
On closed orbits of
reductive algebraic groups

By DOMINGO LUNA

The base field K is algebraically closed and of characteristic zero. We follow the
notation of [1].

Our goal is to prove the following theorem:

Theorem Let G be a reductive algebraic group that operates morphically on a
smooth affine algebraic variety X . Assume that at every point of X the tangent
space admits a non-degenerate symmetric bilinear form that is invariant under the
isotropy subgroup. Then there exists a dense open subset ofX consisting of closed
orbits of X .

The assumption of the theorem are necessary, for example:

For the adjoint action of a reductive group (in this case, the conclusion is well-
known, see [2]).

ForG D H2 andX D H=H1, whereH1;H2 � H are reductive groups (for more
details, see the end of paragraph 3).

Corollary 1 Under the hypotheses of the Theorem, there exists a dense open sub-
set of X on which the isotropy subgroup of G is reductive.

In fact, every closed orbit in X is affine, and by a result of Matsushima [3], its
isotropy subgroup then is reductive.

Corollary 2 Under the hypotheses of the Theorem, every open orbit is closed.

1 Étale slices

Let G be a reductive group that operates on an affine variety X . Let x 2 X .
Let Gx denote the isotropy subgroup in G at x and G.x/ the orbit of G passing
through x. We assume that Gx is reductive (if G is reductive, this amounts to the
assumption that G.x/ is affine [3]). We denote by KŒX� the algebra of regular
functions on X .
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Lemma 1 If X is smooth at x, then there exists a morphism ' W X ! TxX of
varieties with the following properties:

(1) ' commutes with the action of Gx,

(2) ' is étale at x,

(3) '.x/ D 0.

PROOF: Let m denote the maximal ideal of KŒX� that corresponds to the point
x. The canonical map d W m ! m=m2 D .TxX/

� commutes with the action of
Gx. As Gx operates completely reducibly on KŒX� ([5, Chapter 1, §1]), we can
find a Gx-submodule W of m such that d W W ! .TxX/

� is an isomorphism.
Prolong .d jW /�1 in a canonical way to a homomorphism from the symmetric
algebra of .TxX/

� to KŒX�. One easily verifies that the corresponding morphism
' W X ! TxX satisfies the requirements of the lemma. }

Set Y D '�1.N /. This is a closed subvariety of X containing x, smooth at x,
invariant by Gx and such that TxY D N . The group Gx acts on G � Y by
s.t; y/ D .ts�1; sy/, and hence also on KŒG � Y �. As Gx is reductive, it acts
completely reducibly on KŒG � Y �, from which we deduce that the algebra of
invariants KŒG � Y �Gx is of finite type over K, see [5]. Let G �Gx

Y be the
affine variety defined by KŒG �Gx

Y � D KŒG � Y �Gx . We verfiy that G �Gx
Y

is the fibration associated with the Gx-principal fibration G=Gx and fiber of type
Y . Denote by e the identity element of G and by .e; x/ the image of the point
.e; x/ 2 G � Y in G �Gx

Y . Since X is smooth at x, G �Gx
Y is smooth at

.e; x/. The action of G on G �Y given by s.t; y/ D .st; y/ descends to an action
of G on G �Gx

Y . The morphism G � X ! X that defines the G-action on X ,
induces a morphism G �Gx

Y ! X which commutes with the G-action. Since
TxG.x/ C TxY D TxX and since G �Gx

Y and X have the same dimension,
G �Gx

Y ! X is étale at the point .e; x/. Let V D V.';N / denote the largest
open subset of Y such that ' W V ! N and G �Gx

V ! X are étale. Let
U D U.';N / denote the image of G �Gx

V in X ; this is an open subset that is
stable by G and contains x.

2 Closed orbits

Let G be an algebraic group which acts on an algebraic variety X . We say that
almost all orbits of G in X are closed if there exists on open dense subset of X
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consisting of closed orbits (in X ). This notion has already been studied in several
ways (see [8]).

The function which associates to a point x 2 X the dimension of the orbit passing
through x is lower-semicontinuous (see [5, p. 7]). We denote by A D A.X/

the set of points in X where it is not locally constant. We further denote by
B D B.X/ the set of points in X through which passes an orbit whose closure
intersects A. If G is reductive and X affine, then B is closed (we can the easily
see that B is the common zero set of the invariants inKŒX� that are zero on A). In
general, this is not true. For example, if G D K� acts by

�
1 0
0 �

�
on K2nf0g, then

B D K2n.f0g �K/.

Lemma 2 For almost every orbit of G on X to be closed, it is necessary and
sufficient that the closure of B has empty interior.

PROOF: Let T be an orbit in X . It is well-known that T nT consists of orbits
of dimension strictly less than that of T ([1, p. 98]). It follows that T nT �
A. From this it follows that the closed orbits in X complementary to A in X
are precisely the orbits complementary to B in X . Hence the condition of the
lemma is sufficient. As the closed set A has empty interior, we find that it is also
necessary. }

Lemma 3 Let G be an algebraic group that acts on two varieties X and Y , and
let  W X ! Y be a G-equivariant étale morphism.

(1) If almost every orbit in Y is closed, then almost every orbit in X is closed
as well.

(2) If  is also surjective, the converse in (1) is true.

PROOF: As  is étale, the inverse image of every closed orbit in Y is a finite
union of closed orbits in X . From this, (1) follows immediately.

If  is also surjective, we show first that B.Y / �  .B.X//: Let Y be an orbit in
B.Y /. The closure of T then contains a point y 2 A.Y /. Let x 2  �1.y/. As
 is étale, we see that x 2 A.X/. Let T1; : : : ; Tn denote the different orbits in
 �1.T /. If there exists a neighborhood V of x that does not intersect any of the
Ti , the  .V / is a neighborhood of y that does not intersect T , but this is absurd.
Therefore, at least one of the Ti contains x in its closure, and thus is contained in
B.X/. It follows that T �  .B.X//.
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Assume now that almost every orbit in X is closed. The closure of B.X/ then
has empty interior (Lemma 2). It is the same for  .B.X// and  .B.X// (as  is
étale and  .B.X// is contructible, [6, p. 97]). Consequently, the closure of B.Y /,
which is contained in  .B.X//, also has empty interior. By virtue of Lemma 2
we conclude the second assertion of the lemma. }

Return to the notations and hypothese of the previous paragraph. Let .';N / be
an étale slice at x 2 X , and let V D V.';N / and U D U.';N / be the open sets
in Y D '�1.N / and X that were introduced there.

Lemma 4 If almost every orbit of Gx in N is closed, then almost every orbit of
G in U is also closed.

PROOF: The orbits of G in G �Gx
V are of the form G �Gx

T , where T is an
orbit of Gx in V ; and G �Gx

T is closed in G �Gx
V if and only if T is closed in

V . The lemma now follows immediately from Lemma 3. }

3 Orthogonalizable varieties

Let G be an algebraic group that acts on an algebraic variety X . We say that X
is (G-)orthogonalizable if at every point in X , the tangent space admits a non-
degenerate symmetric bilinear form that is invariant under the isotropy subgroup.
IfX is aG-module (that is, a vector space overK of finite dimension with a linear
G-action), it is orthogonalizable if and only if it has a G-invariant non-degenerate
symmetric bilinear form.

Lemma 5 SupposeG is reductive and letM be aG-module andN aG-submodule
of M . If M and N art orthogonalizable, then M=N is orthogonalizable as well.

PROOF: (following [7, p. 144]) Let L be a G-invariant complement of N in
M . We choose a G-invariant non-degenerate symmetric bilinear form .�; �/1 on
M , and one on N which we complete by 0 on L to a degenerate (unless L D 0)
G-invariant symmetric bilinear form .�; �/2 on M . On the “line” passing through
.�; �/1 and .�; �/2 we can find a form .�; �/ that is non-degenerate on M and on N .
The restriction of .�; �/ to the orthogonal space of N (with respect to .�; �/) is then
also non-degenerate, and this G-module is isomorphic to M=N . }

We now fill in the details for the example in the introduction. LetH be a reductive
group with Lie algebra h. The group H acts on h by the adjoint representation.
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It is well-nown that h is H -orthogonalizable. Let H1 be a reductive subgroup of
H with Lie algebra h1 � h. The homogeneous space H=H1 is an open affine
variety [3]. The isotropy group of H at the point eH1 is H1, the tangent space
at of H=H1 at the point eH1 can be identified with the H1-module h=h1. By
Lemma 5, h=h1 is H1-orthogonalizable. It then follows that H=H1 is H - and
hence H2-orthogonalizable for all subgroups H2 of H .

4 Proof of the theorem

The proof is by induction on dimX . If the dimension is 0, then there is nothing to
prove.

Suppose now that dimX > 0 and that the statement holds for all reductive groups
acting on an orthogonalizable open affine variety of dimension less than dimX .

Choose successively .i D 1; 2; : : :/ points xi 2 X whose isotropy subgroups are
reductive, and, at every point xi , an étale slice .'i ; Ni/, by the following proce-
dure: Given the points and their étale slices for i < j , take xj in the complement
of the union of the Ui D U.'i ; Ni/ in such a way that the orbit G.xj / is closed
(so that G.xj / is affine and hence Gxj

reductive [3]). As the topological space X
is Noetherian, this constructions stops after a finite number of steps, when the Ui

cover X .

By Lemma 5, the Ni are orthogonalizable, for Txi
X and Txi

G.xi/ Š g=gxi

are (we denote by g and gxi
the Lie algebras of G and Gxi

). Choose a Gxi
-

invariant non-degenerate symmetric bilinear form on Ni . The “spheres” of non-
null rays with origin in Ni are then Gxi

-invariant smooth affine varieties, Gxi
-

orthogonalizable and of dimension less than dimX . By the induction hypthesis,
almost all of their orbits are closed. It then follows immediately that almost all
orbits of Gxi

in Ni are closed. By Lemma 4, this is the same as almost all orbits
of G in Ui being closed.

Denote by U the disjoint union of the Ui . The inclusion of Ui in X defines a
surjective étale morphism U ! X that commutes with the G-action. It is clear
that almost all orbits in U are closed. By Lemma 3, this is the same as almost all
orbits in X being closed. }
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