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Abstract

This article studies the action of reductive algebraic groups on affine algebraic varieties,
where the base field is algebraically closed and of characteristic 0. We show the existence
of an “étale slice” at every point in a closed orbit. Then we draw some consequences.
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Introduction

Let G be a real compact Lie group that acts differentiably on a differentiable
manifold X . The way in which to analyze such an action locally is well-known:
equipX with aG-invariant Riemannian metric; for every point x 2 X , we cal then
find, by virtue of the exponential map, a neighborhood of the zero section of the
normal fibration of the orbit G.x/, and an isomorphism from this neighborhood
onto a neighborhood of G.x/ in X that commutes with the G-action. From this
we deduce the existence of a “slice” at the point x: this is a submanifold V of X ,
containing x, stable under the isotropy subgroup Gx, such that the action of G on
X induces an isomorphism ofG�Gx

V onto a neighborhood ofG.x/ inX , where
the isomorphism commutes with the G-action (for example, see [8]).

In this work we observe an analogy in between the preceding situation and the
action of a reductive algebraic group G on an affine algebraic variety X , where
the base field is algebraically closed and of characteristic 0. The “rigidity” of
such an action (which in the case described above depends on the compactness
of the group) then comes from the fact that G acts irreducibly on the algebra of
regular functions on X . Guided by this analogy, we pay particular attention to
the closed orbits of G in X , for several reasons: firstly, because their isotropy
subgroup is reductive, then, because the points in the “quotient” X�G (which
we naturally define as the variety associated to the regular G-invariant functions)
corresponds in bijective way to the closed orbits, and further, because we obtain
the existence of an “étale slice”1) at every point x whose orbit G.x/ is closed:
there is a subvariety V ofX with the following properties: it is affine and contains
x, the isotropy subgroup Gx preserves V , the action of G on X induces an étale
G-morphism  W G �Gx

V ! X , the image U of  is an open affine subset of
X , and finally, the essential property, the morphism

 �G W .G �Gx
V /�G Š V �Gx ! U�G

is étale, and the morphisms  and G �Gx
V ! .G �Gx

V /�G Š V �Gx induce
a G-isomorphism G �Gx

V Š U �U�G V �Gx.

1)This definition of “étale slice” is not the same as in [9].
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Part I

Preliminaries
We begin by introducing, in the first paragraph, some general facts which will be
used frequently in the following. Then, in the rest of the chapter, we recall and
adapt to our purposes the following items: Matsushima’s theorem, fibrations, and
Zariski’s main theorem.

The base field k is asummed algebraically closed and of characteristic 0.

1 Generalities

We introduce the notions and notations that we will use in the following (for de-
tails, see [2], [5], [11] and [15]).

Let X be an affine algebraic variety. Let kŒX� denote its affine algebra, which
is a finitely generated algebra over k, not necessarily integral, nor reduced. The
points of X correpsond either to the maximal ideals of kŒX�, or to the algebra
homomorphisms of kŒX� to k. The elements of kŒX� define the functions on X
with values in k.

Let G be a reductive group, that is, an affine algebraic group whose unipotent
radical is trivial. Suppose that G acts morphically on X . The group G then
also acts irreducibly on kŒX� by algebra automorphisms (in the sense that the G-
module kŒX� is the direct sum of its finite-dimensional G-submodules). We can
conclude (see [12, Chapitre 1, §2]):

(1) kŒX�G , the algebra of elements in kŒX� that are fixed by G, is finitely gen-
erated over k,

(2) for every ideal b of kŒX�G we have .kŒX�b/G D b,

(3) if a1 and a2 are two ideals in kŒX� that are invariant by G and such that
a1 C a2 D kŒX�, then aG1 C aG2 D kŒX�

G .

The first point allows us to define an affine variety X�G by kŒX�G� D kŒX�G .
The inclusion kŒX�G � kŒX� gives a morphism �X W X ! X�G. The sec-
ond point then means that �X is surjective. The third shows that “the invariants
separate the disjoint closed G-orbits”.
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Let � 2 X�G. Since the fiber ��1X .�/ is non-empty, closed andG-invariant, every
orbit of minimal dimension in ��1X .�/ is closed in X (see [2, p. 98]). Since the
invariants separate the closed disjoint G-orbits, ��1X .�/ cannot contain two closed
orbits. Thus, ��1X .�/ contains exactly one closed orbit, denoted by T .�/. In this
manner the points in the “quotient” X�G parameterize the closed orbits of G in
X . If G is connected, then since the invariants separate the closed G-invariant
subsets, the fibers of �X are connected. In general, the fiber ��1X .�/ has as many
connected components as T .�/.

Let Y be another affine variety on which G acts, and let ' W X ! Y be a mor-
phism that commutes with the G-action (for short, we say: a G-variety, a G-
morphism, etc.). Then ' induces a morphism '�G W X�G ! Y�G such that
�Y ı ' D .'�G/ ı �X .

We fix the following notation: if x 2 X , let G.x/ denote the orbit of G passing
through x, and let Gx denote the isotropy subgroup of G at x. If s 2 G and
f 2 kŒX�, let f S be the image of f under the automorphisms of kŒX� associated
with s. If f 2 kŒX�, letXf denote the subset of points inX on which the function
f is not zero. This is an open affine subset of X with affine algebra kŒX�f . If
f 2 kŒX�G , then Xf D ��1X ..X�G/f / is G-invariant. If kŒX� is integral, let
k.X/ denote its field of fractions.

2 Matsushima’s theorem

Let G be a reductive group that acts on an affine variety X . Let x 2 X .

Proposition (Matsushima [10]). If the orbit G.x/ is closed, then the isotropy
subgroup Gx is reductive.

We sketch two proofs of this proposition. The first one is inspired by the one in
[1]; the second one is due to J.L. Koszul. The two proofs rely on the following
lemma:

Lemma. Let G be a reductiv group and D an algebraic subgroup of G that is
isomorphic to the additive group of k. Then there exists an algebraic subgroup S
of G that is simple, three-dimensional and contains D.

This lemma is an easy consequence of the analogous result for Lie algebras (Jacobson-
Morozov, see [7]).
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First proof. It uses the existence and properties of quotients of algebraic groups
(see for example [5, exposé 7]). We will prove the following result:

.�/ Let G be a reductive group and H an algebraic subgroup of G. If G=H is
affine, then H is reductive.

Lemma. Let G be an affine reductive algebraic group and H1 � H2 two alge-
braic subgroups of G. If G=H1 and H1=H2 are affine, then G=H2 is also affine.

Proof. Since H1=H2 is affine, the canonical morphism G=H2 ! H=H1 is also
affine. In fact, after extension by a faithfully flat morphism G ! G=H1, it be-
comes isomorphic to the projection G � H1=H2 ! G. Since G=H1 is affine, it
follows that G=H2 is too.

Now we prove .�/ by contradiction. Suppose the unipotent radicalR ofH is non-
trivial. Then there exists a characteristic subgroupD inR that is isomorphic to the
additive group of k. Let S be a three-dimensional simple subgroup of G that con-
tains D. We knwo that S is either isomorphic to SL.2;k/ or to SL.2;k/=f˙1g.
Denote by ' W S 0 D SL.2;k/ ! S an isomorphism or a two-fold covering, and
by D0 the identity component of '�1.D/.

We know that the quoitent of an affine algebraic group by a characteristic subgroup
is again affine. Then, since G=H , H=R and R=D are affine, so is G=D. Hence
S=D is also affine, and it follows that S 0='�1.D/ Š S=D and '�1.D/=D0 are
affine. Then S 0=D0 Š k2nf0g is affine, which is absurd.

Second proof. If we identify X with a closed G-invariant subset of a vector space
of finite dimension over k on which G acts linearly, then it is enough to prove the
proposition for a linear representation G ! GL.M/.

We argue by contradiction. Suppose the unipotent radical Rx of Gx is non-
trivial. Then it contains a subgroup D that is isomorphic to the additive group
of k. Let S be a three-dimensional simple subgroup of G that contains D, and
let ' W SL.2;k/ ! S be an isomorphism or a two-fold covering such that
'.f
�
1 ˇ
0 1

�
j ˇ 2 kg/ D D.

By the well-known theory of linear representations of SL.2;k/, M decomposes
into a direct sum

L
Mi , where

�
˛ 0
0 ˛�1

�
acts on Mi by homotheties with factor

˛i . Let x D
P
xi be the decomposition of x with respect to the Mi . Since�

1 ˇ
0 1

�
x D x, we have xi D 0 for i < 0. Set T D '.f

�
˛ 0
0 ˛�1

�
j ˛ 2 k�g/.
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We easily see that x0 2 T .x/. Since we assume G.x/ to be closed, we thus have
x0 2 G.x/.

Clearly, T � Gx0
. As T normalizes D and D � Gx, we also have D � Gx0

.
It follows that S � Gx0

. Consequently, the set of sx0, where s 2 G is such
that dim.S \ Rsx0

/ D 0, is a neighborhood of x0 in the orbit G.x0/ D G.x/.
Since x0 2 T .x/, there exists then a t 2 T such that dim.S \ Rtx/ D 0. But
D D tDt�1 � tRxt

�1 D Rtx, which is absurd.

3 Fibrations

In this paragraph we collect the definitions and results concerning fibrations that
we will need in the following.

Let E, B and F be three varieties, and � W E ! B a morphism of varieties.
We say that � is a fibration (locally trivial in the étale sense) of the total space E
with fiber F and base B if there exists a variety B 0, a surjective étale morphism
B 0 ! B and an isomorphism F � B 0 ! X �B B

0 that commutes with the
projection to B 0.

Let G be a reductive group that acts on two affine varieties X and F . We say that
�X W X ! X�G is a fibration with fiber type F if there exists an affine variety
Z, a surjective étale morphism Z ! X�G and a G-isomorphism F � Z !

X �X�G Z. In the case where F D G, we say that X is a principal fibration (see
also [15, pp. 360-363]).

Let G be a reductive group that acts from the left on an affine variety Y . Let X be
a principal fibration of the group G (this time acting from the right). Let G act on
X � Y by s.x; y/ D .xs�1; sy/, and let X �G Y denote the quotient (in the sense
of §1) of X � Y by this action. We easily verify that X �GY is the total space of
a fibration with fiber type Y and base X�G. We call it the associated fibration to
the principal fibration X .

We will now describe an important construction of G-varieties. Let H be a re-
ductive group that acts on an affine variety Y . Let G be a redictive group that
contains H as a subgroup. The group H acts by right-translations on G, which
thus is a principal fibration (see [14, p. 12]). We can then form the associated
fibrationG�H Y . The action ofG on itself by left-translations passes to an action
of G on G �H Y , such that the projection G �H Y ! G=H commutes with the
action of G. The action of G on X D G �H Y is completely determined by that
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of H on Y . So we easily see that X�G can be identified with Y�H and that
��1X .�/ Š G �H �

�1
Y .�/ for all � 2 X�G D Y�H , etc.

Lemma. Let X 0 be a closed G-invariant subvariety of X D G �H Y . Then there
exists a closed H -invariant subvariety Y 0 of Y such that X 0 is G-isomorphic to
G �H Y

0.

Proof. Let a0 denote the ideal in .kŒG� ˝ kŒY �/H associated to X 0, a the ideal
in kŒG� ˝ kŒY � generated by a0, and b the ideal of those f 2 kŒY � such that
1˝ f 2 a. We easily check that b is H -invariant and that a D kŒG�˝ b. Then
define Y 0 by kŒY 0� D kŒY �=b. The exact sequence

0 ! a D kŒG�˝ b ! kŒG�˝ kŒY � ! kŒG�˝ kŒY 0� ! 0

yields another exact sequence

0 ! aH D a0 ! .kŒG�˝ kŒY �/H ! .kŒG�˝ kŒY 0�/H ! 0:

Therfore, X 0 is isomorphic to G �H Y 0.

4 Zariski’s main theorem

The classical formulation of Zariski’s main theorem is the following (see for ex-
ample [3, §3, exercise 7]): Let X and Y be affine normal irreducible varieties
and ' W X ! Y a birational morphism with finite fibers. Then ' is an open
immersion.

For our purposes we have the following version:

Proposition. Let X and Y be affine varieties (not necessarily irreducible or re-
duced),G a reductive group that acts onX and Y , and ' W X ! Y aG-morphism.
Assume that the fibers of ' are finite. Then there exists an affine G-variety Z, a
G-morphism i W X ! Z that is an open immersion, and a finite G-morphism
 W Z ! Y such that  ı i D '.

For lack of a good reference, we will prove this version of the classical result
quoted above.

Proof. By replacing kŒY � by its image in kŒX�we may assume that kŒY � � kŒX�.
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(A) We prove first that there exists irreducible reduced affine G-varieties X 0 and
Y 0 and a G-morphism ' 0 W X 0 ! Y 0 with the following properties: X 0 is normal,
X 0 and Y 0 contain X and Y , respectively, as closed G-subvarieties, and the mor-
phism ' 0 W X 0 ! Y 0 is dominant, its fibers are finite and it induces ' W X ! Y .

Let W be a G-submodule of kŒX� of finite dimension over k that generates kŒX�
as a k-algebra. The group G acts in a natural way on the symmetric algebra
SymW , and we have a homomorphism of algebras % W SymW ! kŒX� that is
surjective and commutes with the G-action. Let n denote the kernel of %. Define
a variety X 00 by kŒX 00� D SymW , and a variety Y 0 by choosing for kŒY 0� a
subalgebra of SymW with the following properties:

(1) kŒY 0� is of finite type over k.

(2) kŒY 0� is G-invariant.

(3) kŒY 0� contains a system of generators of the ideal n of SymW .

(4) The image of kŒY 0� under % is kŒY �.

The group G acts on X 00 and Y 0, and X and Y are identified with closed sub-
varieties of X 00 and Y 0. The inclusion kŒX 00� � kŒY 0� yields a G-morphism
' 00 W X 00 ! Y 0 that induces ' W X ! Y . Let y 2 Y � Y 0, and let m denote
the ideal of y in kŒY �, and m0 the ideal of y in kŒY 0�. We show that kŒX 00�m0 D
%�1.kŒX�m/. In fact, if f 2 %�1.kŒX�m/, then there exists g 2 kŒX 00�m0 such that
f � g 2 n. Since kŒX 00�m0 contains n (because kŒY 0�, and hence m0, contains a
system of generators of n), it follows that f 2 kŒX 00�m0 . The other inclusion is
obvious. As '�1.y/ is finite, kŒX�=kŒX�m0 is of finite dimension over k. There-
fore, kŒX 00�=kŒX 00�m0 Š kŒX�=kŒX�m is also finite-dimensional over k, and so
.' 00/�1.y/ is also finite. The set V of x00 2 X 00 in whose fiber .' 00/�1.' 00.x00// is
zero-dimensional thus contains X . We know that it is open ([11, p. 97]) and it is
G-invariant. Since the invariants separate the closed disjoint G-invariant subsets,
there exists f 2 kŒX 00�G such that X � X 00

f
� V . It is clear that X 0 D X 00

f
, Y 0

and ' 0 D ' 00jX 0 satisfy the conditions announced at the beginning of (A).

(B) We now prove the proposition. Let kŒZ0� denote the integral closure of kŒY 0�
in kŒX 0�. We know that kŒZ0� is an algebra of finite type over k ([3, §3, théorème
2]). Denote by kŒZ� the image of kŒZ0� under %, and by Z and Z0 the varieties
of kŒZ� and kŒZ0�. The group G acts on Z and Z0, and the inclusions induce
G-morphisms i 0 W X 0 ! Z0, i W X ! Z and  W Z ! Y . It is clear that
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 ı i D ' and that  is finite. We easily verify that i 0 is birational and has finite
fiber, and that Z0 is normal. By the classical version of Zariski’s main theorem,
i 0 is therefore an open immersion. We immediately conclude that the same is true
for i .

Remark. Keep the notation of the proposition. Let C be the integral closure of
kŒY � in kŒX�. If kŒX� is reduced, one can show that C is finite over kŒY � and thus
C is of finite type over k (if kŒX� is integral, this follows from [3, §3, Théorème
2], the general case reduces to this by embedding kŒX� into the product of the
kŒX�=pi , where the pi are the minimal prime ideals of kŒX�). Then one easily
concludes from the proposition that we can choose theZ as the variety defined by
kŒZ� D C . However, if kŒX� is not reduced, then C is not necessarily of finite
type over k.

An important consequence is the following lemma:

Lemma. Let G be a reductive group that acts on two affine varieties X and Y ,
and let ' W X ! Y be a G-morphism. Suppose that ' maps the closed G-orbits
in X to closed orbits in Y , that the fibers of ' are finite, and that '�G is finite.
Then ' is finite.

Proof. Keep the notation from the proposition. If kŒX�G is finite over kŒY �G ,
we easily see that in the construction of the proposition we can require kŒZ� to
contain kŒX�G . Then the map i�G is an isomorphism. Let T be a closed orbit in
X . The closed set  �1.'.T // is composed of a finite number of closed orbits of
the same dimension as i.T /. Therefore, i.T / is closed in Z. These two remarks
imply that i.T / contains all closed orbits in Z. Since i.X/ is a G-invariant open
set in Z, i.X/ D Z and thus ' D  is finite.

Corollary (Mumford [12], Corollary 2.5). Let G be a reductive group that acts
on an affine variety X . Suppose that the isotropy subgroups of G on X are finite.
Then G acts properly on X .

Proof. We need to show that the morphism ' W G � X ! X � X defined by
'.s; x/ D .sx; x/ is proper, that is, finite. LetG act onG�X by t .s; x/ D .ts; x/,
and on X � X by t .x; y/ D .tx; y/. One easily verifies the conditions of the
lemma now.
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Part II

Étale G -morphisms
Let G be a real compact Lie group that acts differentiably on two differentiable
manifolds X and Y , and let ' W X ! Y be a differentiable map that commutes
with the action ofG. If ' is étale at a point x 2 X (that is, Tx' is an isomorphism
of TxX onto T'.x/Y ), and if the restriction of ' to the orbit passing through x is
injective, then there exists an open subset U of X with the following properties:
U contains x, U is G-invariant, and the restriction of ' to U is an isomorphism
from U to an open set of Y .

In this chapter, we will obtain a result (§2, the Fundamental Lemma) that in the
algebraic context is analogous to the preceding one, and will play a decisive role
in chapter III.

1 A preliminary lemma

Let G reductive group that acts on two affine varieties X and Y . Let ' W X ! Y

be a G-morphism, � 2 X�G, x 2 T .�/ (for the definition of T .�/ see I, §1).

Lemma 1. Assume the varieties X and Y are normal, ' finite and étale at x, and
the restriction of ' to T .�/ is injective. Then '�G is étale at �.

In the proof of Lemma 1 we use the following characterization of étale morphisms:

Lemma 2. Let B be an algebra of finite type over k that is integral and integrally
closed, L its field of fractions, K 0 a finite Galois extension of L, G its Galois
group, A0 the integral closure of B in K 0, m0 a maximal ideal in A0, and n D

B \m0. Finally, let H be a subgroup of G ,K the subfield ofK 0 of elements fixed
by H, A the integral closure of B in K, and m D A \m0. Then Am is étale over
Bn if and only if Gm0 , the splitting group of m0, is contained in H.

Proof of Lemma 2. We know that under the hypotheses of Lemma 2, “étale” is
equivalent to “non-branching” (see for example [6, Exposé I, Théorème 9.5]).
Then the proof of Lemma 2 can be found in [3, §2, Proposition 7].

To simplify the application of Lemma 2, we translate it into geometric language:
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Let X , Y , Z denote the affine varietes of A, B , A0 (A and A0 are of finite type
over k by [3, §3, Théorème 2]), and x, y, z the points associated to the ideals m,
n, m0, and ' W X ! Y the morphisms given by the inclusion B � A. As G acts
on Z, we have Z�G D Y and Z�H D X . For ' to be étale at x, it is necessary
and sufficient that Gz � H .

Proof of Lemma 1. (A) First, assume that the varieties X and Y are irreducible
and the group G is connected.

LetK be a finite Galois extension of k.Y / containing k.X/, with the Galois group
G . Let H denote the subgroup of those elements of G that fix k.X/. Let C denote
the integral closure of kŒY � in K, and C 0 that of kŒY �G in K. Let Z and Z0

denote the varieties associated to C and C 0, respectively. We can easily verify
that G acts on Z and Z0, and that Z�G D Y , Z0�G D Y �G, Z�H D X and
Z0�H D X�G (for example, we show that Z�G D Y �G: kŒZ0�G is integral
over kŒY �G , hence also over kŒY �. Then, since kŒZ0�G � k.Y / and kŒY � is
normal, kŒZ0�G � kŒY �. Moreover, if G is assumed to be connected, we easily
see that kŒY �G is integrally closed in kŒY �, and so is kŒZ0�G D kŒY �G). Choose a
point z 2 Z over x and let z0 denote the point in Z0 over z.

We can apply Lemma 2 to the triple .Z;X; Y /: The hypothesis “' is étale at x”
then translates into Gz � H .

Let � 2 Gz0 and let �z denote the image of �z in X . Let point �z lies over �
and y and thus lies over the orbit T .�/. As the restriction of ' to T .�/ is assumed
injective, we conclude that �z D x. Therefore, since H acts transitively on the
set of points in Z lying over x, there exists � 2 H such that �z D �z. Hence
��1� 2 Gz � H and � 2 H .

We have shown that Gz0 � H . In light of Lemma 2, '�G is étale at � .

(B) Assume now that the varieties X and Y are irreducible and that the group G
is finite.

Let K be a finite Galois extension of k.Y �G/ containing k.X/, with the Galois
group G 0. Let H 0 (respectively G , H ) denote the subgroups of those elements
of G 0 that fix k.X�G/ (respectively k.Y /, k.X/). We have H � H 0. Let C
denote the integral closure of kŒY �G� in K, and Z the corresponding variety.
The group G 0 acts on Z and we have Z�G 0 D Y �G, ZH 0 D X�G, Z�G D Y

and Z�H D X . Fix a point z 2 Z over x.

We can apply Lemma 2 to the triple .Z;X; Y /: The hypothesis “' is étale at x”
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translates into Gz � H .

Let � 2 G 0z. It follows from Galois theory that G 0 (respectively H 0) acts on
Y (respectively on X ), and that G 0 and G have the same image in the group of
automorphisms of kŒY � (and the same holds for H 0 and G in the automorphisms
of kŒX�). Consequently, there exists s 2 G and � 2 H 0 such that � jkŒY � D sjkŒY �
and � jkŒX� D sjkŒX�. We have sy D �y D y. Since we assume that the restriction
of ' to the orbit passing through x is injective, it follows that �x D sx D x. The
group H acts transitively on the set of points of Z over x: There exists thus a
% 2 H such that %z D ��1z. The element ��1� fixes kŒY � and is thus contained
in G . Therefore, %�1��1� 2 Gz � H , and hence � 2 H 0.

We have shown that G 0z � H 0. Since we can also apply Lemma 2 to the triple
.Z;X�G; Y�G/, it follows that '�G is étale at � .

(C) We now consider the general case.

We may always assume that X�G and Y�G are irreducible. Let X1; : : : ; Xk and
Y1; : : : ; Yl be the irreducible components of X and Y , respectively (where, say,
x 2 X1 and y 2 Y1). The orbit T .�/ then intersects all Xi , and '.T .�// all
Yj . Since, by assumption, the restriction of ' to T .�/ is injective, it follows that
k D 1, and that the subgroup G1 of G that fixes X1 is also the one that fixes Y1.
Since X�G D X1�G1, Y �G D Y1�G1, etc., we see that we may assume the
varieties X and Y to be irreducible. The case now follows immediately from (A)
and (B) (since X�G D .X�Gı/=.G=Gı/, etc.).

2 The fundamental lemma

Let G be a reductive group that acts on two affine varieties X and Y , and let
' W X ! Y be a G-morphism. Let � be a point in X�G and x a point in the orbit
T .�/.

Lemma 3. Assume the G-morphism ' is étale at x, the variety X is normal at
x (or, which amounts to the same, the variety Y is normal at '.x/), the orbit
'.T .�// is closed and the restriction of ' to T .�/ is injective. Then there exists
an affine open subset U 0 of X�G with the following properties: The open set
U D ��1X .U 0/ contains T .�/, the restrictions of ' to U and of '�G to U 0 are
étale, the open sets V D '.U / and V 0 D .'�G/.U 0/ are affine, V D ��1Y .V 0/,
and finally, the morphism ' W U ! V maps the closed orbits in U to closed orbits
in V .
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Proof. The sets of normal points of X and Y are open, G-invariant and contain
T .�/ and T .'.�//. Since the invariants separate the disjoint closed G-invariant
sets, there exists f 2 kŒX�G and g 2 kŒY �G such that Xf and Yg are normal
and contain T .�/ and '.T .�//. It is clearly sufficient to show Lemma 3 for ' W
Xf \'

�1.Yg/! Yg . We may thus assume that the varietiesX and Y are normal.
By a similar argument we may also assume that the fibers of ' are finite.

Let kŒ QX� denote the integral closure of kŒY � in kŒX�, and QX the correspond-
ing affine variety. According to I, §4, QX is a normal G-variety, and the ho-
momorphism of algebras kŒY � ! kŒ QX� � kŒX� yields an open G-immersion
i W X ! QX and a finite G-morphism Q' W QX ! Y . By identifying X with its
image under i , ' becomes the restriction of Q' to X . The orbit T .�/ is closed
in QX : In fact, '.T .�// being assumed closed, Q'�1.'.T .�/// is closed and com-
posed of a finite number of orbits of the same dimension as T .�/. The set of
points where Q' is étale is open, G-invariant and contains T .�/. By Lemma 1,
Q'�G is étale at Q� D .i�G/.�/. Since the invariants separate the disjoint closed
G-invariant subsets, we can find f 2 kŒ QX�G � kŒX�G with the following prop-
erties: QXf D Xf � X , . QX�G/f Š .X�G/f is irreducible and contains � , and
the restrictions of ' to Xf and '�G to .X�G/f are étale. In a similar fashion,
since '.T .�// is assumed closed, we find that there exists g 2 kŒY �G such that
'.T .�// � Yg � '.Xf /. Set U 0 D .X�G/f \ .'�G/�1..Y�G/g/. We see that
U 0 satisfies the requirements of Lemma 3.

It is easily verified that V 0 D .Y �G/g , as U D Xf \ '�1.Yg/ and V D Yg . All
the claims of Lemma 3 follow immediately, except for the last. Here is the proof:
The closed orbits in U are also closed in QX (since U contains for every point x
the fiber ��1

QX
.� QX.x//). As ' W QX ! Y is finite, ' maps the closed orbits in U to

closed orbits in Y .

Fundamental Lemma. Let G be a reductive group that acts on two affine vari-
eties X and Y , and let ' W X ! Y be a G-morphism. Let x 2 X and assume
that ' is étale at x, X is normal at x (or the variety Y is normal at '.x/), the
orbits G.x/ and G.'.x// are closed, and finally that the restriction of ' to G.x/
is injective. Then, there exists an affine open set U of X with the following
properties: The open set U contains x and is saturated with respect to the pro-
jection �X , the restriction of ' to U is étale, the image V of U under ' is an
affine open subset of Y that is saturated with respect to the projection �Y , the
morphism '�G W �X.U / Š U�G ! �Y .V / Š V �G is étale, and finally,
the morphisms ' W U ! V and �U W U ! U�G induce a G-isomorphism
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� W U ! V �V �G U�G.

Proof. Let U be as in the preceding Lemma 3. It remains to prove the last asser-
tion of the Fundamental Lemma.

We have .V �V �G U�G/�G Š U�G. If � 2 U�G, then the fiber of V �V �G

U�G over � is canonically isomorphic to the fiber of V over � D .'�G/.�/. The
morphism � induces the identity on the level of quotients and maps ��1U .�/ to
��1
V�V �GU�G.�/, in exactly the same fashion in which ' maps ��1U .�/ to ��1V .�/.

Since ' maps the closed orbits in U onto closed ones, it follows that � does the
same. By the lemma in I, §4, it follows that � is finite.

The morphism � is also étale. In fact, idV � .'�G/ W V �V �G U�G ! V �V �G

V �G D V and ' W U ! V are, and ' D .idV � .'�G// ı �. Hence � is a
covering. Since ��G is an isomorphism, we have ��1.�.G.x/// D G.x/. By
assumption, the restriction of ' toG.x/is injective, and so the same is true for that
of �. Since all connected components of V �V �G U�G meet �.G.x// (because
.V �V �G U�G/�G is isomorphic to U�G, which is rreducible by construction),
� is a covering of one sheet, hence an isomorphism.

Corollary. Keep the assumptions and notations from the Fundamental Lemma.
For all � 2 U�G, ' induces a G-isomorphism ��1X .�/! ��1Y ..'�G/.�//.

Proof. This follows immediately from the Fundamental Lemma.

The following lemma, technical but banal, will be useful in Chapter III, §1.

Lemma. LetG be a reductive group that acts on two affine varieties X and Y , Y 0

a closed G-subvariety of Y , and ' W X ! Y a G-morphism. Set X 0 D Y 0 �Y X

and ' 0 D idY � ' W X 0 D Y 0 �Y X ! Y 0 �Y Y D Y
0. Suppose that ' and '�G

are étale and that X ! Y �Y�G X�G is a G-isomorphism. Then ' 0 and ' 0�G
are étale and X 0 ! Y 0 �Y 0�G X

0�G is a G-isomorphism.

Proof. Clearly ' 0 is étale. We have

X 0 D Y 0 �Y X Š Y
0
�Y .Y �Y�G X�G/ Š Y 0 �Y�G X�G:

Hence, X 0�G Š Y 0�G �Y�G X�G, and

' 0�G D idY 0�G�.'�G/ W X 0�G Š Y 0�G�Y�GX�G ! Y 0�G�Y�GY�G D Y 0�G

is étale. Finally,

X 0 Š Y 0 �Y�G X�G Š Y 0 �Y 0�G .Y 0�G �Y�G X�G/ Š Y 0 �Y 0�G X 0�G:
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Part III

Étale slices
Let G be a reductive group that acts on an affine variety X . In the first paragraph
we will show that there exists an “étale slice” at every point of a closed orbit of
G in X . For this, we rely on the Fundamental Lemma of the previous chapter.
The following three paragraphs are dedicated to applications: If X is smooth,
then we obtain essentially the same results as for the action of a compact Lie
group on a differentiable manifold. However, the situation is richer since there
exist non-closed orbits. Here is a typical example of a small phenomenon that
we will explain in a general framework: The well-known isomorphy of the set of
unipotent elements in a reductive group and that of nilpotent elements in its Lie
algebra. In the last paragraph, we recover a result by R.W. Richardson [13].

1 Étale slices

Let G be a reductive group that acts on an affine variety X . Let x 2 X .

Lemma. Assume the variety X is smooth at X and Gx, the isotropy subgroup of
G at x, is reductive. The there exists a morphism of varieties ' W X ! TxX with
the following properties:

(1) ' commutes with the Gx-action.

(2) ' is étale at x.

(3) '.x/ D 0.

Proof. Let m denote the maximal ideal of kŒX� that corresponds to the point x.
The canonical map d W m ! m=m2 D .TxX/� commutes with the action of
Gx. As Gx is assumed to be reductive, it acts completely reducibly on kŒX�.
Hence there exists a Gx-submodule W of m such that d W W ! .TxX/� is an
isomorphism. We extend .d jW /�1 in a canonical way to a homomorphism of the
symmetric algebra of .TxX/� to kŒX�. It is easily verified that the morphism
' W X ! TxX corresponding to it has the desired properties.
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Étale Slice Theorem. LetG be a reductive group that acts on an affine varietyX .
Let x be a point in X whose orbit G.x/ is closed. Then there exists a subvariety
V of X with the following properties:

(a) The isotropy subgroup Gx preserves V .

(b) The G-action on X induces an étale G-morphism  W G �Gx
V ! X .

(c) The image U of  is an affine open �X -saturated subset of X .

(d) The morphism '�G W .G �Gx
V /�G Š V �Gx ! U�G is étale.

(e) The morphisms  and G �Gx
V ! .G �Gx

V /�G Š V �Gx induce a
G-isomorphism

G �Gx
V ! U �U�G V �Gx:

Proof. (A) Suppose first that X is smooth at x. Since the orbit G.x/ is assumed
closed inX , the isotropy subgroupGx is reductive (see I, §2). So the conditions of
the previous lemma are satisfied. Hence there exists a morphism ' W X ! TxX
with the three properties of this lemma. Choose a Gx-invariant complementary
subspace N to TxG.x/ in TxX . Set Y D '�1.N /. This is a closed subvariety
of X containing x, smooth at x and Gx-invariant. The morphism G � X ! X

defining the action of G on X induces a G-morphism G �Gx
Y ! X that is

étale at the point .e; x/ (where e denotes the neutral element of G and .e; x/ the
canonical image of .e; x/ 2 G�Y inG�Gx

Y ). We easily see that the assumptions
of the Fundamental Lemma in II, §2 are satisfied forG�Gx

Y ! X . The theorem
follows immediately.

(B) In the general case, identify X with a closed G-subvariety of a smooth affine
G-variety. Then the theorem follows from part (A), the lemma following the
Fundamental Lemma, and the remarks in I, §3.

Remark 1. Keep the assumptions of the theorem. If X is smooth at x, after
shrinking V if necessary, it can be arranged that, in addition to the properties
of the theorem, it also has the following (see the Fundamental Lemma): V is
smooth, the morphism ' W V ! N D TxV is étale, the image W of V under '
is an open �N -saturated subset of N , the morphism '�Gx W V �Gx ! W �Gx
is étale, and finally, the morphisms ' W V ! W and �V W V ! V �Gx induce
a Gx-isomorphism V ! W �W �Gx

V �Gx. If we once more come back to the
analogy with the behaviour of the action of a compact Lie group on a differentiable
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manifold, in a neighborhood of an orbit, corresponding to the isomorphism here
correspond the two G-morphisms G �Gx

V ! G �Gx
W and G �Gx

V ! U

(G �Gx
W is an open subset of the “normal fibration” of the orbit).

We call the subvarieties V of X with properties enumerated in the theorem (and
which also have the properties in Remark 1 if the point x is a simple point in X )
the étale slices at x.

Remark 2. It follows from the corollary of the Fundamental Lemma that for all
x0 2 V ,  induces a G-isomorphism G �Gx

��1V .�V .x
0//! ��1X .�X.x

0// (if X
is smooth at x, also ��1X .�X.x// Š G �Gx

��1N .�N .0//).

Remark 3. If the base field is the field of complex numbers, then the theorem
shows the existence of an “analytic slice”. Namely, of an analytic submanifold V 0

of X containing x, invariant under Gx and such that the action of G on X induces
an analytic isomorphism fromG�Gx

V 0 to an open neighborhood (in the standard
topology) of G.x/ in X . This follows immediately from Remark 2 and the fact
that  �GjV �Gx

is then a locally analytic isomorphism.

Remark 4. The existence of étale slices at x implies that the isotropy subgroups
of points in a neighborhood of x are conjugate in G to the subgroup Gx. If the
orbit G.x/ is not closed, this may be false, even if Gx is reductiv. Here is an
example (due to R.W. Richardson): Consider SL.2;k/ acting in the natural way
on the cubic forms in two variables. The isotropy subgroup of x2y is trivial, but
there exists an open dense set composed of forms whose isotropy subgroup is
isomorphic to Z=3Z.

Corollary 1. Let G be a reductive group that acts on an affine variety X (not
necessarily reduced). Then X is a principal fibration (see I, §3) if and only if all
isotropy subgroups of G in X are trivial.

This follows immediately from the theorem.

Corollary 2. Let G be a reductive group that acts on an affine variety X (not
necessarily reduced). Suppose X�G is connected and zero-dimensional. Then
there exists a reductive subgroup H of G and an affine H -variety Y such that

(1) H as a fixed point y in Y .

(2) All orbits of H in Y are adherents of y.

17



(3) X is G-isomorphic to G �H Y .

If we further assume that X is smooth at a point in a closed orbit of G, then the
H -variety Y is isomorphic to a vector space of finite dimension over k on which
H acts linearly.

Proof. Let x be a point in the unique closed orbit of G in X , and let V be an
étale slice at x. Since we assume that X�G is connected and of dimension 0 and
since V �Gx ! X�G is étale, after shrinking V if necessary, we may assume
that V �Gx ! X�G is an isomorphism. The open subset U of the theorem that
is G-invariant and that contains the unique closed orbit of G in X is all of X .
From the last claim of the theorem it then follows that G �Gx

V is G-isomorphic
to X �X�G V �Gx Š X .

Assume now that in addition X is smooth at a point in the closed orbit of G in X ,
and use the notation of Remark 1. Since V �Gx ! W �Gx is étale, and W �Gx
is reduced and connected, V �Gx and W �Gx are necessarily isomorphic to re-
duced points. It follows that W D TxV (W is open, Gx-invariant and contains
the unique closed orbit of Gx in TxV , the origin). Hence V is G-isomorphic to
W �W �Gx

V �Gx Š TxV .

Remark. With the same assumptions as in the last assertion of Corollary 2, we
assume further that G has a fixed point in X . It follows immediately that X is
a vector space on which G acts linearly. A particular well-known case is the
following result: Let A D

L
n�0An be a graded algebra of finite type over k.

Let X denote the affine variety of A. Suppose that A0 D k and that the point of
X that corresponds to a maximal ideal of

L
n�1An is a simple point. Then A is

isomorphic to a polynomial algebra over k.

2 Models and stratifications of the quotient

Let G be a reductive group. Consider the G-varieties G �H N , where H is a
reductive subgroup of G and where N is a vector space of finite dimension over
k on which H acts linearly. These smooth affine G-varieties – which are nothing
else but the G vector bundles with affine homogeneous base – are particularly
important: We will see that, in a sense to be made precise, they serve as models
for G-actions on smooth affine varieties in general. Therefore we will call (the
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isomorphism classes of) these G-varieties the models. We denote by M the set of
models.

LetX be a smooth affineG-variety. We define a map� W X�G !M by mapping
� 2 X�G to �.�/, the isomorphism class of the normal fibration of T .�/.

Corollary 3. The image of X�G under � is a finite subset of M.

On can show the same result for a a real compact Lie group that acts differentiably
on a compact differentiable variety (see [8, §4]). The proof of Corollary 3 is the
same (where the étale slice plays the role of the differentiable slice).

For � 2M, set .X�G/� D ��1.�/.

Corollary 4. For all � 2M, .X�G/� is locally closed in X�G and smooth with
respect to its structure of a reduced subvariety.

We thus obtain a finite “stratification” of X�G into locally closed smooth sub-
varieties.

Proof. Let U and V be two smooth affine G-varieties, ' W U ! V a surjective
G-morphism, and assume that ' and '�G are étale and U ! V �V �G U�G is
a G-morphism. Then one easily sees that for .U�G/� to be closed in U�G and
smooth, it is necessary and sufficient that .V �G/� is closed in V �G and smooth.

Let G �H N be a representative of �. We can identify .G �H N/�G with N�H
(see I, §3). It is clear that we have ..G �H N/�G/� D NH�H Š NH .

The corollary 4 follows immediately from these two remarks on étale slices.

For � 2 M, let X� D ��1X ..X�G/�/. As preimage under �X of .X�G/�, X�
has a structure of a closed subvariety of X , not necessarily reduced. The fibers of
�X over .X�G/� are all G-isomorphic. More precisely:

Corollary 5. The morphism �X W X� ! .X�G/� is a G-fibration (see I, §3).

The proof is analogous to that of the preceding corollary.

3 Principal models

We keep the assumptions of the previous paragraph. If T1 and T2 are two homo-
geneous G-spaces, we say that T1 is larger than T2 if there exists a G-morphism
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T1 ! T2. This way, we define an order relation on the set of homogeneous
G-spaces. We say that two orbits of G in X are neighbors if they project to
the same connected component of X�G under �X . For x 2 X , we set Nx D
TxX=TxG.x/. If M is a fully reducible G-module, we denote by MG the canon-
ical G-invariant complement of MG in M .

Corollary 6. Let � 2 X�G. The following conditions are equivalent:

(1) .X�G/�.�/ lies in a neighborhood of � in X�G.

(2) T .�/ is maximal among the closed orbits of G in X that are neighbors of
T .�/.

(3) ��1Nx
.�Nx

.0// D .Nx/Gx
for all x 2 T .�/.

(4) �x is smooth at the points in T .�/.

Proof. Thanks to étale slices we easily see that it is sufficient to prove the equiv-
alence in the case where T .�/ is a point. Then, one is immediately reduced to the
case whereX is a vector spaceM on whichG acts linearly and where � D �M .0/.
We rewrite the conditions for this situation:

(1) MG�G.ŠMG/ is open in M�G (that is, equal to M�G).

(2) The origin is a maximal orbit among the closed orbits in M .

(3) ��1M .�M .0// DMG .

(4) �M is smooth at 0.

We easily see (1) , (3), (2) , (3) and (3) ) (4). The fiber ��1M .�M .0// is
a cone in M that is smooth at the origin and G-invariant. It is then neces-
sarily a G-submodule (see the remark following Corollary 2). For every non-
trivial irreducible Gı-module N we have ��1N .�N .0// ¤ 0. It follows that
��1M .�M .0// D MGı . The quotient M�Gı is the identified with MGı , and
M ! M�Gı is smooth. As �M is assumed smooth, it follows that M�Gı Š
MGı ! M�G Š MGı�.G=Gı/ is also smooth. But this only possible when
MGı DMG . Therefore, MG DMGı D �

�1
M .�M .0//.

Definition. If one of the conditions of Corollary 6 holds, we say that the model of
� is principal. If X�G is connected, there is only one possible principal model,
which we call the principal model of X .
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Now we show that étale slices allow to recover – and thus better understand – the
main result of [9].

Corollary 7. Let G be a reductive group that acts on a smooth affine variety X .
Suppose that the tangent space of every point in X is equipped with a symmetric
non-degenerate bilinear form that is invariant under the isotropy subgroup. Then
there exists an open dense subset of X that consists of closed orbits in X .

Proof. Recall that a G-module is called G-orthogonalizable if it admits a non-
degenerate symmetric G-invariant bilinear form. One easily proves the following
result (see [9, Lemma 5]): Let M be a G-module, and N a G-submodule of M .
If M and N are orthogonalizable, then so is M=N .

Pick � 2 X�G whose model is principal, and x 2 T .�/. From the above it follows
that .Nx/Gx

isGx-orthogonalizable (the Lie algebras g, gx ofG,Gx are, then also
TxG.x/ Š g=gx, then also Nx D Tx=TxG.x/, then also .Nx/Gx

Š Nx=N
Gx
x ,

since for NGx
x this is clear). Since .Nx/Gx

D ��1Nx
.�Nx

.0// (Corollary 6), it
follows that .Nx/Gx

is zero. Therefore, ��1X .�/ D T .�/. Corollary 7 follows
immediately.

4 The generic isotropy subgroup

In this paragraph, all varieties are assumed to be irreducible and reduced.

Let G be a reductive group that acts on an affine variety X . We set r D dimX �

dimX�G and s D maxx2X dimG.x/. In general, we have s � r . If s D r , then
we say that X�G has good dimension.

Lemma. If k.X�G/ D k.X/G , then X�G has good dimension.

Proof. We may assume that kŒX� is a free module over kŒX�G: In fact, we know
that there exist f ¤ 0 in kŒX�G such that kŒX�f is free over kŒX�G

f
(see for

example [15, Lemma 2.7, p. 77]). If clearly suffices to prove the lemma for Xf .

Let ' W G � X ! X and  W G � X ! X �X�G X the morphisms defined by
'.s; x/ D sx and  .s; x/ D .sx; x/, and let Q' and Q denote their correspondig
algebra morphisms. For s 2 G,

kŒX�
Q'
�! kŒG�˝ kŒX�

s˝1
�! k˝ kŒX� D kŒX�
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maps f to f s. For all f ˝ g 2 kŒX�˝kŒX�G� kŒX� D kŒX �X�G X�, we have
Q .f ˝ g/ D Q'.f /.1˝ g/.

We show that Q is injective. Let ei be a basis of kŒX� over kŒX�G . It is enough to
see that

P
Q'.ei/.1˝ fi/ D 0 implies that all fi are 0. But

P
Q'.ei/.1˝ fi/ D 0

implies
P
esi fi D 0 for any s 2 G. Since by assumption k.X�G/ D k.X/G , the

ei are also linearly independent over k.X/G , and we can use a theorem by Artin
[4, §7, no. 1]:

Let L be a commutative field, G an automorphism group of L, K the field of
those elements in L fixed by G, and e1; : : : ; en elements of L that are linearly
independent over K. Then there exist s1; : : : ; sn in G such that det.esji / ¤ 0.

From this it follows by a linear algebraic argument that the fi are all 0. Then
X�X�GX is irreducible and the morphism  W G�X ! X�X�GX is dominant.
We easily see that X �X�G X is of dimension r C dimX . We know that then
there exists a fiber of  all of whose irreducible components have dimension
dimG�X�dimX�X�GX D dimG�r (see [11, p. 93]). As the fibers of have
the same dimension as the isotropy subgroup of G on X , there exists x 2 X such
that dimGx D dimG� r . Therefore, s � dimG.x/ D dimG�dimGx D r .

Lemma. Let G be a group that acts on an affine variety X . Assume that kŒX� is
factorial and that the only invertible elements of kŒX� are the non-zero constants.
Then:

(1) All f 2 k.X/G can be writte f D g

h
, where g and h are relative invariants

of G in kŒX�.

(2) There exists a G-invariant non-empty affine open set X 0 in X such that
k.X 0/G is the field of fractions of kŒX 0�G .

Proof. (1) Write f D g

h
, where g and h are coprime elements in kŒX�. For all

s 2 G we have ghs D gsh. As kŒX� is factorial, we deduce that gs D �.s/g,
where �.s/ 2 k�. We have �.st/g D gst D .gs/t D .�.s/g/t D �.s/�.t/g,
hence � W G ! k� is a character.

(2) The field k.X/G is, as a subfield of k.X/, of finite type over k. Let f1; : : : ; fn
be a system of generators of k.X/G over k. By (1), we can write fi D gi

hi
, where

the gi and hi are relative invariants ofG in kŒX�. Let h D h1 � � � hn andX 0 D X 0
h
.

We verify without difficulty that X 0 satisfies the conditions of the lemma.
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Corollary 8 (Richardson [13]). Let G be a reductive group that acts on a smooth
affine variety X . Then there exists a subgroup H of G, not necessarily reductive,
such that the set of points in X whose isotropy subgroup is conjugate to H has
non-empty interior.

Proof. We easily see, thanks to Corollaries 5 and 6, that is is enough to show
Corollary 8 in the case where X is a vector space. By the two preceding lem-
mas, there exists then a G-invariant non-empty affine open subset X 0 of X such
that X 0�G has good dimension. For all � 2 X 0�G whose model is principal,
��1X 0 .�/ then contains an orbit that is open in ��1X 0 .�/. The fibers of such � are
G-isomorphic, so that Corollaries 5 and 6 yield the conclusion.
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