

xed — x1+k<p(n) = x

holds. But this argument is only valid for those x coprime to n. So we relocated
the problem to the rings Z/pZ and 7Z/qZ, where, as p and g are prime, we can
be sure that Euler’s Theorem is applicable to all x; # 0.

Remark 3.17 The security of the RSA algorithms relies on the difficulty of de-
termining the secret key d. For this, one would have to know ¢(n) and then
determine the inverse of e modulo ¢(n). But in order to find ¢(n), one needs to
compute the prime factorisation pg of n. In general, this is very hard to compute.
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Part I11
Geometry in Vector Spaces

So far we have studied the algebraic properties of vector spaces and their linear
maps. If we endow a vector space V' with an additional structure known as an
inner product, then V' obtains geometric properties. More precisely, we can then
define angles, distances and lengths in V. As so often, we draw inspiration from
an elementary special case, which here is the canonical inner product in R%. By
prescinding its algebraic properties from its particular definition we are lead to an
abstract definition for inner products in arbitrary real or complex vector spaces.

4 Vector Spaces with Inner Products

4.1 The Canonical Inner Product

The canonical inner product of two vectors

X1 1
X = ,y=|:1€R"
Xn Yn
is defined as
(x|y) =xT -y =x1y1 4 ... 4 XnYn 4.1)

The output is a real number, which explains why it also called a scalar product.

For simplicity, we restrict to the case n = 2. To begin, we note some algebraic
properties of the canonical inner product:

Remark 4.1 For x, y € R?,

(x[y) = x1y1 4+ x2¥2 = y1x1 + y2x2 = (y|x). 42)
So the inner product is symmetric.
Remark 4.2 For all x, y,z € R? and every number « € R,

(x[y +2) = x1(y1 + 21) + x2(y2 + 22)
= X1)1 + X121 + X2)2 + X222
= (x1y1 + X2y2) + (X121 + X222)
= (x|y) + (x]z)
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and

(xlay) = xi1(ay1) + x2(ay2)
= a(x1y1) + a(x2y2)
= a(x1y1 + x2y2)
= a{x]y).

This means (x|-) for a fixed x is a linear function:
(xlay + z) = a(x|y) + (x]z). (4.3)

It follows from the symmetry (4.2), that (-|x) for fixed x is a linear function as
well. This property we call the bilinearity of the inner product.

Let us now turn our attention to the geometric properties: Plug x = y into (4.1)
to obtain
(x|x) = xZ + x3.

The figure below explains how this is interpreted geometrically:

In this figure the e;-axis and the e,-axis are perpendicular, so we obtain a right-
angled triangle whose sides are given by x, the e;-component of x and the e,-
component of x. The hypthenuse is the line segement from the origin to x. In this
situation, Pythagoras’ Theorem gives us

x? + x5 = (length of the vector x)?.

So the inner product allows us to determine the length

Vixlx) = \/x +x3 (4.4)

of a vector x. We note in particular:
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Remark 4.3 Every vector x # 0 has a positive length. However, the vector 0 has
length 0. This means
(x|x) >0, with“=0"onlyif x = 0. 4.5)

We will get to know this property as positive definite later on.

Auch das Skalarprodukt zweier verschiedener Vektoren x, y € IR? lisst sich ge-
ometrisch deuten. Dazu betrachten wir die Spezialfille y = e; und y = e,
mit jeweils beliebigem x. Im folgenden Bild sehen wir, wie x sich aus einem
Vielfachen von e; und einem Vielfachen von e, zusammensetzt.

€

8
Xp€) 4 X

) = X161 + xper

> >
(4] X1€1

Dabei ist der Betrag der jeweiligen e;-Komponente der ite Koeffizient x; (i =
1,2). Im Fall y = e; gilt

(x|y) = (x]er) = x1- 1+ x2-0 = xy,
und im Fall y = e, gilt
(x]y) = (x]|e2) = x1-0+x2- 1 = xs.

Das Skalarprodukt (x|e;) berechnet also den Betrag der senkrechten Projektion
von x auf die e;-Achse. Lax formuliert gibt (x|e;) an, welchen Beitrag der ite
Einheitsvektor zum Vektor x leistet. Dies liefert eine Zerlegung von x in orthog-
onale Komponenten:

X = x1€1 + x2ep = (x|eq)e; + (x|ez)es.

Ist nun y ein beliebiger Vektor der Linge 1, so kann man in einem geeigneten
Koordinatensystem annehmen, dass y = e; gilt. Wir stellen somit fest:

Remark 4.4 Fiir einen Vektor y der Linge 1 gibt das Skalarprodukt (x|y) die
Linge der senkrechten Projektion von x auf die y-Achse an. Sind y;, y, zwei
senkrecht aufeinanderstehende Vektoren der Linge 1 (z.B. y; = e;), so ldsst sich
x mittels des Skalarproduktes in seine orthogonalen Komponenten bzgl. der Basis
{¥1, y2} zerlegen:

x = {x[yi)y1 + (x|y2)y2.
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Diese letzte Eigenschaft erlaubt uns, die Darstellung von x in einer geeigneten Ba-
sis allein durch das Berechnen von Skalarprodukten zu ermitteln. Besonders inter-
essant ist dies im Falle unendlicher Dimension, in dem man eine solche Darstel-
lung nicht durch das Losen linearer Gleichungssysteme erhalten kann.

In den folgenden Abschnitten 4.2 und 4.3 gelangen wir iiber die Eigenschaften
(4.3), (4.2) und (4.5) zu einer abstrakten Definition von Skalarprodukten. Zunichst
werden wir dazu den Begriff der Bilinearitit von einem sehr allgemeinen Stand-
punkt aus untersuchen.

4.2 Bilinearformen
In diesem Abschnitt sei K ein Korper und V' ein K-Vektorraum.

Definition 4.5 Eine Abbildung s : V x V' — KK heif3t Bilinearform, falls fiir alle
x,y,z € Vundalle A € K gilt:

s(x +y,z) =s(x,2) +5(y,2),

s(x,y+z)=s(x,y)+s(x,z2),
s(Ax,y) = As(x,y),
s(x,Ay) = As(x, ).

Es bezeichne Bil(V') die Menge der Bilinearformen auf V.

Remark 4.6 Dass s eine Bilinearform ist, ist &quivalent dazu, dass fiir jedes x €
V' die Funktionen s(x,:) : ¥V — K und s(-,x) : V — K Linearformen sind.
Bil(V') ist mit der tiblichen Addition und Skalarmultiplikation von Funktionen
ein K-Vektorraum.

Definition 4.7 Es seis : V x VV — K eine Bilinearform.
(a) s heiB3t symmetrisch, falls s(x, y) = s(y, x) gilt firalle x, y € V.
(b) s heiflit schiefsymmetrisch, falls s(x, y) = —s(y, x) gilt firalle x, y € V.
(c) s heif3it alternierend, falls s(x, x) = 0 gilt fir alle x € V.

Es bezeichne Sym(V') die Menge der symmetrischen Bilinearformen auf V.

Exercise 4.8 Jede alterniernde Bilinearform s ist schiefsymmetrisch. Falls die
Charakteristik von K nicht 2 ist, ist s genau dann alternierend, wenn s schiefsym-
metrisch ist.
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Example 4.9 (Bilinearformen)

(a) Das Standardskalarprodukt s = (-|-) im R” ist eine symmetrische Bilinear-
form (vgl. Abschnitt 4.1).

(b) Auf K? ist durch
s(x,y) =det(x y)

eine alternierende Bilinearform gegeben.

(c) Auf dem Vektorraum C([a, b]) der stetigen reellwertigen Funktionen auf
dem Intervall [a, b] ist durch

b
sthe)= [ fOga
ist eine symmetrische Bilinearform gegeben.
(d) Jede Matrix A € IK"*" definiert auf IK” eine Bilinearform durch die Vorschrift

sa(x,y)=x"-4-y.

In der Tat konnen alle Bilinearformen von Vektorrdaumen endlicher Dimension in
der Form von Beispiel 4.9 (d) dargestellt werden:

Lemma 4.10 Es seidimV = n und B = {by,...,b,} eine Basis von V. Weiter
seis : V x V — K eine Bilinearform. Wir setzen s;; = s(b;, b;) und definieren
die Matrix

S11  Sin
Sg(s)y =1 : .. = |eK"”. (4.6)
Sn1 *°* San
Dann gilt
s(x,y) = Op(x)" - Sg(s) - Op(y). 4.7)

PROOF: Beide Seiten der Gleichung (4.6) sind bilinear. Es geniigt also, die Gle-
ichheit fiir Basisvektoren x = b;, y = b; zu zeigen. Es gilt

Op(b;) = e;.
Also ist
@B(bi)T . SB(S) @B(b]) = eiT -SB(S) e =8 = S(biybj)’

wie behauptet. <&
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Exercise 4.11 Fiir gegebene Basis B ist die Abbildung
Sp :Bil(V) - K™", s+ Sg(s)
bijektiv und sogar ein Isomorphismus von [K-Vektorrdaumen.

Example 4.12 (Matrizen von Bilinearformen) Es sei B die Standardbasis von
K",

(a) Fur das Standardskalarprodukt im R” gilt (e;|e;) = §;;. Also ist
Se((:]-) = In.

(b) In Beispiel 4.9 (b) gilt

s(er,er) =0 =s(ex,e3), s(er,ex) =1, s(ey,er) =—1.

Sp(s) = (_01 (1)) .

Lemma 4.13 Es sei dimV = n und B eine beliebige Basis von V. Weiter sei s
eine Bilinearform auf V und S = Sp(s).

Also ist

(a) s ist genau dann symmetrisch, wenn S eine symmetrische Matrix ist (d.h.
S=S8T).

(b) s ist genau dann schiefsymmetrisch, wenn S eine schiefsymmetrische Ma-
trix ist (d.h. S = —S7).

PROOF:

(a) s symmetrisch genau dann, wenn s;; = sj; gilt in (4.6). Dies ist dquivalent

S =ST.
(b) s schiefsymmetrisch genau dann, wenn s;; = —sj; gilt in (4.6). Dies ist
dquivalent zu § = —S 7. &

Sind fiir eine Bilinearform s die Matrizen Sg(s) und Sc (s) fiir zwei Basen B, C
von V' gegeben, so konnen wir dhnlich wie bei den Abbildungsmatrizen von End-
morphismen S¢ (s) bestimmen, wenn wir Sg(s) kennen.
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Theorem 4.14 Es sei dimV = n und es seien B, C Basen von V. Fiir jede
Bilinearform s : V x V — K gilt

Sc(s) = (Mg)T - Sp(s)- My (4.8)

Hier bezeichnet M g =M g (idy) die Ubergangsmatrix fiir den Basiswechsel von
der Basis C zur Basis B.

PROOF: Fiiralle x € V gilt O¢c (x) = ME - Op(x).
Also gilt nach (4.7) fiiralle x, y € V:

Op(x)" - Sp(s) - Op(y) = s(x,y) = Oc(x)" - Sc(s) - Oc(y)
= (M& - Op(x)"-Sc(s)- (ME - Op(y))
= Op(x)" - (ME)T - Sc(s) - ME - Op(y).

Wegen der Eindeutigkeit von Sg(s) folgt Sp(s) = (MCJ'?)T -Sc(s) - Mg. &
Remark 4.15 Man beachte, dass im Allgemeinen
(ME)T # ME)™ = M

gilt! Der Basiswechsel fiir Bilinearformen ist also anders zu berechnen als der
Basiswechsel fiir lineare Abbildungen (in der Tat ist jener leichter zu berechnen,
da man M g lediglich transponieren und nicht invertieren muss).

Definition 4.16 Eine Bilinearform s € Sym(V') heil3t ausgeartet, falls xo € V,
X0 # 0, existiert, so dass gilt

s(xg,x) =0 firallex € V. 4.9)

Andernfalls heiflt s nicht ausgeartet.

Exercise 4.17 Es sei dimV < oo. Esist s € Sym(}') genau dann nicht aus-
geartet, wenn fiir alle x € V' die Abbildungen

S1x: V=V xs(x,),

Sox Vo>V x> s(,x)
Isomorphismen sind.

Example 4.18 In Beispiel 4.9 sind alle Bilinearformen nicht ausgeartet. Ein nicht-
triviales Beispiel fiir eine ausgeartete Bilinearform auf R? ist

s(x,y) =xT-((1) 8)-%
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Definition 4.19 Es sei s € Sym(V'). Die Menge
Rads = {xo € V | s(x9,x) = Ofiiralle x € V} (4.10)
heifit das Radikal (oder der Kern) von s.

Remark 4.20 Offensichtlich ist s € Sym(}V') genau dann nicht ausgeartet, wenn
Rads = {0} gilt.

Lemma 4.21 Ist Sp(s) eine Matrix fiir s € Sym(V'), so gilt

®p(Rads) = ker Sg(s).

PROOF: Ist xp € Rads, so gilt e, - Sp(s) - @p(xo) = O fiir alle Einheitsvektoren
e;. Alsoist Sp(s) - ®p(xg) = 0.

Gilt umgekehrt Sp(s) - v = 0 fiir ein v € K", so ist s(x, ©5'(v)) = Op(x)T -
Sp(s)-v =0firalle x € V. Also ist ©3'(v) € Rads. &

Corollary 4.22 s € Sym(V) ist genau dann nicht ausgeartet, wenn Sp(s) €
GL,(K).

4.3 Euklidische Vektorriume

Um zu einer abstrakten Definition von Skalarprodukten zu gelangen, ergénzen
wir den Begriff der Bilinearform nun um die den Eigenschaften (4.2) und (4.5)

enstprechenden Begriffe.

Definition 4.23 Es sei V' ein R-Vektorraum. Eine Bilinearform s € Sym(V)
heiflt positiv definit, falls fiir alle x € V', x # 0, gilt

s(x,x) > 0.
Ein Skalarprodukt (-|-) auf V' ist eine positiv definite symmetrische Bilinearform.

Definition 4.24 Ein euklidischer Vektorraum (V, (-|-)) ist ein R-Vektorraum V'
zusammen mit einem Skalarprodukt (-|-) : V x V — R.

Remark 4.25

(a) Beachte, dass wegen der Bilinearitit stets s(0, 0) = 0 gilt.
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(b) Wir beschrinken uns bei der Definition von Skalarprodukten auf R-Vektor-
rdume, da die positive Definitheit nur Sinn ergibt, wenn der zugrundeliegende
Skalarkorper geordnet ist.®

(c) Neben der Schreibweise (x|y) ist auch die Schreibweise (x, y) in der Math-
ematik weit verbreitet. Gelegentlich wird das Standardskalarprodukt im R”
mit einem Punkt geschrieben: x - y.

(d) Die Schreibweise (x|y) wurde von Dirac als Bra-Ket-Notation (von engl.
bracket) in der Quantenphysik eingefiihrt. Dirac interpretiert dabei einen
Vektor y € V als Ket-Vektor |y) und bezeichnet die Linearform x +— (x|-)
aus V'* als Bra-Vektor (x|. Das Anwenden der Linearform (x| auf den
Vektor |y) liefert dann gerade den Wert des Skalarprodukts (x|y).

Example 4.26 (Euklidische Vektorriaume)

(a) Der R” mit dem Standardskalarprodukt ist ein euklidischer Vektorraum
(dass das Standardskalarprodukt ein Skalarprodukt im Sinne von Definition
4.23 ist, ergibt sich sofort aus den Uberlegungen in Abschnitt 4.1).

(b) Im R” ist fiir jede Matrix A € R™" durch s4(x,y) = x" - A - y eine
Bilinearform gegeben. Wir iiberlegen, welche Eigenschaften die Matrix
A besitzen muss, damit 54 ein Skalarprodukt ist: Zunédchst muss A nach
Hilfssatz 4.13 eine symmetrische Matrix sein. Positive Definitheit bedeutet

s4(x,x) =x"-A-x>0
fur alle x € R”, x # 0. Q
Die Beobachtung im letzten Beispiel veranlasst uns zu folgender Definition:

Definition 4.27 Eine symmetrische Matrix § € R™*" heifit positiv definit, falls
fiir alle x € R”, x # 0, gilt:

xT-8-x>0. 4.11)

Die Bedingung (4.11) direkt nachzupriifen ist in der Regel sehr schwer. In Ab-
schnitt ?? lernen wir einige Kriterien kennen, mit denen man eine symmetrische
Matrix leicht auf positive Definitheit priifen kann.

Lemma 4.28 Es sei (V, (-|-)) ein euklidischer Vektorraum.

®In Abschnitt 4.5 werden wir ausnutzen, dass R ein Teilkorper von C ist, um auch in kom-
plexen Vektorrdaumen Skalarprodukte zu definieren.
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(a) (-|-) ist nicht ausgeartet.

(b) IstdimV < oo mit Basis B, so ist die Matrix S = Sg({(-|-)) symmetrisch,
positiv definit und invertierbar.

(c) Alle Eigenwerte der Matrix S aus (b) sind positiv.
PROOF:

(a) Wegen der positiven Definitheit ist Rad(-|-) = {0}.

(b) Ergibt sich aus Hilfssatz 4.13, Beispiel 4.26 (b) und Teil (a) zusammen mit
Folgerung 4.22.

(c) Sei A Eigenwert von S mit Eigenvektor x € R”. Dann gilt

O<x'-S-x=x"-(A-x)=A-x"-x.
—
>0

Das bedeutet A > 0. &

Zum Ende dieses Abschnitts betrachten wir noch ein Standardbeispiel eines Skalarpro-
dukts in Funktionsvektorrdumen von unendlicher Dimension.

Example 4.29 Der Vektorraum C([a, b]) der stetigen Funktionen auf dem Inter-
vall [a, b] ist ein euklidischer Vektorraum mit dem Skalarprodukt

b
(flg) = / F(g(n)dr. 4.12)

Aus Beispiel 4.9 (c) wissen wir bereits, dass dies eine symmetrische Bilinearform
ist. Sie ist auch positiv definit: Es ist fab f(t)*dr > 0 fiir alle ' € C([a,b]), da
f(t)?> > 0 ist fiir alle 1 € [a,b]. Falls f # 0 ist, soist f(z)*> > 0 an einer
Stelle 7y € (a, b). Aus der Definition der Stetigkeit folgt, dass f(¢)? > 0 in einer
geeigneten Umgebung [ty — §, to + 8] von £y gilt (mit § > 0). Dann gilt aber

to+38

b
FLf) = f F(0)dr = / 02 = 28 mind £0) |1 € o= 10+5]) >

o—
Somit ist (-|-) in der Tat ein Skalarprodukt.

Wir wollen nun noch heuristisch verstehen, wieso man (4.12) als die Entsprechung
des Standardskalarprodukts im R” auf Funktionsvektorriumen auffassen kann:

Ein Element x € R” ist durch seine Koeffizienten x1,..., x, festgelegt. Eine
andere Sichtweise auf x ist es, x als Funktion x : {1,...,n} — R aufzufassen,
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die der Zahl i gerade den Wert des Koeffizienten x; zuweist: x(i) = x;. Das
Standardskalarprodukt zweier Vektoren x, y € R" ist dann

(xly) =Y x(@)y(@),
i=1

die Summe iiber das Produkt der Funktionswerte von x und y, ausgewertet an
allen Elementen von {1, ..., n}. Betrachten wir nun anstelle der endlichen Menge
{1,...,n}das Intervall[a, b] und die Funktionen darauf, so entspricht der endlichen

Summe ) _"_, wegen der Uberabzihlbarkeit von [a, b] das Integral | ab. Auf diese
Weise fiihrt uns das Standardskalarprodukt auf (4.12). O

4.4 Normen, Winkel und Orthogonalit:it

Normen verallgemeinern den elementargeometrischen Lingenbegriff:

Definition 4.30 Es sei V' ein R-Vektorraum. Eine Funktion || - || : V' — R heif3t
Norm, wenn sie folgende Eigenschaften besitzt:

(1) ||x]|| > O fiir alle x € V\{0} und ||0]| = 0.
(i) ||A-x|| = |A] - ||x]| furallex € V und A € R.
(iii) || - || erfiillt die Dreiecksungleichung fiir alle x, y € V:

I+ yll < llxl + NIyl (4.13)

Die Dreiecksungleichung bedeutet, dass die Summe zweier Seitenlidngen eines
Dreiecks mindestens so grof} ist wie die Lange der ldngsten Seite des Dreiecks.

Xty

Die positive Definitheit eines Skalarprodukts erlaubt es, in Analogie zu (4.4) einen
Léngenbegriff fiir euklidische Vektorrdaume einzufiihren.

Theorem 4.31 Es sei (V, (-|-)) ein euklidischer Vektorraum. Dann ist durch
lxll = v/ {xlx) (4.14)

eine Norm auf V' definiert.
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PROOF: Die Eigenschaft (1) folgt aus der positiven Definitheit des Skalarprodukts.
Die Eigenschaft (ii) folgt aus der Bilinearitit:

1A x|l = VAx|Ax) = VAZ(x|x) = VAZ - /(x|x) = |A] - || x]|.

Fiir Eigenschaft (iii) verwenden wir die Cauchy-Schwarz-Ungleichung (4.16), die
im Anschluss bewiesen wird:

(x +ylx + y) = (x[x) + 2(x[y) + (y[y)
= {xlx) +2[x[ - Iy 4 (yly)
= (lx|l + llyID*.

Wurzelziehen erhilt <, und somit folgt die Dreiecksungleichung. &

Theorem 4.32 (Cauchy-Schwarz-Ungleichung) Essei (V, (:|-)) ein euklidischer
Vektorraum. Fiir alle x,y € V gilt:

(x[¥)? = (x|x) - (y]y). (4.15)

Gleichheit gilt genau dann, wenn x und y linear abhéingig sind.

PROOF: Falls x = 0 oder y = 0 ist nichts zu zeigen. Also nehmen wir x # 0
und y # 0 an. Es gilt

<< X Yy |x_ Y >_(XIX) (yly) 1y (x]y) 949 {(x]y)

R R N R N e R P Il - 1yl
SN—— S
(%)
Daraus folgt
{(x]y)
Fo—— =1 bzw.  F(x|y) < [lx[ -yl
lx (- Il

Quadrieren ergibt (4.15).
Sind x, y linear abhingig, so gilt y = Ax fiir ein A € R. Dann ist

(x]y)? = A*(x|x)* = A% {x[x)(x|x) = (x|x) - (Ax|Ax) = (x|x) - (y]y).

Umgekehrt nehmen wir nun an, es gelte Gleichheit in (4.15), also auch (x|y) =
|x]| - [|v||. Einsetzen in (x) ergibt

X y | X Y >
< < . S g S )
el Al [yl
Aus der positiven Definitheit folgt 0 = m — Ili i bzw. x = ”;” y. &

Die Cauchy-Schwarz-Ungleichung wird auch in der folgenden Form angegeben:

(xly) < llxll - Iy ll- (4.16)
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Remark 4.33 Es gibt Normen, die nicht von der Form (4.14) sind, also nicht zu
einem Skalarprodukt gehoren. Ein Beispiel hierfiir ist die Maximumsnorm auf
dem R, gegeben durch

[|X ||max = max{xy,...,x, | x; Koeffizienten von x}.

Es lésst sich zeigen, dass eine Norm || - || genau dann zu einem Skalarprodukt
gehort, wenn alle x, y € V die Parallelogrammgleichung erfiillen:

Ix + yII* + llx = ylI* = 2[lx[I* + 2]y |1*.

Siehe dazu Werner [13], Satz V.1.7. In diesem Fall lisst sich das Skalarprodukt
durch die Norm ausdriicken. Dies nennen wir Polarisierung:

1
(xly) = 5(|IX+y||2— 1[I = 1y 11%). (4.17)

Exercise 4.34 Es sei S € R™” eine symmetrische positiv definite Matrix mit
Eintrdgen s;;. Dann gilt:

(a) Esists? < s;sex fiiri # k.

(b) Es existiert ein k mit max; ; |s;;| = skx (d.h. der betragsgrofite Matrixein-
trag liegt auf der Diagonalen).

Ko6nnen wir Lingen bestimmen, so konnen wir auch Absténde bestimmen. Dazu
definieren wir den Abstand zweier Vektoren x, y als die Linge des Verbindungsvek-
tors von x zu y.

Definition 4.35 Es sei (V, (-|-)) ein euklidischer Vektorraum, M eine Teilmenge
von V und x, y € V. Der Abstand d(x, y) von x zu y ist

d(x,y) = |y — x| (4.18)
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und der Abstand d(x, M) von x zu M ist

d(x,M) =1inf{d(x,y) |y e M}. (4.19)

P M
\
X

Exercise 4.36 Es sei V = R” und (:|-) das Standardskalarprodukt. Ist M C R”
abgeschlossen, so ist das Infimum in (4.19) ein Minimum. Insbesondere gilt dies,
wenn M ein Untervektorraum von V ist.

Exercise 4.37 Es seien x, y,z € V. Aus den Eigenschaften der Norm schlie3t
man fiir den Abstand:

(i) d(x,y) > Ofalls x # yundd(x,y) = 0falls x = y.
(i) d(x,y) = d(y,x).
(i) d(x,z) <d(x,y)+d(y,z2).

Example 4.38 In einem euklidischen Vektorraum (V, (-|-}) nennen wir die Menge
aller Vektoren mit Abstand r von einem Punkt xo, € V die Sphéare vom Radius r
mit Mittelpunkt x,, geschrieben

Si(xo) ={x eV |d(x,x9) =r}. (4.20)

Die Sphire S (0) heif3t Einheitssphére und ihre Elemente Einheitsvektoren (oder
normierte Vektoren). Im Fall V' = R” mit Standardskalarprodukt (-|-) nennen
wir S, (0) die n — 1-Sphiire” vom Radius r, geschrieben

"t ={xeR"||x|| =r}. 4.21)

Fiir die Einheitssphire im R” schreiben wir §"~! = S§771.

9Dass man hier n — 1 statt n wihlt liegt daran, dass die Punkte auf S;’_l bereits durch n — 1

Polarkoordinaten eindeutig festgelegt sind. In diesem Sinne ist S”~! ein “n — 1-dimensionales”
Gebilde.
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€2A o) 2 cos(a)
S! TN \x2)  \sin(e)

€l

Ein Skalarprodukt auf V' ermdoglicht es nicht nur, Langen in V' zu definieren, son-
dern auch Winkel. In diesem Sinne enthilt ein Skalarprodukt mehr Information
als eine Norm.

Betrachten wir zuniichst wieder die vertraute Situation im R?. Gegeben sei ein
Dreieck mit Seitenlingen A, B, C und entsprechenden Innenwinkeln «, 3, y.

Mit Hilfe des elementargeometrischen Cosinussatzes
A% 4+ B* —2A4Bcos(y) = C>. (4.22)
konnen wir den Winkel y in Abhédngigkeit von den Seitenldngen angeben:
A? + B*> - C?
2AB ’

Wir konnen also Winkel allein durch Léngen ausdriicken. Die Lingen wiederum
konnen wir durch die Norm || - || des Standardskalarprodukts des IR? ausdriicken.
Dazu nehmen wir an, der Eckpunkt des Dreiecks beim Winkel y sei der Ursprung,
und wir wihlen Vektoren a,b € R? und ¢ = b — a wie im folgenden Bild:

cos(y) = (4.23)
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B
a c=b-a
0 Y =
b
Insbesondere gilt dann ||a|| = A, ||b|| = B, ||c|| = C, und y ist der von den

Vektoren a, b eingeschlossene Winkel < (a, b). Setzen wir dies in (4.23) ein, so
ergibt sich wegen (c|c) = (b —al|b —a) = (b|b) — 2(a|b) + (ala):

(ala) + (b|b) — (b —alb—a) _ (alb)
2fjall - 151 lall - 1511

cos(y) = (4.24)

Da wir in jedem abstrakten euklidischen Vektorraum tiber die Norm einen Lingen-
begriff haben, konnen wir (4.24) als definierende Gleichung fiir den Cosinus des
Winkels nehmen (die Cauchy-Schwarz-Ungleichung (4.16) gewihrleistet dabei,
dass | cos(y)| <1 gilt):

Definition 4.39 Es sei (V, (:|-)) ein euklidischer Vektorraum und x,y € V, x #
0, y # 0. Der von x und y eingeschlossene Winkel ist die eindeutig bestimmte
Zahl < (x, y) € [0, ] mit

(x]y)

_ 4.25
=l- Il (+:29)

cos(X(x, y)) =
Exercise 4.40 Fiir alle x,y € V\{0} und A, u € R* gilt:

(@ I(x,y) = %(y,x).

I(x,y), A >0

(b) s(Ax,puy) =y -~ I(x.y), Aw<0"

(¢) <(x,y) = 0 genau dann, wenn y = «x fiir ein o > 0.

(d) <(x,y) = m genau dann, wenn y = ax fiir ein o < 0.
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T = <I(x, .1/) <):(x’ .’/)

. -

Wie in Abschnitt 4.1 erldutert, ldsst sich das Skalarprodukt (x|y) (und somit der
Winkel) als Mall der Komponente in x-Richtung von y auffassen.

Definition 4.41 Essei (V, (:|)) ein euklidischer Vektorraum. Zwei Vektoren x, y €
V heiBlen orthogonal (oder senkrecht), falls (x|y) = 0 gilt, geschrieben x L y.
Zwei Teilmengen M, M, C V heillen orthogonal, M; 1 M,, falls x; L x, gilt
fiir alle x; € My, x, € M,.

Y A

T
1<(x’ !/) = 5

> x

x L y bedeutet zugleich cos(<(x, y)) = 0, was wiederum <(x,y) = 7 be-
deutet. Dies deckt sich mit unserer Anschauung, dass zwei Vektoren senkrecht
aufeinander stehen, wenn sie den Winkel % (= 90°) einschliefen.

Example 4.42 (Orthogonale Vektoren)

(a) In jedem euklidischen Vektorraum gilt 0 L x fiir alle x.
(b) Im R? mit Standardskalarprodukt sind die beiden Vektoren

1 -2
x=\2],y=11
3
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orthogonal. Es gilt nimlich

(x[y)=xT-y=1-(=2)+2-14+3-0=-2+2=0.

(c) Im R" mit Standardskalarprodukt sind je zwei verschiedene Elemente ¢;, ¢;
der Standardbasis orthogonal.

(d) Im Vektorraum C([0, 277]) mit Skalarprodukt (4.12) sind fiir m,n € N die
Funktionen cos(mt) und sin(nt) orthogonal, d.h. es gilt

(cos(m-)|sin(n-)) = /0277 cos(mt) sin(nt)dt = 0.

In Kapitel ?? werden wir Systeme von orthogonalen Vektoren untersuchen.

Theorem 4.43 (Pythagoras) Fiir Elemente x, y eines euklidischen Vektorraumes
gilt x 1 y genau dann, wenn

Il + 1y > = llx + »]1%. (4.26)

PROOF: Es ist

lx + yI* = (x + ylx + »)
= (x|x) + {x]y) + (y[x) + (¥]y)
= |lx[I> + 2(x|y) + Iy ]I>.

Also gilt (4.26) genau dann, wenn (x|y) = 0,d.h. x L y. &

Aus der Motivation fiir die Definition des Winkels ergibt sich direkt, dass auch
der folgende Satz gilt:

Theorem 4.44 (Cosinussatz) Fiir Elemente x, y eines euklidischen Vektorraumes
gilt
lx =y 12 = [lxI> 4+ Iy 11> = 2llx] - [}y | cos(5:(x. ¥)). (4.27)

4.5 Unitire Vektorraume

Wir wollen nun den Ansatz, einen Vektorraum V' vermoge eines Skalarprodukts
mit einer geometrischen Struktur auszustatten, auch auf C-Vektorrdume iiber-
tragen. Dafiir konnen wir jedoch nicht die Definition des Skalarprodukts unveréin-
dert iibernehmen: Ist etwa V' = C? und betrachten wir das “Standardskalar-
produkt”

xToy =x1y1+ X202
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fiir x, y € C2, so ist dies zwar symmetrisch und bilinear, aber aufgrund moglicher
imaginirer Eintrdge kann die positive Definitheit verletzt werden. Fiir

x=(1)€@2
i
-

xx=xi+x;=1"+i*=0.

ist beispielsweise

Durch eine kleine Modifikation kann man aber positive Definitheit erreichen.
Dazu definiert man das Standardskalarprodukt auf C? durch

(x[y) =x" -7 = 17, + x27,.

Da ¢ = |¢|? € R fiir alle komplexen Zahlen ¢ € C, ist dies positiv definit:

T

(x|x) = xT % = ;X1 + 2% = [x1 > + [x2[* > 0

und “= 0” nur dann, wenn x = 0. Allerdings ist (-|-) nur noch im ersten Argument
linear, im zweiten Argument gilt

(xly +Az) = (x]y) + A(x|2).

Dies bezeichnen wir als sesquilinear (“I%fach linear”). Auch die Symmetrie ist
verlorengegangen. Es gilt stattdessen

(x]y) = X1V, + X2, = y1X1 + y2X2 = (y|x).

Definition 4.45 Es sei V' ein C-Vektorraum. Eine Abbildung s : V x V — C
heiBt sesquilinear'?, falls fiir alle x, y,z € V und A € C gilt:

s(x +y,z) =s(x,2) + s(y, 2),
s(Ax,y) = As(x,y),
s(x,y+z)=s(x,y)+s(x,z2),

s(x,Ay) = As(x, y).

Eine Sesquilinearform s heif3t hermitesch, falls fiir alle x, y € V' gilt:

s(x,y) = s(y,x).

10Sesquilinearformen spielen in der theoretischen Physik eine groBe Rolle. Dort wird Sesqui-
linearitét tiberlicherweise jedoch so definiert, dass s im zweiten Argument linear ist und im ersten
Argument s(Ax, y) = As(x, y) gilt.
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Definition 4.46 Es sei V' ein C-Vektorraum. Eine hermitesche Sesquilinearform
s 1V x V — C heilit positiv definit, falls fiir alle x € V', x # 0, gilt

s(x,x) > 0.

Ein unitires Skalarprodukt (-|-) ist eine positiv definite hermitesche Sesqui-
linearform.

Definition 4.47 Ein unitiirer Vektorraum (V, (-|-)) ist ein C-Vektorraum V' zusam-
men mit einem unitdren Skalarprodukt (|-).

Example 4.48 (Unitire Vektorriaume) Die Beispiele konnen als “Komplexifizierung”
der enstprechenden euklidischen Beispiele aufgefasst werden:

(a) C" ist ein unitdrer Vektorraum mit dem (unitéren) Standardskalarprodukt
(xly) =xT- T =27+ .+ X, (4.28)

(b) Der Vektorraum C([a, b], C) der stetigen C-wertigen Funktionen auf dem
Intervall [a, b] ist unitdr mit dem Skalarprodukt

b
(flg) = f F(gd. (4.29)

Die Resultate iiber euklidische Vektorrdumen lassen sich auf unitire Vektorriume
ibertragen, wenn man ihre Beweise so anpasst, dass sie die Sesquilinearitit beriick
sichtigen, und gelegentlich einen Ausdruck z?2 durch |z|? ersetzt. Wir fiihren sie
daher ohne ausfiihrliche Begriindungen auf.

Theorem 4.49 Es sei (V, (-|-)) ein unitirer Vektorraum der Dimension n. Weiter
sei B =1{by,...,b,} eine Basis von V und S € C™" die Matrix mit Eintrdgen

sij = (bilbj).
Dann gilt fiir alle x, y € V:
(x|y) = Op(x)" - S - Op(y). (4.30)
Desweiteren gilt S € GL,(C) und

S =8 (4.31)

Matrizen mit der Eigenschaft (4.31) heilen hermitesch.



4.5 Unitire Vektorraume 107

Remark 4.50 Jede hermitesche Matrix S € GL, (C) definiert ein unitéres Skalarpro-
dukt auf C" durch
(xly)=xT-S-7.

Remark 4.51 Eine reelle symmetrische Matrix S € GL,(R) ist insbesondere
hermitesch,da S = ST = S’ gilt.

Theorem 4.52 Es sei (V, (:|-)) ein unitirer Vektorraum. Dann ist durch
lxll = v {x]|x) (4.32)
eine Norm auf V' definiert.
Durch die Norm konnen wir Abstidnde in V' wie in Definition 4.35 definieren.
2

Die Cauchy-Schwarz-Ungleichung gilt, wenn (x|y)? durch |(x]|y)|? ersetzt wird:

Theorem 4.53 (Cauchy-Schwarz-Ungleichung) Es sei (V, (-|-)) ein unitérer Vektor-
raum. Fiir alle x, y € V gilt:

[{(xI9)? < (xlx) - (v ]p). (4.33)
Gleichheit gilt genau dann, wenn x und y linear abhingig sind.
Orthogonalitit x 1 y wird wieder durch (x|y) = 0 definiert.

Theorem 4.54 (Pythagoras) Es seien x, y Elemente eines unitidren Vektorraumes.
Giltx L y, so folgt
11 + 1y l1* = llx + 1> (4.34)

Im Folgenden sprechen wir von einem Vektorraum mit Skalarprodukt, wenn
V entweder ein euklidischer oder unitirer Vektorraum ist.
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Part IV
Appendix

A The Geometry of Complex Numbers

The field C of complex numbers consists of the numbers
z=Xx+41y
where x,y € Randi = +/—1.

Exercise A.1 Restricting the multiplication in C to the real numbers R C C
makes C into an R-vector space of dimension 2.

A.1 The Complex Plane

x+iy|—>(x)
y

C is identified with the plane R?, which is called the complex plane in this con-
text.

Via the map

Im

~
I
=

—~
N

~

The x-axis represents the real numbers, the y-axis the purely imaginary numbers.
The number 1 corresponds to the first unit vector ((1)), the number i corresponds
to the second unit vector ().
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In this representation, the absolute value (or modulus) of a complex number

|z] = vRe(2)? + Im(z2)>

corresponds to the Euclidean length /x2 + y? of the vector (3 ).

A.2 Complex Addition

The addition of two complex numbers z; = x; 41y, zo = X + 1y, corresponds
to the addition of the associated vectors in the plane,

Z1+ 2z =x1 +iy1 + x2 +iy2 = (x1 + x2) +1(y1 + »2).

A.3 Complex Multiplication

Let u € C be a complex number with absolute value |u| = 1. Then u lies on the
unit circle of the complex plane. The polar angle (or argument) « of u is the
angle enclosed by the real axis and the line segment connecting u to 0.

sin(c

As indicated in the figure above, u has real and imaginary part
Re(u) = cos(e), Im(u) = sin(«).

This means
u = cos(a) + isin(x). (A.1)
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If we substitute the respective power series for cosine and sine, we obtain the
formal equation
u=e“. (A.2)

Indeed, the same rules as for the real exponential function apply:
el — 1 eiaeiﬂ — ei(oz+/3)_
We now wish to interprete the multiplication by u = €'* geometrically in R?: For
any z = x + iy € € we have
e .z = (cos(a) +isin(@)) - (x +iy)
= (cos(a)x + isin(a)x + icos(o)y — sin(w)y)
= (cos(a)x — sin(@)y) + i(sin(a)x + cos(®)y).

In coordinates of IR?, this corresponds to the map

cos()x —sin(a)y | _ fcos(a) —sin(e) [x

sin(a)x + cos(a)y ] = \'sin(a) cos(a) y
So the multiplication by e'* corresponds to a counterclockwise rotation by the
angle o, given by the rotation matrix

cos() —sin()
sin() cos(a) /°
Exercise A.2 The set
S'={ueC|lu=1}
with the complex multiplication is a group isomorphic to the special orthogonal

group SO,.

Now let w € C arbitrary. As w = |w] - Iﬁ_l’ we can write w as the product of a
w

real number r = |w| and a complex number ¥ = = on the unit circle. By (A.2),

. [wl
we can write w as
w=r-e“. (A.3)

This is the representation of w in polar coordinates (7, «). Multiplication of
z=x+iyeCbyr e R,r > 0, yields

r-z=rx41iry,

so |r - z| = r - |z]|. This corresponds to a dilation of (3 ) by the factor r,

(7)()=(3)
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So multiplication by an arbitrary number w = r - € € C is the combination of a
rotation by the angle o and a dilation by the factor r = |w]:

reos(a)x —rsin(e)y\ _ (r O cos(ow) —sin(w) X
(r sin()x 4+ r cos(a)y) - (0 r) ' (sin(a) cos(w) ) (y)
——

dilation rotation

A.4 Complex Conjugation

Complex conjugation is the map
C—-C, z=x+iy—>zZ=x-—1y.

In the complex plane, this corresponds to a reflection on the real axis:
1 0 (x)\_(«x
0 -1 y]  \—y)’

Im

As the figure indicates, z +Z € R and %(z + Z) = Re(z) is the projection of z
onto the real axis. Similarly one sees that %(z —Z) = i-Im(z) is the projection of
z onto the imaginary axis.

The absolute value |z| can be expressed by means the complex conjugation:
z:Z=(x+iy)- (x—iy) =x*+ > = |z|*.

This provides us with an elegant expression for the inverse of z:

z

Cz

-1
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A.5 Roots of Unity

Letn € N and

Q,={weC|o" =1} (A.4)
The elements of §2,, are called the nth roots of unity. They are the zeros of the
polynomial X" — 1.

Theorem A.3 2, is a finite subgroup of S of order |R,| = n. In particular,
|w| =1 forall w € R,. Moreover, ,, is cyclic.

PROOF: As 1 = |0"| = |o|" and |w| is a positive real number, it follows that
lw| = 1. So 2, C S™.
Clearly, 1 € ,,, and for w, ®,, w, € R,,:
(@) :J:T:L (0102)" = wjwy; =1-1=1,
so ,, is a subgroup of S'.
Now let .
Wy = 671.

Using (A.1) one checks that forall 1 < k < n:

a)g = eZn’i% ;é 1 (*)
and

(@g)" = (@)* =1,

SO a)é‘ € R,. The n elements

2 n—1
I, wo, 5, ..., w,

are all distinct, for if o) = w{ forsome 0 < p < q <n,then1 <g—p <n and
1 =ol(w)™ =l (@)™ =i,

which contradicts (x). So £, contains at least n elements, but as the w € ,, are
the roots of the polynomial X” — 1, there are at most n elements in 2. It follows
that |2, | = n and R,, is cyclic with generator wy. &

A generator of 2, is called a primitive nth root of unity.

The proof of Theorem A.3 shows that for a given n,

2mi

wyg =¢€n
is a primitive nth root of unity and

. . . (n—1)
Q, = (wy) = {l,ez’”%,ez’”%, ..., e o }.
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Example A.4 (Roots of unity)
(a) 2, = {1,—1}. A primitive root of unity is —1.
(b) 4 = {1,i,—1, —i}. The primitive roots of unity are i and —i.

(c) The following figure shows 2.

2 i e

Wy Wy =¢€°

< >
’%
wy = 1 wg = 1

4 5

Wy I W

One can also see the group 3 C 2, generated by w3. V)

Exercise A.5 If wy is a primitive 2mth root of unity, then w? is a primitive mth
root of unity.

Exercise A.6 ¢2™ii € Q » 18 a primitive root of unity if and only if ged(k,n) = 1.
As a consequence, there exist precisely ¢(n) primitive roots of unity in 2,,.

Exercise A.7 With the formula for the finite geometric series one shows
0=1+wf+0d+.. .+

for a primitive nth root of unity wy and 0 < k < n.
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B Trigonometric Functions

B.1 Graphs

The graphs of the sine and cosine functions on the interval [0, 277]:

sine

cosine

\ \ 1 i
A !
1 co}tangent +
B.2 Table

o o] E |5 |5 |5|=[F]|2n
sin(a) YIS 2 o |-1]o0
cos(a) || 1 ¢T§ % S lol=1101|1
tan(e@) |02 | 1 | V3 0 0
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B.3 Trigonometric Identities
Pythagoras’ Theorem:

sin(x)? + cos(x)? =1
Tangent and cotangent:

sin(x) t(x) = cos(x)
cos(x)’ cot(x) = sin(x)

tan(x) =

Angle sums:

sin(x & y) = sin(x) cos(y) % cos(x) sin(y)
cos(x £ y) = cos(x) cos(y) F sin(x) sin(y)
tan(x) =+ tan(y)

1 F tan(x) tan(y)
—1 % cot(x) cot(y)

cot(x) % cot(y)
sin(2x) = 2sin(x) cos(x)

tan(x + y) =

cot(x + y) =

cos(2x) = cos(x)? — sin(x)?

= 2cos(x)? —1
= 1 — 2sin(x)?
_ 2 tan(x)
tan(2x) = m
_cot(x)® —1
cot(2x) = T‘[(x)
sin(x) + sin(y) = 2Sin(x —; J’) cos(x ; y)
sin(x) — sin(y) = 2cos(x ; y) sin(x ; y)
cos(x) + cos(y) = 2COS(X - cos(x ; y)

cos(x) —cos(y) = =2 sin(x —; y) sin(x - y>

2
sin(x) sin(y) = sin(x + y) ; cos(x — y)
sin(x) cos(y) = sin(x + y) —2|— sin(x — y)

cos(x + y) + cos(x — y)
2

cos(x)cos(y) =
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Periodicity:
sin(—x) = —sin(x)
sin(x + %) = % cos(x)
sin(x £ ) = —sin(x)
cos(—x) = cos(x)
cos(x + %) = F sin(x)
cos(x £ ) = —cos(x)
Complex:

e = cos(x) + isin(x)
eix _ e—ix
2i
eix + e—ix
2

sin(x) =

cos(x) =
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a = b (integer division), 21
A @ B (direct sum of matrices), 47

Newton Interpolation, 38
RSA, 84

Aut(V'), GL(V) (automorphism group of V'), 4  Alice, 79

Bil(V) (Bilinearformen), 90

C(M) (auf M stetige Funktionen), 91
d(x,y) (Abstand), 99

d;j (Kronecker symbol), 7

dim V (dimension of V'), 2

End(V') (endomorphisms of V'), 4

IF p» (finite field), 35

ged(x, y) (greatest common divisor), 16
Homg (V, W) (space of linear maps), 4
I, (n x n-identity matrix), 5

im @ (image of @), 4

Jn (1) (Jordan box), 52

f(nl ,,,,, ) (A) (Jordan block), 53

ker @ (kernel of @), 4

Mg (change of basis), 3

2,, (nth roots of unity), 113

ord(G) (order of G), 80

D @ V¥ (direct sum), 47

@* (dual map), 8

R* (group of units), 14

Rad s (Radikal eine Bilinearform), 94
08 (@) (matrix representation of @), 5
rk @ (rank of a linear map), 4

Sp(s) (Matrix einer Bilinearform s), 91
Spec @ (spectrum of @), 10

Sym(V') (symmetrische Bilinearformen), 90
V* (dual vector space), 7

x L y (orthogonal), 103

(x|y) (Skalarprodukt), 94

< (x, y) (Winkel), 102

(x) (ideal generated by x), 17

x | ¥ (x divides y), 16

absolute value, 110
Abstand, 99
algebraic multiplicity, 57
algorithm
Diffie-Hellman protocol, 83
ElGamal, 84
Euclidean, 23
extended Euclidean, 23
Jordan basis, 66
Lagrange Interpolation, 39

alternating, 8
alternierende Bilinearform, 90
argument

see polar angle, 110
ausgeartete Bilinearform, 93
automorphism

vector space, 4

basis, 2
dual, 7

bi-dual space, 8

bilinear, 88, 90

Bilinearform, 90
alternierend, 90
ausgeartet, 93
Kern, 94
Radikal, 94
schiefsymmetrisch, 90
symmetrisch, 90

Bob, 79

Bra-Ket-Notation, 95

cancellation law, 16, 17
canonical basis, 2
canonical form, 52

Jordan, 13
canonical inner product, 87
Carmichael number, 82
Cauchy-Schwarz-Ungleichung, 98, 107
Cayley-Hamilton Theorem, 11
change of basis, 3
characteristic polynomial, 11
Chinese Remainder Theorem, 38
ciphertext, 79
complement

invariant, 45

vector space, 45
complex conjugation, 112
complex number, 109
complex plane, 109
congruence, 37
conjugation, 112
coordinate representation, 3
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coprime, 16
Cosinussatz, 101, 104
Cramer’s rule, 9
cryptography, 79

decomposition
Jordan, 73, 75
Jordan, multiplicative, 76, 77
degree of nilpotency, 49
determinant, 8
diagonal matrix, 11
diagonalisable, 11
Diffie-Hellman protocol, 83
dimension, 2
dimension formula
linear maps, 4
subspaces, 2
direct sum, 2
endomorphisms, 47
distributivity, 1
divisor, 16
greatest common, 16
domain
integral, 16
Dreiecksungleichung, 97
dual basis, 7
dual map, 8
dual vector space, 7

eigenspace, 10

generalised, 57
eigenvalue, 10
eigenvector, 10
Einheitssphire, 100
Einheitsvektor, 100
ElGamal encryption, 84
encryption

ElGamal, 84

RSA, 84
endomorphism

diagonalisable, 11

nilpotent, 49

unipotent, 76

vector space, 4
Euclid, Prime Number Theorem, 28
Euclidean Algorithm, 23

extended, 23
Euclidean ring, 21
euklidischer Vektorraum, 94

Euler’s ¢ function (see totient function), 82

Euler’s Theorem, 82
Euler’s totient function, 82
Extended Euclidean Algorithm, 23

Fermat’s Theorem, 82
Fibonacci number, 25
finite field, 35
form

linear, 7
functional, 7

Fundamental Theorem of Algebra, 30

generalised eigenspace, 57
generator

of an invariant subspace, 60
greatest common divisor, 16

group
units, 14

hermitesche Form, 105
hermitesche Matrix, 106
homogeneous system, 6
homomorphism

vector spaces, 4

ideal, 17

prime, 21

principle, 17
image, 4

matrix, 6
inhomogeneous system, 6
inner product, 87

canonical, 87
integral domain, 16

integral ring (see integral domain), 16

interpolation

Lagrange, 39

Newton, 38
invariant complement, 45
invariant subspace, 45
irreducible, 20
isomorphism

vector spaces, 4

Jordan basis, 53, 63, 65
algorithm, 66

Jordan block, 53

Jordan box, 52

Jordan canonical form, 13, 52, 54
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Index

Jordan decomposition, 73, 75
multiplicative, 76, 77

kernel, 4

matrix, 6
key, 79

public, 79

secret, 79
key exchange, 83

Lagrange Interpolation, 39
Lagrange’s Theorem, 80
Laplace expansion, 9
Leibnix formula, 9
linear combination, 2
linear equation, 6

system, 6
linear form, 7
linear functional, 7
linear hull (see span), 2
linear map, 4

image, 4

kernel, 4

rank, 4
linearly independent, 2

matrix

diagonal, 11

diagonalisable, 11
matrix representation, 5
Maximumsnorm, 99
minimal polynomial, 18, 51
modulus

see absolute value, 110
multilinear, 8

multiplicative Jordan decomposition, 76, 77

multiplicity
algebraic, 57

Newton Interpolation, 38
nilpotency
degree of, 49
nilpotent
endomorphism, 49
Matrix, 49
Norm, 97
Maximums-, 99
normal form
see canonical form, 52
normal form (see canonical form), 13

normierter Vektor, 100

order, 80
orthogonal, 103

parallelisation, 35
Parallelogrammgleichung, 99
plaintext, 79
polar angle, 110
polar coordinates, 111
Polarisierung, 99
polynomial division, 22
positiv definit
Bilinearform, 94
Matrix, 95
Sesquilinearform, 106
positiv definite, 89
primary decomposition, 56
prime, 20
prime factorisation, 27
prime ideal, 21
Prime Number Theorem, 28
primitive root of unity, 113
principle ideal, 17
public key, 79
Pythagoras’ Theorem, 88
Pythagoras, Satz von, 104, 107

quasiorder, 17
quotient ring, 32

Radikal, 94
rank
linear map, 4
matrix, 6
relations, 31
representation
coordinate, 3
linear map, 5
ring
Euclidean, 21
integral, 16
quotient, 32
root of unity, 113
primitive, 113
RSA encryption, 84

Satz von Pythagoras, 104, 107
scalar product (see inner product), 87
schiefsymmetrische Bilinearform, 90
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schiefsymmetrische Matrix, 92
Schur’s Lemma, 48
secret key, 79
senkrecht (siehe orthogonal), 103
Sesquilinearform, 105
simultaneous congruences, 37
Skalarprodukt, 94
unitir, 106
span, 2
spectrum, 10
Sphire, 100
Standardskalarprodukt
unitir, 106
subspace, 2
symmetrische Bilinearform, 90
symmetrische Matrix, 92
system of linear equations, 6
homogenoeus, 6
inhomogeneous, 6

totient function, 82

unipotent
endomorphism, 76
matrix, 76
unique prime factorisation, 27
unit, 14
unitdrer Vektorraum, 106
units
group of, 14

vector space
homomorphism, 4
vector subspace, 2
Vektorraum mit Skalarprodukt, 107

Winkel, 102
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