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1. In the course of his studies of groups of prime power order, W.B. Fite1) in-
troduced in 1906 the following characteristic subgroup in a given group G: If
H is any subgroup of G , then let ŒH;G� denote the subgroup generated by the
commutators of any element of G with any element of H, and define recursively:
Gn D ŒGn�1;G� (n D 2; 3; : : :), G1 D G . The groups Gn (n D 1; 2; : : :) are
called the groups of the lower central series of G by P. Hall2). The investigations
of Reidemeister3) and Hall have shown that they provide an extraordinarily useful
tool in general group theory. In the following we shall develop the relations of the
groups Gn to a Lie ring associated to the group G , and study further applications.

2. The groups Gn=GnC1 are denoted by An.G/, or, if there is ambiguity, by An.
If G is finitely generated, then the abelian groups An have finite bases. It suggests
itself to combine such group G and G� in a type such that for that all values
n D 1; 2 : : : the groups An.G/ and An.G

�/ are isomorphic. The question arises
when, for a given sequence of abelian groups A1;A2; : : :, we can find a group G ,
such that for n D 1; 2; : : : we have An Š An.G/. It is easy to see that the groups
An cannot be chosen independently from each other. The relations between them
can be analyzed by the following method:

3. Consider G as the factor group F=N of a free group F by a normal subgroup
N. Then we have

An.G/ � Fn=hFnC1 � .Fn;N/i (1)

where h i denotes the product of the normal subgroups in the brackets. An.G/

is thus a factor group of An.F/, and this group shall be studied first. Think of
G as being generated by certain elements a; b; : : :. At the same time, these can
be considered as elements of F, where in general there will be more relations
satisfied by the generators of G than by those of F. Now set

a D 1C x; b D 1C y; : : :

a�1 D 1 � x C x2 � : : : ; b�1 D 1 � y C y2 � : : : ; : : :
(2)

1)W.B. Fite, Transactions of the American Mathematical Scoiety 7, 61-68, 1906.
2)P. Hall, Proceedings of the London Mathematical Society (2) 36, 29-95, 1933.
3)K. Reidemeister, Abhandlungen aus dem mathematischen Seminar der Hamburgischen Uni-

versität 5, 33-39, 1927.
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where x; y; : : : denote generators of a “free” ring R with unit element 1. More
precisely, the ring R consists of all formal power series with integer coefficients in
the non-commutative but associative variables x; y; : : :4) Every “word” or power
productW.a; b; : : :/ in the generators of F is then assigned an element of R which
can be thought of as being ordered by terms of equal dimension or equal degree
in the variables x; y; : : :, that is,

W.a; b; : : :/ D 1C dn.x; y; : : :/C dnC1.x; y; : : :/C : : : (3)

where dn.x; y; : : :/ denotes the terms of degree n, the terms of degrees 1 to n� 1
are identically 0. For example,

aba�1b�1 D 1C xy � yx C : : : D 1C .xy � yx/

1X
�;�D0

.�1/�C�x�y�:

In this case n D 2, d2 D xy � yx.

It can be shown that in the relation (3) the terms of degree 1 to n � 1 vanish
identically if and only if W is an element of Fn but not of FnC1. By assigning
to each element W.a; b; : : :/ the polynomial D.W / D dn.x; y; : : :/, we assign to
each element¤ 1 of F a homogeneous polynomial of degree n in x; y; : : : whose
degree indicates precisely which is the first group in the lower central series of F

that contains W . It is practical to also define D.1/ D 0. We easily see that (for
D.W1/CD.W2/ ¤ 0)

D.W1W2/ D

�
D.W1/CD.W2/ if degW1 D degW2;
D.W1/ if degW1 < degW2.

(4)

In any case D.W1W2/ D D.W2W1/. With the help of this relation it is easy to
define a non-archimedean valuation on F, and topological algebra is at the heart
of several conclusions that make use of the lower central series.

Through the relations given here between the grous of the lower central series and
the “expansions” (3) of elements of F into a power series of R we can prove many
group-theoretical results4c/. Furthermore, we can answer the question posed by
P. Hall2/ whether there exist non-regular p-groups (in the sense of Hall) for which
the order of the automorphism group realizes the upper bound given by Hall. This

4)Compare W. Magnus: a) Über Beziehungen zwischen Gruppen und Idealen in einem
speziellen Ring. Mathematische Annalen 111, 259-280, 1935. b) Journal für die reine und ange-
wandte Mathematik 177, 105-115, 1937. c) Monatshefte für Mathematik und Physik 47, 307-313,
1939.
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is indeed the case. We obtain such a group with generators a; b; : : : by substituting
for the elements x; y; : : : on the right-hand side of (2) generators of a ring R� that
is obtained from the ring R by introducing the relations px D 0, py D 0, . . . ,
and requiring all products of at least m � p factors x; y; : : : to be 0. The order of
such a group can also be determined, according to Witt5).

4. It is remarkable that the polynomials dn.x; y; : : :/ cannot be arbitrary polyno-
mials of degree n. On the contrary, it holds that they are images of elements of
a Lie ring � in a suitable representation of � by elements of R. A Lie ring is
defined as a set of elements '; ; �; : : : on which an addition and a multiplication
is defined, where instead of commutativity and associativity the following laws
apply:

Œ';  �C Œ ; '� D 0

'Œ ; ��C  Œ�; '�C �Œ';  � D 0:
(5)

Now consider a free Lie ring � with generators �; �; : : :, where “free” means that
�; �; : : : and their products satisfy only those relations that follow from the laws
above. We then obtain a faithful representation of � in R if we assign as follows
(see 4b), 5)):

� 7! x; � 7! y; : : : ; sums in � 7! sums in R;
' 7! f .x; y; : : :/;  7! g.x; y; : : :/ implies Œ';  � 7! fg � gf:

(6)

It holds that the admissible polynomialsD.W / D dn are precisely those elements
of R that arise under the map (6) as the image of a homogeneous polynomial of
degree n in �; �; : : : with integer coefficients. Thus there is precisely one polyno-
mial ın.�; �; : : :/ of degree n in � such that

ın.�; �; : : :/ 7! dn.x; y; : : :/:

We write ın D �.W / and call dn the value of ın in R. In this spirit, we write for
short

dn D ın.�; �; : : :/; that is, x D �; xy � yx D Œ�; ��; etc. (7)

We make the following definitions: Consider all elements in Fn not contained in
FnC1. There are assigned to certain polynomials dn of degree n in R. Note all
those dn that equal a certain D.W /, where W is contained in h.N;Fn/;FnC1i.
After adding 0 they form a module Mn of homogeneous polynomials of degree n
in R. The module of all dn is denoted by Pn. Then:

An Š Pn=Mn; (8)
5)E. Witt, Journal für die reine und angewandte Mathematik 177, 152-160, 1937.
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where both modules are taken as additive abelian groups. Moreover, both Mn and
Pn are images of modules Mn and�n, respectively, of homogeneous polynomials
of degree n in �, where �n is the module of all homogeneous polynomials of
degree n in �; �; : : : with integer coefficients. Now we have the theorem:

I. The sum of all modules Mn forms an ideal M in �. The quotient Lie ring
�=M D �� is independent of the choice of generators and uniquely determined
by G . �� is nilpotent, namely, ��k D 0 if Gk D GkC1 holds. If G is a p-group,
then G and �� contain an identical number of elements.

�� is called the Lie ring associated to G .

The fact that the modules Mn form an ideal merely states that for a normal sub-
group N of F the products of two elements of N and the commutator of one ele-
ment of N and one element of F are again contained in N. From this observation,
the remaining claims of the theorem follow.

5. What is missing is a connection between � and R that guarantees that for the
analysis of G via the map (2) indeed only those elements of R are required that
are images of elements of � under the map (6). Firstly, in the expressions for
ab D 1CxC t Cxy or aba�1b�1 there appear summands in the terms of higher
order that cannot be composed out of images of elements of � (for example xy).
The missing connection is provided by the so-called Hausdorff formula6), which
can be introduced as follows: Let R0 be another free ring of the same kind as R

and with generators x0; y 0; : : :. Further, let�0 be another Lie ring of the same kind
as� with generators � 0; �0; : : :, only that this time we allow arbitrary power series
(similar as in R) with rational coefficients as elements of �0. Now assign:

� 0 7! x0; Œ� 0; �0� 7! x0y 0 � y 0x0; etc. as in (6): (9)

Further, assign:

a D 1Cx D ex
0

D

1X
�D0

x0�

�Š
; b D ey

0

D

1X
�D0

y 0�

�Š
; x0 D

1X
�D1

.�x/�C1

�
; : : : etc.

(90)
(the sign “D” can be used here since the assignments yield isomorphic maps, as
is easy to see). Then, as Hausdorff proved,

ab D ex
0Cy0Cx0y0�y0x0

2
C:::
D eH.�0;�0/; H.� 0; �0/ D � 0C �0C

Œ� 0; �0�

2
C : : : ; (10)

6)F. Hausdorff, Sitzungsbreichte der Sächsischen Akademie der Wissenschaften in Leipzig,
Mathematisch-physikalische Klasse, 58, 19-48, 1907.
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and in general
W.a; b : : :/ D e˝.�

0;�0;:::/; (11)

where ˝.: : :/ is an element of �0 and ˝, as the “value of ˝ in R0” is defined in
the same way as the value of an element of � in R was declared above by using
(6). The power series ˝.: : :/ have rational coefficients of unknown composition.
It is only known that the denominators of the coefficients of degree < p the prime
number p cannot appear, and on the other hand that the denominators can contain
arbitrary powers of arbitrary prime numbers as factors. The problem of the de-
nominators of the Hausdorff formula (10) is related to an identity discovered by
Hall2/ which can be easily proved with the tools developed here4b/. In its simplest
form, Hall’s identity is as follows: If F is the free group with generators a; b; : : :,
then for any prime number p,

.ab/p D apbpC pCp; (12)

where C is an element in the commutator group F2 of F and Cp is an element of
Fp. Here, Cp is unique modulo FpC1 (independent of the choice of C ) and mod-
ule p-th powers of elements of Fp. This means D.Cp/ is uniquely determined
module p. If Hp.� 0; �0/ is the homogeneous component of degree p of H in (10),
then

pHp.� 0; �0/ � D.Cp/ mod p: (13)

D.Cp/ can be determined uniquely from those terms in Hp whose denominators
contain the factor p. This explicit knowledge of Cp is very interesting for certain
applications; however, so little is known on the coefficients of the Hausdorff for-
mula that we have to rely on other methods to compute D.Cp/ due to O. Grün7)

and H. Zassenhaus8).

6. In order to make use of the assignment of a Lie ring �� to a group G given
by Theorem I, we first need to consider the converse problem in how far to every
given Lie ring with the integers as coefficient ring there corresponds a group to
which this Lie ring is assigned, provided that this Lie ring is defined by “homo-
geneous” relations, that is, it arises from a free Lie ring by introducing relations
that are homogeneous in the generators of the ring. (For such relations we may

7)O. Grün, in this volume (Journal für die reine und angewandte Mathematik 182). Furthermore,
additional identities in the spirit of Hall’s identity (12) and more background on the importance of
the computation of Cp .

8)H. Zassenhaus, Abhandlungen aus dem Mathematischen Seminar der Hansischen Universität
Hamburg 13, 1-100, in particular 90-95, 1939.
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choose generators of the modules Mn identical to zero.) The most important spe-
cial case of this problem is that in which the given Lie ring �� is nilpotent, and
that its elements become 0 when multiplied by a power of the prime number p.
Then �� must be assigned to a p-group P, provided �� is assigned to any group
at all. So suppose

��k D 0; pm�� D 0: (14)

Then the following theorem holds:

II. If k � p and the relations (14) hold, then there exists at least one group P

whose order is a power of p such that �� is the Lie ring assigned to P according
to Theorem I.

The proof is easily done with the help of the Hausdorff formula (11) by subsituting
generators of �� for � 0; �0; : : : and constructs a group with generators a; b; : : :
according to (9), (90) and (2).

Since k � p, the denominator p does not appear in the Hausdorff formula. Then
all functions ˝.� 0; �0; : : :/ in (11) are again elements of ��, and one can easily
show that the Lie ring assigned to this group is indeed isomorphic to ��. The
assumption k � p cannot be dropped, as the following supplement to Theorem II
holds:

IIa. There is no group P whose Lie ring �� according to Theorem I is the ring
�� in two generators � , � with ��pC2 D p�� D 0, where no relations hold in
�� that do not follow from these requirements.

For, assume P is a group to which the Lie ring �� in IIa is assigned, then there
also exists a p-group to which �� is assigned. Let it also be called P. Then P

has two generators a; b, PpC2 D 1 and for k D 1; : : : ; p C 1 the p-th power of
any element in Pk is contained in PkC1. On the other hand, any word W.a; b/
in a and b is an element of Pk but not of PkC1 if D.W / is of degree k not
congruent 0 modulo p. Now it follows from Hall’s identity that ab commutes
with apbpC pCp, and apbpC pCp is an element � in P2 by the remarks above.
Now, if � is not contained in PpC1, but in a subgroup Pk with 2 � k � p, then
� equals a word W.a; b/ such that D.W / has degree k and is ¥ 0 mod p. Then
D.ab� b�1a�1� �1/ has degree k C 1 and also is ¥ 0 mod p, as one can easily
verify, and which also follows from a theorem proved elsewhere4b/. Since on the
other hand ab� b�1a�1� �1 equals 1, it follows that � 2 PpC1. But then, as we
can easily see, the p-th powers of all elements of P are contained in PpC1, that is,
we have that P=PpC1 D G is a p-group in which every p-th power is 1, and the
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Lie ring �0 assigned to G is of the same kind as ��, only that now �0pC1 D 0.
But then Cp D 1 in G , contrary to the fact proven by Grün8/ and Zassenhaus9/

that D.Cp/ is of degree p and ¥ 0 mod p. So Cp must be ¤ 1, and this shows
that G and thus also P cannot exist.

It follows from IIa that, at least for p-groups, the assignment of a Lie ring to a
group as in Theorem I is not the most practical one. Indeed it seems that the
correspondence due to Zassenhaus9) of a Lie ring of characteristic p to a p-group
does not allow the situation that a given Lie ring cannot be assigned to any p-
group. However, a proof of this is still missing. Anyhow, the assignment of a Lie
ring to a p-group by Zassenhaus seems to be the more practical one.

7. A problem immediately related to Theorems I and II is the following:

To every relation R.a; b; : : :/ D 1 between the generators of the group G corre-
sponds a relation that can be placed in the ring R with generators x; y; : : : or in
the Lie ring � with generators � 0; �0; : : :. Namely, if

R.a; b; : : :/ D 1C F.x; y; : : :/ D e˝.�
0;�0;:::/;

then we can set F D 0 or ˝.�; �0; : : :/ D 0. By taking for every relation R D 1

the corresponding relation ˝ D 0, we obtain from �0 are ring �, and if we
consider � 0; �0; : : : as generators of�, then the relations (10), (11), (9), (90) yield a
representation of the group G . The question arises when this is faithful. This can
only be the case if the intersection of all groups Gk is the unit element. It certainly
is the case if G is a p-group with Gp D 1, as can be immediately deduced from
what we said about the Hausdorff formula.

For p-groups with Gp D 1 we obtain in this fashion a bijective correspondence
between them and finite Lie rings � for which �

p
D 0 and q� D 0, where q is

any power of p.

Here, the relations of � are in general not homogeneous (see above). In how
far such a relation can produce a larger class of p-groups is an open problem,
compare also Zassenhaus10/.

8. At the end we wish to point to a problem considered elsewhere4a/, for which the
assignment of a Lie ring to a group can also be useful. For both, the investigation
of the automorphisms of a group given by generators and relations, and the ques-
tion of fully invariant subgroups given purely by taking commutators, it would

9)H. Zassenhaus, Abhandlungen aus dem Mathematischen Seminar der Hansischen Universität
Hamburg 13, 200-207, 1940.
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be important to know: What are the irreducible representation modules over the
integers within the module of polynomials dn.x; y; : : :/ from (3) (for fixed n) for
the group of linear substitutions with linear coefficients in the variables x; y; : : :?
This is equivalent to the question of the irreducible representation modules of the
same group of substitution written in the generators �; �; : : : of a free Lie ring
as variables. In particular, it would be interesting to know if the free Lie ring �
with generators �; �; : : : contains invariants with respect to the group of all invert-
ible linear substitutions of �; �; : : : . The assumption that all coefficients of the
substitutions should be integers can apparently be dropped, as it does not pose a
restriction. Here, the following is known:

Let k denote the number of generators �; �; �; : : : of the Lie ring �. If k D 2,
then there exist invariants with respect to the group of unimodular substitutions
of �; �; �; : : :. More precisely, in any degree m that is twice an odd number, there
exists at least one invariant. For example, for m D 2; 6; : : :, the invariants

Œ�; ��; Œ�; Œ�; ���; Œ�; Œ�; ���; : : :

For values m > 6 in general there do not exist additional invariants. For k > 2

it can be shown that there are no invariants of degree < 2k. In general, only
invariants exist whose degree is a multiple of k. Moreover, there is a procedure to
find all invariants.

To every homogeneous polynomial in �; �; : : : corresponds by (6) a uniquely de-
termined homogeneous polynomial in the variables x; y; : : : and this again cor-
responds to a homogeneous polynomial of the same degree in commutative vari-
ables. It is sufficient to make such an assignment for power products of x; y; : : :.
Letm be the degree of the power product under consideration. Assignm commu-
tative variables to each of the non-commutative variables x; y; : : :, say, x1; : : : ; xm
and y1; : : : ; ym are assigned to x and y, respectively. Then assign to each product
of x; y; : : : such a product in the variables x1; : : : ; xm, y1; : : : ; ym, : : :, in which
the index states the position at which the variable of the same name stands in the
non-commutative product. For example, the products in the following table are
assigned to one another:

x y xn xy2 yxxy � � �

x1 y1 x1 � � � xn x1y2y3 y1x2x3y4 � � �

To a sum, assign the corresponding sum. The question is how to characterize
those homogeneous polynomials in x1; : : : ; xm, y1; : : : ; ym, : : : that are assigned
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to such homogeneous polynomials of degree m in x; y; : : : that themselves are
images of polynomials of degree m in the free Lie ring generated by �; �; : : :. We
will call such polynomials in the variables x1; : : : ; xm, y1; : : : ; ym, : : : Lie forms,
and simpy indicate the variables by a letter x�; y�; : : : (� D 1; : : : ; m). Now: A
homogeneous polynomial P.x�; y�; : : :/ of degree m is a Lie form if and only if
there is a second homogeneous polynomial Q.x�; y�; : : :/ of degree m such that
P is obtained from Q by application of the operator

! D .1 � �m/.1 � �m�1/ � � � .1 � �2/;

where ! is an element of the group ring of the symmetric group of permutations
of m objects, 1 denotes the identity permutation and �k the permutation

�k D

�
1 2 � � � k � 1 k k C 1 � � � m

2 3 � � � k 1 k C 1 � � � m

�
:

The operator ! is to be applied to indices of the variables in Q and furthermore it
is distributive. Now one can show:

If a Lie form P.x�; y�; : : :/ of degree m is the image of an invariant of degree m
in the generators �; �; : : : of the free Lie ring �, then there exists a simultaneous
invariant J.x�; y�; : : :/ of degree m in the variables

x1; y1; : : : I x2; y2; : : : I : : : I xm; ym; : : : ;

such that
P.x�; y�; : : :/ D !J.x�; y�; : : :/:

For example, for two variables and degree 2:

x1y2 � x2y1 D .1 � �2/
�x1y2 � x2y1

2

�
Now we know all forms J.x�; y�; : : :/. They are the products of determinantsˇ̌̌̌

ˇ̌̌̌
ˇ
x�1

y�1
� � �

x�2
y�2

� � �

:::
:::

: : :

x�k
y�k

� � �

ˇ̌̌̌
ˇ̌̌̌
ˇ

where k is the number of variables �; �; : : :. The difficulty is in determining
whether on application of the operator ! all forms J vanish identically. This
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is the case for m D k. For example, for m D k D 3,

.1 � �3/.1 � �2/

ˇ̌̌̌
ˇ̌x1 y1 z1
x2 y2 x2
x3 y3 z3

ˇ̌̌̌
ˇ̌ D 0:

Perhaps one can expect that this combinatorical problem can be solved by A. Young’s10)

“quantitative substitutional analysis”. It can be reduced to questions on the group
ring of the symmetric group alone, just like some other related problems.11)

10)A. Young, Proceedings of the London Mathematical Society (1), 33, 97-146, 1901; 34, 361-
397, 1902.

11)Compare §3 in O. Grün’s work in this volume. I owe the description of the “Lie forms” given
above to a personal communication by Herr Grün.
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