
On Riemann’s unpublished works
in analytic number theory

By CARL LUDWIG SIEGEL

In a letter to Weierstraß from the year 1859, Riemann mentioned a new expansion
of the zeta function which he had not sufficiently simplified yet to publish it in an
article on the theory of prime numbers. After H. Weber published this section from
Riemann’s letter in his edition of Riemann’s works in 1876, one could suspect that
a close investigation of Riemann’s unpublished works in the university library in
Göttingen would reveal further hidden equations in analytic number theory.

Indeed, the librarian Distel already found the aforementioned representation of
the zeta function in Riemann’s papers several decades ago. It is a semiconvergent
expansion that expresses the behaviour of the function —.s/ on the critical line
� D 1

2
and more generally in every strip �1 � � � �2 for arbitrarily large s.

In the meantime, the principal term of this expansion was rediscovered in 1920
by Hardy and Littlewood independently of Riemann, as a special case of their
“approximate functional equation”. For the proof, they used the same tool as
Riemann, namely approximation of an integral by the saddle point method. In
Riemann’s work one can also find a method to obtain further terms of the semi-
convergent series, and this method uses the nice properties of the integral

˚.�; u/ D

Z
e i�x2C2 iux

e2 ix � 1
dx;

which moreover has led Kronecker and more recently led Mordell to the most
elegant derivation of the reciprocity law of Gaußian sums.

In 1926, Bessel-Hagen noticed in a further study of Riemann’s notes yet another
previously unknown representation of the zeta function by means of definite inte-
grals; Riemann has been led to these also through properties of ˚.�; u/.

We may consider the two expansions of —.s/ the most important part of Riemann’s
unpublished papers on number theory, as far as it is not already contained in his
printed works. Attempts to prove the so-called “Riemann hypothesis” or even only
a proof of the existence of infinitely many zeros of the zeta function on the critical
line are not contained in Riemann’s papers. It seems heuristic considerations led
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Riemann from the semiconvergent series to claim that the interval 0 < t < T

asymptotically contains T
2 

log. T
2 
/ � T

2 
real zeros of —.1

2
C t i/. However, even

today it is not clear how to prove or disprove this claim. Using the semiconvergent
series, Riemann approximated some real zeros of —.1

2
C t i/.

Riemann’s notes on the zeta function do not contain sections that are fit to be
published; occasionally unconnected equations share the same page; often just one
side of an equation is written down; estimates of remainders and considerations of
convergence are always missing, even in essential steps. For these reasons, a free
reworking of Riemann’s fragments is necessary, as shall be done in the following.

The legend that Riemann found his mathematical results by “grand general ideas”
without needing the formal analytic tools is nowadays not as widespread as in
Klein’s time. How strong Riemann’s analytical technique really was is clearly
visible from his derivation and manipulation of the semiconvergent series for —.s/.

§ 1 Computation of a definite integral

Let u be a complex variable. Form the integral

˚.u/ D

Z
0-1

e� ix2C2 iux

e ix � e� ix
dx (1)

extending from1 to1 from the lower right to the upper left along a parallel of
the bisector of the fourth and second quadrant that meets the real axis in the points
0 and 1. In equation (1) the path of integration is indicated by the symbol 0- 1

below the integral sign.

The function ˚.u/ is entire. According to Riemann, it can be expressed via the
exponential function in an elementary manner. To prove this, derive two difference
equations for ˚.u/ using Cauchy’s Theorem:

On the one hand,

˚.uC 1/ � ˚.u/ D

Z
0-1

e� ix2 e2 i.uC1/x � e2 iux

e ix � e� ix
dx D

Z
0-1

e� ix2C2 i.uC 1
2
/xdx

D e i.uC 1
2
/2
Z
0-1

e� i.x�u� 1
2
/2dx D e i.uC 1

2
/2
Z
0-1

e� ix2dx;

that is,

˚.u/ D ˚.uC 1/ � e i.uC 1
2
/2
Z
0-1

e� ix2dx: (2)
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On the other hand, if the symbol �1 - 0 indicates the path of integration which
arises from the previous one by a translation by the vector �1, then

1 D

Z
0-1

e� ix2C2 iux

e ix � e� ix
dx �

Z
�1-0

e� ix2C2 iux

e ix � e� ix
dx; (3)

since the integrand has residue 1
2 i at the pole x D 0. SinceZ

�1-0

e� ix2C2 iux

e ix � e� ix
dx D

Z
0-1

e� i.x�1/2C2 iu.x�1/

e i.x�1/ � e� i.x�1/
dx

D e�2 iu
Z
0-1

e� ix2C2 i.uC1/x

e ix � e� ix
dx;

equation (3) yields
˚.u/ D e�2 iu˚.uC 1/C 1: (4)

From (2) and (4), we first obtain the for u D 0 the known equationZ
0-1

e� ix2dx D e
3 i
3

and then by elimination of ˚.uC 1/ the desired resultZ
0-1

e� ix2C2 iux

e ix � e� ix
dx D

1

1 � e�2 iu
�

e iu2

e iu � e� iu
: (5)

Differentiating n times with respect to u, we obtain the more general equationZ
0-1

e� ix2C2 iux

e ix � e� ix
xndx D .2 i/�nDn e iu � e iu2

e iu � e� iu
; n D 0; 1; 2; : : : (6)

For the following it is convenient to rewrite (5). Replace u by 2uC 1
2

and multiply
(5) by e�2 i.uC 1

2
/2C i

8 . This yields the equation found by Riemann,Z
0-1

e i.x2�2.uC 1
2
�x/2C 1

8
/

e2 ix � 1
dx D

cos.2 u2 C 3 
8
/

cos.2 u/
;

which will play an important part in the following. The integral ˚.u/ is a special
case of the integral

˚.�; u/ D

Z
0-1

e i�x2C2 iux

e ix � e0 ix
dx; (7)

which satisfies two difference equations. It has been studied in detail by Mordell.
For every negative rational value of � there is an equation anaologous to (5), and
from here we obtain the reciprocity law of Gaußian sums by specializing u. In his
lectures, Riemann already based the transformation theory of the theta function
on the properties of ˚.�; u/.
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§ 2 Semiconvergent expansion of the zeta function

If the real part � of a complex variable s D �C it is larger than 1 and ifm denotes
a natural number, then

—.s/ D

mX
nD1

n�s C
1

�.s/

Z 1
0

xs�1e�mx

ex � 1
dx;

or, if C1 is a loop around the negative imaginary axis to be traversed in a positive
sense, then

—.s/ D

mX
nD1

n�s C
.2 /se

 is
2

�.s/.e2 is � 1/

Z
C1

xs�1e�2 imx

e2 ix � 1
dx: (8)

This formula even holds for arbitrary values of � . Henceforth restrict � to a fixed
interval �1 � � � �2, and let t � 0. To compute the integral appearing in (8)
asymptotically for t ! 1 by the saddle point method, the path of integration
must lead through the zero of D log.xs�1e�2 imx/. For this zero we obtain from
the equation

s � 1

x
� 2 im D 0

the value
� D

s � 1

2 im
D

t

2 m
C
1 � �

2 m
i: (9)

In the circle centered at � with radius j�j we now have the expansion

xs�1e�2 imx
D �s�1e�2 im�e.s�1/.�

1
2
.x��
�
/2C 1

3
.x��
�
/3�:::/

D �s�1e�2 im�e�
s�1

2�2
.x��/2

.c0 C c1.x � �/C c2.x � �/
2
C : : :/;

and in the series

�s�1e�2 im�
D

1X
nD0

cn

Z
e�

s�1

2�2
.x��/2

e2 ix � 1
.x � �/ndx

we may suspect a semiconvergent expansion of the integral in (8). The integrals
appearing in this series can now be evaluated using (6) from §1, if s�1

2�2
assumes

the particular value  i. For fixed s, this is a condition on m that in general can
only be satisfied approximately, since m is an integer. Because of this, Riemann
replaces the saddle point � by its neighboring value �, determined by the equation

t i
2�2
D  i
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as

� D C

r
t

2 
; (10)

and then determines m as in (9) as the largest integer less than t
2 �

, that is,

m D Œ��: (11)

Introduce the abbreviations

� D C
p
t D �

p
2 ;

" D e�
 i
4 D

1 � i
p
2
;

g.x/ D xs�1
e�2 imx

e2 ix � 1
:

(12)

For now, let � be a non-integral number. Replace the path of integration C1 by the
piecewise linear path C2 consisting of the two half-lines emanating from the point
�� "

2
� and containing the points � and �.mC 1

2
/, respectively. With regard to the

poles at˙1,˙2,. . . ,˙m, the Residue Theorem yieldsZ
C1

g.x/dx D .e is
� 1/

mX
nD1

ns�1 C

Z
C2

g.x/dx

—.x/ D

mX
nD1

n�s C
.2 /s

2�.s/ cos. s
2
/

mX
nD1

ns�1 C
.2 /se

 is
2

�.s/.e2 is � 1/

Z
C2

g.x/dx: (13)

On the left one of the two straight line components of C2, which will be called C3,

arc.x/ � arctan
�

1

2
p
s � 1

�
> .2

p
.2/ � 1/�1 �

1

3
.2
p
2 � 1/�3 >

1

2
p
2
C
1

8

Im.x/ �
�

2
p
2

and thus by (10) and (11),

jxs�1e�2 imx
j � jxj��1e�t.

1

2
p
2
C 1
8
/C m �p

2 � jxj��1e
�t
8Z

C3

g.x/dx D O.e�
t
9 /; (14)

uniformly in � for �1 � � � �2.

On the right one of the two straight line components of C2, set, for y � ��
2

,

x D �C "y:
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Then
jxs�1e�2 imx

j D jxj��1et arctan. y

yC�
p
2
/� 
p
2my

:

Now, if even y � C�

2
holds, then for sufficiently large t we have

t arctan
�

y

y C �
p
2

�
�  
p
2my �

ty

y C �
p
2
�  
p
2my < ty

�
1

y C �
p
2
�
� � 1
p
2�2

�
D

ty

�
p
2

�
1

�
�

y

y C �
p
2

�
�

t

2
p
2

�
1

�
�

1

1C 2
p
2

�
< �

t

11
:

So we have the estimate

�

Z 1
�
2

g.x/"dy D O.e�
t
11 /; (15)

again uniform in �1 � � � �2. From (14) and (15) we obtainZ
C2

g.x/dx D
Z ��"�

2

�C"�
2

g.x/dx C O.e�
t
11 /: (16)

For the asymptotic expansion of the integral on the right hand side of (16) we
assume the identity

g.x/ D �s�1e�2 im� e� i.x��/2C2 i.��m/.x��/

e2 ix � 1
e.s�1/ log.1Cx��

�
/�2 i�.x��/C i.x��/2 :

(17)
For jx � �j < �, the last of the right hand side factors can be expanded into a
series of powers of x � � whose coefficients are to be studied further. With � as
defined in (12), put

e.s�1/ log.1C z
�
/�i�zC i

2
z2
D

1X
nD0

anz
n
D w.z/; (18)

where jzj < � . From the differential equation

.z C �/
dw
dz
C .1 � � � iz2/w D 0

we obtain the recursion formula

.nC 1/�anC1 D �.nC 1 � �/an C ian�2; n D 2; 3; : : : (19)

which is also valid for n D 0; 1 if we set a�2 D 0, a�1 D 0. If we include
the equation a0 D 1, then a1; a2; : : : are determined by (19), namely, an is a
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polynomial of degree n in ��1 that does not contain the powers ��k for k D
0; 1; : : : ; n � 2bn

3
c � 1. Therefore,

an D O.t�
n
2
Cbn

3
c/

uniformly for �1 � � � �2, but not uniformly in n.

To estimate the remainder of the power series w.z/, use the representation

rn.z/ D

1X
kDn

akz
k
D

1

2 i

Z
C

w.u/zn

un.u � z/
du (20)

where C means a curve contained in the radius of convergence which circles each
of the points 0 and z once with positive orientation. By (18),

log.w.u// D .� � 1C i�2/ log
�
1C

u

�

�
� i�uC

i
2
u2

D .� � 1/ log
�
1C

u

�

�
C iu2

1X
kD1

.�1/k�1

k C 2

�u
�

�k
;

so that in the circle juj � 3
5
� the estimate

Re.log.w.u/// � j� � 1j log
�
5

2

�
C
5

6

juj

�
juj2: (21)

holds. In (20), assume jzj � 4
7
� and that C is a circle about u D 0 of radius %n,

subject to the condition
21

20
jzj � %n �

3

5
�: (22)

From (20), (21), (22), it follows that the estimate

rn.z/ D O.jzjn%�nn e
5
6�
%3n/ (23)

holds uniformly in � in n. The function %�ne
5
6�
%3 of % assumes its minimum

. 5e
2n�
/
n
3 for % D .2n�

5
/
1
3 . By (22) the choice of %n D % is admissible if

21

22
jzj �

�
2n�

5

� 1
3

�
3

5
�:

Therefore,

rn.z/ D O

 
jzjn

�
5e
2n�

�n
3

!
; (24)
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where n � 27
50
t , jzj � 20

21
.2n�
5
/
1
3 . For jzj � 4

7
� the choice %n D 21

20
jzj is valid by

(22). Then (23) yields the relation

rn.z/ D O
��

20

21

�n
e
5
6�
. 21
20
jzj/3

�
D O.e

14
29
jzj2/ (25)

for jzj � �
2
. By (17) and (18),Z ��"�

2

�C"�
2

g.x/dx D �s�1e�2 im�
Z ��"�

2

�C"�
2

e� i.x��/2C2 i.��m/.x��/

e2 ix � 1
w.
p
2 .x��//dx:

(26)
To determine the error incurred by replacing w.

p
2 .x � �// in this equation by

the partial sum
Pn�1
kD0 ak.2 /

k
2 .x � �/k, study the integral

Jn D

Z ��"�
2

�C"�
2

e� i.x��/2C2 i.��m/.x��/

e2 ix � 1
rn.
p
2 .x � �//dx: (27)

Henceforth assume n � 5
16
t . Avoid the proximity of the poles x D m, x D mC1

of the integrand by replacing the part of the path of integration that is contained in
the circles jx�mj � 1

2
p
 

, jx�m� 1j � 1

2
p
 

, respectively, by the corresponding

arc. By (24), integration over the arc to Jn only contributes O. 5e
2n�
/
n
3 /. On the

remaining path of integration, �i .x � �/2 D � jx � �j2. Set

20

21

�
2n�

5

� 1
3

D �

and consider (24) for jx � �j � �
p
2 

, and on the other hand (25) for �
p
2 
�

jx � �j � �

2
. Then it follows that

Jn D O

 �
5e
2n�

�n
3
Z �

0

e�
1
2
v2C
p
2 vvndv C

Z �
2

0

e�
1
58
v2C
p
2 vdv

!
D O

 �
5e
2n�

�n
3

e
p
2 n2

n
2�

�
nC 1

2

�
C e�

1
59
�2

!
D O

 �
25n

4et

�n
6

e
p
2 n
C e�

1
59
�2

!
:

A simply computation shows that for n � 2 � 10�8t , the second O-term is domi-
nated by the first one. Thus we obtain the estimate

Jn D O

 �
3n

t

�n
6

!
(28)
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for n � 2 � 10�8t , uniformly in � and n.

From (16), (18), (26), (27), (28) it now follows thatZ
C2

g.x/dx D

�s�1e�2 im�

 
n�1X
kD0

ak.2 /
k
2

Z ��"�
2

�C"�
2

e� i.x��/2C2 i.��m/.x��/

e2 ix � 1
.x � �/kdx C O

 �
3n

t

�n
6

!!
:

If we integrate the right hand side over the full line from �C"1 to ��"1 instead
of from �C"�

2
to ��"�

2
, then, since n � 2�10�8t , the value of the integral changes

only by O.e�
t
8
C �.�

2
/k/. On the other hand, by (24),

ak D .rk � rkC1/z
�k
D O

 �
5e
2k�

�k
3

!
; k D 1; : : : ; n � 1;

and thus
n�1X
kD0

jakje�
t
8
C �

��
2

�k
D O

 
e�

t
8
C �

�
5et
16n

�n
3

!
D O

 �
3n

t

�n
6

!
:

If finally we replace the integration variable x by x Cm, then we obtainZ
C2

g.x/dx D

.�1/me�
 i
8 �s�1e� i�2

 
n�1X
kD0

ak.2 /
k
2

Z
0-1

e i.x2�2.xCm��/2C 1
8

e2 ix � 1
.x Cm � �/kdx C O

 �
3n

t

�n
6

!!
:

(29)

By the result of §1, the integralZ
0-1

e i.x2�2.x� up
2 
� 1
2
/2C 1

8
/

e2 ix � 1
dx D F.u/ (30)

has the value

F.u/ D
cos.u2 C 3 

8
/

cos.
p
2 u/

:

To be able to form the integral appearing in (29) for values k > 0 as well, Riemann
transforms (30) into the equation

F.ı C u/eiu2
D

Z
0-1

e i.x2�2.x� up
2 
� 1
2
/2C 1

8
/

e2 ix � 1
e2
p
2 i.x� ıp

2 
� 1
2
/udu;

9



which, by expansion into powers of u, becomes the equationZ
0-1

e i.x2�2.x� up
2 
� 1
2
/2C 1

8
/

e2 ix � 1

�
x �

ı
p
2 
�
1

2

�k
dx

D 2�k.2 /�
k
2 kŠ

bk
2
cX

rD0

ir�k

rŠ.k � 2r/Š
F .k�2r/.ı/ (31)

with k D 0; 1; 2; : : :.

From (13), (29), (31) now follows the expansion

—.s/ D

mX
lD1

l�s C
.2 /s

2�.s/ cos. s
2
/

mX
lD1

ls�1 C .�1/m�1
.2 /

sC1
2

�.s/
t
s�1
2 e

 is
2
� t i
2
� i
8 S

(32)
with

S D
X

0�2r�k�n�1

2�kir�kkŠ
rŠ.k � 2r/Š

akF
.k�2r/.ı/C O

 �
3n

t

�n
6

!
(33)

where

n � 2�10�8t; m D

$r
t

2 

%
; ı D

p
t�

�
mC

1

2

�
p
2 ; F.u/ D

cos.u2 C 3 
8
/

cos.
p
2 u/

;

and the coefficients ak are given by the recursion formula (19). This expansion is
semiconvergent, and uniformly so for �1 � � � �2, for the term (33) is of order
t�

n
6 for every fixed n, uniformly in � . The series (32) differs from the known

semiconvergent series’ in complex analysis by the appearance of the integer m,
which has the effect that the different coefficients of the expansion do not all vary

continuously with t . The assumption made in the proof that
q

t
2 

is not an integer
can easily be discarded afterwards, as in (32) we can take the limit from the right

of
q

t
2 

approaching any integer value.

If in (33) we choose the particular value n D 2 � 10�8t , then the error term is
O.10�10

�8t/, and thus converges exponentially to 0 for increasing t . For practical
purposes, this estimate of the error term useless due to the small factor 10�8 in
the exponent. Better estimates show that 10�8 can be replaced by a significantly
larger number. It would be interesting to know the precise order of the error as
a function in n; for it is not even trivial that it converges to 0 for fixed t and
increasing n.
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Because of the special importance of the case � D 1
2

it is useful to multiply (32)
with the function

e# i
D  

1
4
� s
2

s
�. s

2
/

�.1�s
2
/
: (34)

Here, understand # to be the unique branch in the plane cut from 0 to �1 and
from 1 to C1 that vanishes for s D 1

2
. Then, on the critical line � D 1

2
, # D

arc. 
s
2�. s

2
// and e# i—.s/ is real. By (32), for �1 � � � �2,

e# i—.s/ D 2

mX
lD1

cos.# C i.s � 1
2
/ log.l/

p
l

C.�1/m�1
�
t

2 

���1
2

e.
t
2

log. t
2 
/� t
2
� 
8
�#/iS

(35)
with S declared by (33). Every ak is a polynomial in ��1, and so is the finite sum
S . By collecting powers of ��1 it follows that for every fixed n and t !1, (33)
implies the relation

S D

n�1X
kD0

Ak�
�k
C O.��n/;

where the coefficients A0; : : : ; An�1 are homogeneous linear in finitely many
derivatives F.ı/, F 0.ı/,. . . . The explicit computation of the Ak using (33) and
the recursion formula for the ak is quite laborious. Riemann simplifies it by the
following trick. Set

F.ı C x/eix2
D

1X
kD0

bkx
k;

so that

S �

1X
kD0

.2i/�kkŠakbk (36)

is the full semiconvergent series, and the desired quantity Ak is the coefficient
of ��k obtained by collecting powers of ��1. The expression on the right hand
side of (36) is the constant term in the series in positive and negative powers of x
obtained by multiplying the convergent power series

F

�
ı C

1

x

�
eix�2

D

1X
kD0

bkx
�k

with the divergent series

y D

1X
kD0

.2i/�kkŠakxk: (37)
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As the fixed power ��k appears only in finitely many coefficients a0; a1; a2; : : :,
the following procedure for the determination of Ak is valid: By formal multipli-
cation of eix

�2

and y form the expression

z D eix�2y D

C1X
nD�1

dnx
n (38)

and out of this form the series
P1
kD0Bk�

�k by collecting powers of ��1. ThenAk
is the constant term in F.ıC 1

x
/Bk, and since for the computation of the constant

term the negative powers of x appearing in Bk are irrelevant, we only need to
determine the polynomial part of Bk .

If we abbreviate
ck D .2i/�kkŠak; k D 0; 1; 2; : : :

then by (19)

�cnC1 D i
nC 1 � �

2
cn �

n.n � 1/

8
cn�2; n D 0; 1; 2; : : :

with c�2 D 0, c�1 D 0, c0 D 1, and thus the power series (37) formally satisfies
the differential equation

�.y � 1/ D
i
2
x�C1D.x1��y/ �

1

8
x3D2.x2y/:

This implies the following differential equation for the series (38)�
� C

1

2x
C i

�
�

2
�
1

4

�
x

�
z C

1

8
x3D2.x2z/ D �eix�2 : (39)

Now if

z D

1X
nD0

Bn�
�n;

sorted by powers of ��1, then (39) implies

B0 D eix�2

and the recursion formula

BnC1 D

�
i
1 � 2�

4
x �

1

2x

�
Bn �

1

8
x3D2.x2Bn/; n D 0; 1; 2; : : :

12



Moreover, if we set

Bn D

3nX
kD�1

a
.n/

k
xk; n D 0; 1; 2; : : :

then

a
.0/

k
D 0; k D �2;�4;�6; : : :

a
.0/

�2k
D

ik

kŠ
; k D 0; 1; 2; : : :

a
.nC1/

k
D i

1 � 2�

4
a
.n/

k�1
�
1

2
a
.n/

kC1
�
.k � 1/.k � 2/

8
a
.n/

k�3
; nD0;1;2;:::;

kD0;˙1;˙2;::: (40)

With the a.n/
k

to be determined from these recursion formulas, we can explicitley
state An, namely

An D

3nX
kD0

a
.n/

k

kŠ
F .k/.ı/ (41)

and then

S �
X a

.n/

k

kŠ
F .k/.ı/��n

where n runs through all values 0; 1; 2; : : : and k through all values 0; 1; : : : ; 3n.

The recursion formula (40) takes its simples form for � D 1
2
. In this case, we

compute without difficulty

B0 D 1C : : :

B1 D �
1

22
x3 C : : :

B2 D
5

23
x6 C

1

23
x2 C

i
24 � 3

C : : :

B3 D �
5 � 7

23
x9 �

1

2
x5 �

i
26 � 3

x3 �
1

24
x C : : :

B4 D
52 � 7 � 11

25
x12 C

7 � 11

24
x8 C

5i
27 � 3

x6 C
19

26
x4 C

i
3 � 27

x2 C
11 � 13

29 � 32
C : : :

13



where the omitted summands contain only negative powers of x. Therefore,

A0 D F.ı/

A1 D �
1

23 � 3
F .3/.ı/

A2 D
1

27 � 32
F .6/.ı/C

1

24
F .2/.ı/C

i
24 � 3

F.ı/

A3 D �
1

210 � 34
F .9/.ı/ �

1

24 � 3 � 5
F .5/.ı/ �

i
27 � 32

F .3/.ı/ �
1

24
F .1/.ı/

A4 D
1

215 � 35
F .12/.ı/C

11

211 � 32 � 5
F .8/.ı/C

i
211 � 33

F .6/.ı/

C
19

29 � 3
F .4/.ı/C

i
28 � 3

F .2/.ı/C
11 � 13

29 � 32
F.ı/

(42)

for � D 1
2
, and thus S is determined in this case up to an error of magnitude ��5.

The semiconvergent expansion (35) can be further simplified by expanding the
quantity # in the second term on the right hand side using Stirling’s formula. To
this end, Rieman considers the equation

log
�
�

�
1

4
C
t i
2

��
D

�
t i
2
�
1

4

�
log

�
t i
2

�
�
t i
2
Clog.

p
2 /C

1

4

Z 1
0

�
4e3x

e4x � 1
�
1

x
� 1

�
e�2t ix

x
dx

for t > 0, that arises from Binet’s well-known formula for log.�.s// after an easy
manipulation. With the identity

4e3x

e4x � 1
D

1

cosh.x/
C

1

sinh.x/
this implies, by splitting in real and imaginary part,

log
ˇ̌̌̌
�

�
1

4
C
t i
2

�ˇ̌̌̌
D �

 

4
t �

1

4
log

�
t

2

�
C log.

p
2 /C

1

4

Z 1
0

�
1

cos.x/
� 1

�
e�2tx

x
dx

�
1

4
log.1C e�2 t/

arc
�
�

�
1

4
C
t i
2

��
D
t

2
log

�
t

2

�
�
t

2
�
 

8
C
1

4

Z 1
0

�
1

sin.x/
�
1

x

�
e�2tx

x
dx C

1

2
arctan.e� t/;

where the integrals are to be taken as Cauchy principal values due to the poles at
k  
2

, k D 1; 2; : : : Set

1

cos.x/
D

1X
nD0

En

.2n/Š
x2n; jxj <

 

2

x

sin.x/
D

1X
nD0

Fn

.2n/Š
x2n; jxj <  :

14



Then E0 D 1, E1 D 1, E2 D 5, E3 D 6, F0 D 1, F1 D 1
3
, F2 D 7

15
, F3 D 31

21
,

and in general

En �

 
2n

2

!
En�1 C

 
2n

4

!
En�2 � : : :C .�1/

nE0 D 0 
2nC 1

1

!
Fn �

 
2nC 1

3

!
Fn�1 C

 
2nC 1

5

!
Fn�2 � : : :C .�1/

nF0 D 0

for n D 1; 2; 3; : : : This yields

log
ˇ̌̌̌
�

�
1

4
C
t i
2

�ˇ̌̌̌
� �

 

4
t �

1

4
log

�
t

2

�
C log.

p
2 /C

1

8

1X
nD1

En

n
.2t/�2n

(43)

arc
�
�

�
1

4
C
t i
2

��
�
t

2
log

�
t

2

�
�
t

2
�
 

8
C
1

8

1X
nD1

Fn

n.2n � 1/
.2t/1�2n:

Now, # D � t
2

log. /C arc.�.1
4
C

t i
2
// on � D 1

2
, and thus

t

2
log

�
t

2 

�
�
t

2
�
 

8
� # � �

1

8

1X
nD1

Fn

n.2n � 1/
.2t/1�2n

e
t
2

log. t
2 
� t
2
� 
8
�#/i
D 1 �

i
24 � 3

t�1 �
1

29 � 32
t�2 C O.t�3/:

In light of (42), the definitive form of the semiconvergent series for —.s/ on � D 1
2

is the equation

e# i—

�
1

2
C t i

�
D 2

mX
nD1

cos.# � t log.n/
p
n

C .�1/m�1
�
t

2 

�� 1
4

R; (44)

where

# D �
t

2
log. /C arc

�
�

�
1

4
C
t i
2

��
;

m D

$r
t

2 

%
;

R � C0 C C1t
� 1
2 C C2t

�1
C C3t

� 3
2 C C4t

�2
C : : :
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with

C0 D F.ı/

C1 D �
1

23 � 3
F .3/.ı/

C2 D
1

24
F .2/.ı/C

1

27 � 32
F .6/.ı/

C3 D �
1

24
F .1/.ı/ �

1

24 � 3 � 5
F .5/.ı/ �

1

210 � 34
F .9/.ı/

C4 D
1

25
F.ı/C

19

29 � 3
F .4/.ı/C

11

211 � 32 � 5
F .8/.ı/C

1

215 � 35
F .12/.ı/

(45)

and

F.x/ D
cos.x3 C 3 

8
/

cos.
p
2 x/

ı D
p
t �

�
mC

1

2

�
p
2 ;

and this is essentially how it can be found in Riemann’s work. The only new item
in the above is the estimate of the remainder term.

If we drop the assumption that � D 1
2

and restrict � to an interval �1 � � � �2,
then we can still use the semiconvergent expansion (44); we only have to take t

to be the complex number �i.s � 1
2
/ and m the integer number b

q
jt j

2 
c, whereas

# is again given by (34). The necessary changes in the proof of this claim can be
made without difficulty to the above derivation of (44).

The semiconvergent series R is a homogeneous linear relation of the equantities
F.ı/, F 0.ı/, F 00.ı/,. . . . By rearranging we obtain from it an expression of the
form

D�0F.ı/CD
�
1F
0.ı/CD�2F

00.ı/C : : : ;

in which everyD�n is a power series in ��1. These power series are divergent. This
begs the question whether they are semiconvergent expansions of certain analytic
functions D0, D1, D2,. . . and if the sequence

D0F.ı/CD1F
0.ı/CD2F

00.ı/C : : : (46)

is also a semiconvergent expansion of R. This question was also considered by
Riemann, once again without the necessary estimate of the remainder. However,
since the series (46) is of lesser theoretical and practical importance than the origi-
nal semiconvergent expansion, we also omit the rather tedious analysis of the error

16



term in the following. Perhaps this serves even more to highlight the strength of
Riemann’s formalism.

Equation (30), which can also be writtenZ
m-mC1

e� i.x��/2C2 i.x��/.��m/

e2 ix � 1
dx D F.ı/e�

 i
8
� i.��m/2;

allows the following inversion

2
p
2 

e�
 i
8
� i.��m/2

Z
0.1

F.uCı/eiu2�2
p
2 i.x��/udu D

e� i.x��/2C2 i.x��/.��m/

e2 ix � 1
(47)

for m < Re.x/ < mC 1. This follows either by application of Fourier’s theorem
or by changing to complex conjugates in (5). From (47) it follows that

e�2 imx

e2 ix � 1
D .�1/m

2
p
2 

e� ix2� i
8

Z
0.1

F.uC ı/ei.uC��
p
2 x/2du (48)

is also valid for m < Re.x/ < mC 1. It suggests itself to substitute the series

F.ı/C
F 0.ı/

1Š
uC

F 00.ı/

2Š
u2 C : : :

for F.uC ı/ and to determine the contribution of every single term in this series
to the integral appearing in (16),Z ��"�

2

�C"�
2

g.x/dx D
Z ��"�

2

�C"�
2

xs�1
e�2 imx

e2 ix � 1
dx:

In this way, we find the semiconvergent expansionZ
C2

g.x/dx � .�1/m
2
p
2 

e�
 i
8

1X
nD0

F .n/.ı/

nŠ

Z
m-mC1

xs�1e� ix2
�Z

0.1

unei.uC��
p
2 x/2du

�
dx:

(49)
On the other hand, by (13) and (44),Z

C2

g.x/dx D .�1/m
�
t

2 

�� 1
4

e# iR.1 � e is/: (50)

Since, as we can easily see, the representation of An as a homogeneous linear
function of theF .k/.ı/with constant coefficients given in (41) is unique, it follows
from (49) and (50) that for n D 0; 1; 2; : : :

nŠDn.1�e is/ D
2
p
2 

�
t

2 

� 1
4

e�# i� i
8

Z
0-1

xs�1e� ix2
�Z

0.1

unei.uC��
p
2 x/2du

�
dx

(51)
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so in particular if we set

1
p
2 

�
t

2

� 1
4

e
 
4
t

s
�

�
1

4
C
t i
2

�
�

�
1

4
�
t i
2

�
D e!;

then

D0 D e!

D1 D ��.e! � e�!/C
�e is�!

1 � e is
� ��.e! � e�!/:

(52)

For the remainingDn we can use (51) to derive a recursion formula via integration
by parts. This can also be obtained in the following way without an additional
calculation. By (36), (37), (38),

S � d0F.ı/C
d1

1Š
F 0.ı/C

d2

2Š
F 00.ı/C : : : ;

where by (38) and (39), the dn satisfy the recursion formula

�dn C
1

2
dnC1 C

.n � 1/.n � 2/

8
dn�3 D 0; n D 1; 2; 3 : : :

Since
e.
t
2

log. t
2 
� t
2
�
uppi
8
�#/iS D R;

we have the following recursion formula for Dn,

DnC1 D �
2

nC 1
�Dn �

1

4n.nC 1/
Dn�3; (53)

for n D 1; 2; 3; : : :, with D�2 D 0, D�1 D 0. Using (52), we obtain the values

D2 D ��D1 � �
2.e! � e�!/

D3 D �
2

3
�D2 � �

2

3
�3.e! � e�!/

D4 D �
1

2
�D3 �

1

24 � 3
D0 �

1

3
�4.e! � e�!/ �

1

24 � 3
e!:

The semiconvergent expansions of D0, D1,. . . are obtained from (43), namely,

! �
1

8

1X
nD1

En

n
.2t/�2n D

1

25
t�2 C

5

28
t�4 C

61

29 � 3
t�6 C : : :

18



Substituting this into the obtained values for D0; : : : ;D4, it follows that

D0 � 1C
1

25
��4 C

41

211
��8 C : : :

D1 � �
1

24
��3 �

5

27
��7 C : : :

D2 �
1

24
��2 C

5

27
��6 C : : :

D4 � �
1

23 � 3
��1 �

5

26 � 3
��5 C : : :

D5 �
19

29 � 3
��4 C : : :

(54)

From the recursion formula (53) it follows that all exponents of powers appearing
in the semiconvergent expansion of the series Dn are congruent n modulo 4. Ac-
cordingly, the orders of all derivatives ofF.ı/ appearing inCn are of the form 3n�

4k, as is easily confirmed through the found expressions for C0; C1; C2; C3; C4.
If we write

R �
X

bklF
3l�4k/.ı/��l

where the summation index k runs through the values 0; : : : ; b3l
4
c and l runs

through the values 0; 1; : : :, then all bkl with l � 4 are determined by (45),
whereas the values b00; b34; b68; b23; b57; b12; b46; b01; b35; b24 are know due to
(54). We immediately see that the values b00; b34; b23; b12; b01; b24, that appear in
both (45) and (54), coincide.

For the numerical computation of the bkl and the practical application of the semi-
convergent series, the original form ordered by powers of ��1 is preferable, for
computing the Dn via (53) is more laborious than the computation of the Cn
treated earlier. Moreover, the orders of the Dn are not monotonously decreas-
ing, but D3n�2, D3n�1, D3n have the exact orders ��.nC2/, ��.nC1/, ��n, so that
we would have to additionally compute D5 to D12 to obtain the previous error
O.��5/.

The transition to the Dn is done via (48). If we try to obtain from (48) an exact
expression for —.s/ and not just a semiconvergent series, then we are led to to the
approach discussed in the following paragraph.
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§ 3 The integral representation of the zeta function

The explicit computation of the coefficients of the semiconvergent series for —.s/
relies on equation (5) in §1. With the help of this formula, Riemann derived an-
other rather interesting expression for —.s/, which apparently escaped the attention
of the other mathematicians until 1926.

At first, let � < 0, and let u�s assume the principal value on u-plane cut from 0 to
�1. Multiply (5) by u�s and integrate from 0 to e

 i
41 over u along the bisector

of the first quadrant. If we write " D e
 i
4 for short, thenZ "1

0

u�s

1 � e�2 iu
du D �

Z "1

0

u�s
1X
nD1

e2 inudu D �
1X
nD1

Z "1

0

u�se2 inudu

D ��.1 � s/

1X
nD1

�
2 ne�

 i
2

�s�1
D �.2 /s�1e

 i
2
.1�s/�.1 � s/—.1 � s/

andZ "1

0

u�s

 Z
0-1

e� ix2C2 iux

e ix � e� ix
dx

!
du D

Z
0-1

e� ix2

e ix � e� ix

 Z "1

0

u�se2 iuxdu

!
dx

D .2 /s�1e
 i
2
.1�s/�.1 � s/

Z
0-1

e� ix2xs�1

e ix � e� ix
dx;

so that by (5),

.2 /s�1e
 i
2
.1�s/�.1�s/

 
—.1 � s/C

Z
0-1

xs�1e� ix2

e ix � e� ix
dx

!
C

Z "1

0

u�se iu2

e iu � e� iu
D 0:

(55)
Here, the second integral can be brought into the form

1

e is � 1

Z
0.1

u�se iu2

e iu � e� iu
du;

where 0 . 1 indicates that the path of integration is obtained from the original
integral by reflection on the real axis. By multiplying (55) with the factor

21�s 
1�s
2 e

 i
2
.s�1/

�.1�s
2
/

�.1 � s/
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and considering the relation

2�s 
1�s
2 �.1�s

2
/

sin. s
2
/�.1 � s/

D  �
s
2�
� s
2

�
;

we obtin the following formula, valid on the whole s-plane,

 
1�s
2 �

�
1 � s

2

�
—.1 � s/ D  �

s
2�
� s
2

� Z
0.1

x�se ix2

e ix � e� ix
dx

C  �
1�s
2 �

�
1 � s

2

�Z
0.1

xs�1e� ix2

e ix � e� ix
dx:

(56)

Riemann does not quite write it in this symmetrical form, but this form seems to
be practical for applications. First, it shows the functional identity for —.s/. In
fact, for � D 1

2
the two summands on the right hand side are complex conjugates,

so  �
s
2�. s

2
/—.s/ is real there, and since this function is real for � > 1, we obtain

from the reflection principle the functional identity

 �
s
2�
� s
2

�
—.s/ D  �

1�s
2 �

�
1 � s

2

�
—.1 � s/ (57)

at � D 1
2

and thus for arbitrary s.

If in addition we set

f .s/ D

Z
0.1

x�se ix2

e ix � e� ix
dx (58)

'.s/ D 2 �
s
2�
� s
2

�
f .s/; (59)

then by (56) and (57) for � D 1
2

 �
s
2�
� s
2

�
—.1 � s/ D Re.'.s//: (60)

Thereby the investigation of —.s/ on the critical line is reduced to the investigation
of its real part.

§ 4 The meaning of Riemann’s formulas for the theory of the
zeta function

The principle term of the semiconvergent series for —.s/, that is, using (32), the
expression

mX
lD1

l�s C
.2 /s

 
sin
� s
2

�
�.1 � s/

mX
lD1

ls�1; m D

$r
t

2 

%
;
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has also been found by Hardy and Littlewood, where is instead of Riemann’s
expansion for S they only give an upper bound for the absolute value. They also
discovered a more general form of the principal term,X

l�x

l�s
.2 /s

 
sin
� s
2

�
�.1 � s/

X
l�y

ls�1 (61)

with xy D t
2 

. This does not appear in Riemann’s work, but we can find without
difficulty that the expression (61) can be completed into a semiconvergent series
in Riemann’s way, namely, here the function˚.�; u/ defined by (7) plays the same
role as the special function ˚.�1; u/ for Riemann.

For Hardy and Littlewoods applications of their formula, in particular the estimate
of the numberN0.T / of zeros of —.1

2
Ct i/ contained in the interval 0 < t < T , Rie-

mann’s formula apparently does not yield a better result. At the point mentioned
in the beginning, Riemann claimed that N0.T / is asymptotically T

2
log.T

2
/ � T

2
,

that is, asymptotically equal to the number N.T / of zeros contained in 0 < t < T
of —.s/, and that this could be proven by means of his new expansion. However,
from his notes it is not clear how he envisioned this proof. In the following repre-
sentation, valid on � D 1

2
,

e# i—

�
1

2
C t i

�
D 2

mX
nD1

cos.# � t log.n//
p
n

C O
�
t�

1
4

�
(62)

# D
t

2
log

�
t

2 

�
�
t

2
C O.1/

the first term in the right hand side trigonometric sum, cos.#/, has indeed asymp-
totically T

2 
log. T

2 
/ D T

2 
zeros in the interval 0 < t < T , and the coefficients

1
p
1
, 1
p
2
, 1
p
3
,. . . decrease monotonously. Perhaps Riemann believed that this ob-

servation might be helpful for a proof of his claim.

It suggests itself to use the exact Riemann formula to estimate the mean values

1

T

Z T

0

ˇ̌̌̌
—

�
1

2
C t i

�ˇ̌̌̌2n
dt n D 3; 4; : : :

As is well-known, these mean values are in a close relationship to the so-called
Lindelöf conjecture. But here we encounter significant difficulties of an arithmetic
nature, arising from the number of divisors of the natural numbers.

To establish a numerical table for the zeta function, in particular for the computa-
tion of further zeros, the semiconvergent expansion is of great advantage. How-
ever, for practical purposes, we need a more precise estimate of the remainder
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term than the one derived in §2. Riemann made quite extensive computations to
determine the positive zeros of —.1

2
C t i/ using his formula. For the smallest pos-

itive zero, he finds the number a1 D 14:1386. Gram later computed the value
14:1347, smaller by less than 3 per mill. A lower bound for a1 is also given by
the equation

1X
nD1

�
a2n C

1

4

��1
D 1C

1

2
C �

1

2
log. / � log.2/;

easily derived from the product representation of —.s/, where C is the Euler con-
stant and an runs through all solutions of —.1

2
C ai/ D 0 located in the right

half-plane. From this, Riemann obtains

1X
nD1

�
a2n C

1

4

��1
D 0:02309570896612103381:

For a3, he finds the value 25:31, whereas Gram gives the value 25:01.

The second Riemann formula, namely the integral representation of —.s/, may be
of greater interest for the theory. One can try to derive from (60) some information
on the distribution of zeros on the critical line. Suppose t runs through the interval
t1 � t � t2 in the positive direction. If on this path the function arc.'.1

2
C t i//

changes by A, where the change of '.s/ in passing a possible zero located on
� D 1

2
is defined to be the multiplicity of the zero multiplied by  , then by (60)

the number of zeros of —.1
2
C t i/ in the interval t1 � t � t2 is greater than jAj

 
� 1.

But now

arc
�
 �

s
2�
� s
2

��
D # D

t

2
log

�
t

2 

�
�
t

2
C O.1/; (63)

and hence by (59) the number of zeros —.1
2
C t i/ located in the interval 0 < t < T

would be at least T
2

log.T /, that is, asymptotically equal to the number of zeros of
—.s/ located in the strip 0 < t < T , if the arcus of the function f .1

2
C t i/ defined

by (58) decreases slower than �t log.t/ for t ! 1. For every half-strip �1 �
� � �2, t > 0, f .s/ can be expanded as a semiconvergent series by the method

of §2. However, the principal term is again a sum of b
q

t
2 
c summands, namelyPm

nD1 n
�s, and studying the arcus of this sum is a task of the same difficulty as

studying the zeros of the sum appearing in (62), so that apparently nothing is
gained by introducing f .s/.

If we now consider the rectangle with sides � D 1
2
, � D 2, t D 0, t D T , where

the upper side should not contain any zero of f .s/, then the change of 1
2 

arc.f .s//
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on a traversal of this rectangle with positive orientation equals the number of zeros
of f .s/ inside the rectangle. On the lower side, arc.f .s// changes by O.1/ and on
the right side, as follows from the semiconvergent series, the change is also only
O.1/. Moreover, with the usual methods in the study of the zeta function we can
show that the change on the upper side is at most O.log.T //. As a consequence, up
to an error of order log.T /, the change of arc.f .1

2
C t i// in the interval 0 < t < T

equals the number of zeros of f .t/ in the rectangle multiplied by �2 . Thus the
problem is reduced to the investigation of the zeros of the transcendent f .s/.

Riemann tries to obtain a statement on the zeros of f .s/ by forming, after (58),
the expression

jf .� C t i/j2 D
Z
0.1

Z
0&1

x���t iy��Ct ie i.x2�y2/

.e ix � e� ix/.e iy � e� iy/
dxdy

and then transforms the complex double integral into a new form by introduction
of a new variable, deformation of the domain of integration and application of the
residue theorem; but this does not lead to a useful result.

Only very little is known on the location of the zeros of f .s/. In Riemann’s
notes there are no further remarks on this issue. In this historically-mathematically
treatise we thus shall keep the following remarks on the theory of f .s/ brief. They
yield a proof of the inequality

N0.T / >
3

8 
e�

3
2
TCo.T /:

For f .s/ we can find a semiconvergent series using the method in §2. For the task
at hand it is sufficient to know the principal term of this series. First, we show that
in the domain t > 0, �� � t

3
7 , the formula

f .s/ � e
 i
4
.s� 7

2
/ 

s�1
2 sin

� s
2

�
�

�
1 � s

2

�
sin. �/

cos.2 �/
; jsj ! 1; (64)

holds, where

� D

r
s � 1

2 i
; 0 < arc.�/ <

 

4
:

By (56),

f .s/ D  s�
1
2

�.1�s
2
/

�. s
2
/

 
—.1 � s/ �

Z
0&1

xs�1e� ix2

e ix � e� ix
dx

!
: (65)
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The saddle point of the function xs�1e� ix2 is at x D �. Set

Re.�/ D �1;

Im.�/ D �2;

m D b�1 C �2c;

z D x � �;

w.z/ D e2 i�2.log.1C z
�
/� z
�
C 1
2
. z
�
/2/
� 1:

By Cauchy’s theorem, for every natural number k,Z
0&1

xs�1e� ix2

e ix � e� ix
dx

D

mX
nD1

ns�1 C �s�1e� i�2

 Z
k&kC1

e�2 i.x��/2

e ix � e� ix
dx C

Z
k&kC1

e�2 i.x��/2

e ix � e� ix
w.z/dx

!
:

(66)

If we were to proceed according to the procedure of §2, then we would have to
choose k D m. But then we would obtain (64) only on the smaller domain t > 0,
�� � t

1
2 , and the extension to the remaining domain t

1
2 > �� � t

3
7 would

require the elimination of additional terms. Thus, we leave k arbitrary for now.

The first integral on the right hand side of (66) can be computed by Riemann’s
method from §1. We obtainZ

k&kC1

e�2 i.x��/2

e ix � e� ix
dx D

p
2e

3 i
8 sin. �/C .�1/k�1e2 i��2 i.��k/2

2 cos.2 �/
: (67)

For the second integral choose a path of integration passing through the saddle
point x D � and parallel to the bisector of the second and fourth quadrant. It
meets the real axis in the point �1 C �2. But to avoid proximity of the poles
x D m and x D m C 1, further replace those parts of the path of integration
passing through the circles jx � mj D 1

2
and jx � m � 1j D 1

2
by segments of

these circles. If we assume
k D mC r � m;

thenZ
k&kC1

e�2 i.x��/2

e ix � e� ix
w.z/dx D

rX
lD1

.�1/mCl�1e�2 i.mCl��/2w.mC l � �/

C

Z
m&mC1

e�2 i.x��/2

e ix � e� ix
dx:

(68)
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For w.z/ we require to estimates. The first is with respect to the circle jzj � 1
2
j�j.

In this circle,ˇ̌̌̌
ˇlog

�
1C

z

�

�
�
z

�
C
1

2

�
z

�

�2 ˇ̌̌̌ˇ D
ˇ̌̌̌
ˇ 1X
nD3

.�1/n�1

n

�
z

�

�b ˇ̌̌̌ˇ � 13
ˇ̌̌̌
z

�

ˇ̌̌̌3
1

1 � j z
�
j
�
2

3

ˇ̌̌̌
z

�

ˇ̌̌̌3
and hence

jw.z/j � e
4 
3
j z
3

�
j
� 1; jzj �

1

2
j�j: (69)

The second estimate concerns the part of the path of integration lying outside of
this circle. If we further set u D Re.ze

 i
4 /, v D Im.ze

 i
4 /, then on the line of

integration we have �1
2
� v � 1

2
, and if j�j > 1, then outside of the circle

jzj D 1
2
j�j the inequality ˇ̌̌u

v

ˇ̌̌
< .j�j2 � 1/�

1
2

holds, that is,

arc
�
1C

iv
u

�
! 0; jsj ! 1

and
 

4
� " <

ˇ̌̌̌
arc

�
z

�

�ˇ̌̌̌
<
3 

4
C ";

with "! 0 for jsj ! 1. But thenˇ̌̌̌
ˇ2 i�2

 
log

�
1C

z

�

�
�
z

�
C
1

2

�
z

�

�2!ˇ̌̌̌ˇ D 2 j�j2 �
ˇ̌̌̌
ˇZ z

�

0

x2

1C x
dx

ˇ̌̌̌
ˇ

� 2 j�j2
Z j z

�
j

0

x

sin. 
4
� "/

dx D
 jzj2

sin. 
4
� "/

�
3

2
 jzj2

and
jw.z/j < e

3
2
 jzj2 :

Moreover, on the line of integration,

je�2 iz2
j D e�2 .u

2�v2/
� e �2 jzj

2

;

and thus

je�2 iz2w.z/j �

(
e �

 
2
jzj2; jzj > 1

2
j�j;

e �2 jzj
2
�

e
4 
3
j z
3

�
j
� 1

�
; jzj � 1

2
j�j:
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This yields Z
m&mC1

e�2 i.x��/2

e ix � e� ix
w.z/dx D O.e� �2��1/

and together with (65), (66), (67), (68),

f .s/ D  s�
1
2

�.1�s
2
/

�. s
2
/
�s�1e� i�2

�

 
e i�2

1X
nDmCrC1

�
n

�

�s�1
�

p
2e

3 i
8 sin. �/C .�1/mCr�1e2 i��2 i.��m�r/2

2 cos.2 �/

C

rX
lD1

.�1/mCle�2 i.mCl��/2w.mC l D �/C O.e� �2��1/

!
:

(70)

Now we have to show that on the domain t > 0, �� � t
3
7 , for a suitable choice

of r and for jsj ! 1, the expression

�

p
2e

3 i
8 sin. �/

2 cos.2 �/

is of higher order than the remaining terms in the parantheses in (70). Firstly,ˇ̌̌̌
ˇe i�2

1X
nDmCrC1

�
n

�

�s�1 ˇ̌̌̌ˇ < e�2 �1�2j�1�sj
�
.mC r C 1/�

��
C .mC r C 1/��1

�
< e�2 �1�2Ctarc.�/

�
mC r C 1

j�j

���1 �
mC r C 1

��
C 1

�
:

(71)

Since

2 �1�2 C arc.�/ < �2 �1�2 C t
�2

�1
D �2 

�32
�1
< 0 (72)

and�
mC 1

j�j

���1
<

�
�21 C �

2
2 C 2�1�2

�21 C �
2
2

���1
2

< e
�1�2

�2
1
C�2
2

��1
2
< e

�2
2�1

��1
2 D e� �

2
2 ;

we have ˇ̌̌̌
ˇe i�2

1X
nDmC1

�
n

�

�s�1 ˇ̌̌̌ˇ D O
�

e� �
2
2

�
1C

�1

��

��
: (73)
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Moreover,

j.�1/m�1e2 i��2 i.��m/2
j D e�2 �2�4 .m��1/�2 < e�4 .�2�

1
2
/�2 : (74)

Now, since on the subdomain t > 0, �� � t
5
8 , the inquality

�2 D
1 � �

4 �
>
1 � �

2
.2 .t C 1 � �//�

1
2 >

1

2
t
5
8

�
2 
�
t C t

5
8

��� 1
2

holds, and the right hand side goes to infity with t , it follows in light of (73) and
(74) that the expression in the paranthese of (70) takes the value

�

p
2e

3 i
8 sin. �/

2 cos.2 �/
.1C o.1//; jsj ! 1; (75)

for r D 0 on this subdomain. In the remaining subdomain t > 0, t
5
8 > �� > t

3
7 ,

choose
r D

j
j� j

1
5

k
:

Then for sufficiently large t ,�
mC r C 1

j�j

���1
<

�
j�j C r

j�j

���1
< e

��1
2

r
2�1 D e� r�2;

so by (71) and (72),

e i�2
1X

nDmCrC1

�
n

�

�s�1
D O

�
e� r�2

�
1C
j�j

j� j

��
D O

�
e�

1
2
t
1
70

�
: (76)

Moreover, for l D 1; : : : ; r ,

jmC l � �j2 � .r C �2/C �
2
2 D O.j� j

2
5 / D O.t

1
4 /; (77)

that is, for mC l � � lies in the circle jzj � 1
2
j�j for sufficiently large t , and (69)

is applicable for z D mC l � �. By (77),

w.mC l � �/ D O.j� j
3
5 j�j�1/: (78)

Finally, for l D 1; : : : ; r ,

je�2 i.mCl��/2
j < e�4 .�2Cl�1/�2 � e�4 �

2
2 (79)

and for sufficiently large t ,

je2 i��2 i.mCr��/2
j < e�3 r�2 D O.e�t

1
70
/; (80)
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so that by (78) and (79),

rX
lD1

.�1/mCle�2 i.mCl��/2w.mC l � �/ D rO.e�4 �
2
2 j� j

3
5 j�j�1/

D O.e�4 �
2
2 j� j

4
5 j�j�1/:

(81)

If we consider the inequalities

j sin. �/j � sinh. �2/ >  �2 >
j� j

4j�j
;

j cos.2 �/j � cosh.2 �2/ < 2e2 �2;

the the estimates (76), (80), (81) show that on the domain t > 0, t
5
8 < �� < t

3
7

the value of the expression in parantheses in (70) is given by (75).

The claim in (64) now follows by application of Stirling’s formula.

It is even possible to prove (64) for the larger domain t > 0, �� � t ", where "
is any fixed positive number. But for the following, any value of " below 1

2
, for

example " D 3
7
, is sufficient.

Aside from (64) we need a rough estimate of the order of f .s/ for fixed � and
t ! 1. This is obtained from the semiconvergent expansion of f .s/ for in the
domain t > 0, �� � t

3
7 . A look at the proof of (64) shows that up to equation

(70), the assumption �� � t
3
7 was only used in the weaker form � < �0, where

�0 is any real number. Thus, in analogy to (70) with r D 0,

f .s/ D  s�
1
2

�.1�s
2
/

�. s
2
/
�

 
—.1 � s/ �

mX
nD1

ns�1

� �s�1e� i�2

 p
2e

3 i
8 sin. �/C .�1/m�1e2 i��2 i.��m/2

2 cos.2 �/
C O.��1/

!!
(82)

with � D
q
s�1
2 i , jarc.�/j <  

4
,m D bRe.�/C Im.�/c in the quarter plane � < �0,

t > 0. Additional terms of the semiconvergent series can be obtained by the
method from §2, but are not needed for our present purposes.

A second semiconvergent expansion of f .s/, for which the quarter plane � > �0,
t > 0, is convenient, can be obtained by applying the saddle point method to (58)
rather than the representation of f .s/ obtained from (65). There is no need to
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repeat the calculation, for the integral in (58) is obtained from the one in (65) if
we pass to complex conjugate quantities and replace � by 1 � � . Hence

f .s/ D

m1X
nD1

n�s C ��s1 e i�21

 p
2e

3 i
8 sin. �1/C .�1/m1�1e2 i�1�2 i.�1�m1/2

2 cos.2 �1/
C O.��11 /

!
(83)

with �1 D
p

s
2 i , jarc.�1/j <  

4
, m1 D bRe.�1/ � Im.�1/c in the quarter plane

� > �0, t > 0. Comparison of (82) and (83) yields the semiconvergent series for
—.s/ on the half strip �1 < � < �2, t > 0. This derivation is possibly easier with
respect to the necessary estimates than the one in §2, but the individual terms of
the series appear at first in a more complicated form.

From (83) it follows that8̂̂<̂
:̂
f .s/ D

Pm1
nD1 n

�s C O
��

jsj

2 e

���
2

�
; � � 0; t > 0;

f .s/ D O.t
1
4 /; � � 1

2
;

jf .s/ � 1j < 3
4
; � � 2; t > t0;

(84)

and from (82) it follows that8̂̂̂<̂
ˆ̂:
f .s/ D  s�

1
2
�. 1�s

2
/

�. s
2
/

�
—.1 � s/ �

Pm
nD1 n

s�1 C O.1/
�
; � � 1; t > 0;

f .s/ D  s�
1
2
�. 1�s

2
/

�. s
2
/

O
��

t
2 

��
2 j� j�1

�
; 0 < �� � t

3
7 ; t > 0;

f .s/ D  s�
1
2
�. 1�s

2
/

�. s
2
/

O.log.t//; 0 � �� � t
3
7 ; t > 0

(85)
For the following it is convenient to consider the function

g.s/ D  �
sC1
2 e�

 is
4 �

�
s C 1

2

�
f .s/

instead of f .s/. By (64), for t > 0, �� � t
3
7 with � D

q
s�1
2 i ,

g.s/ � e�
7 i
8 tan

� s
2

� sin. �/
cos.2 �/

; jsj ! 1: (86)

Now we wish to estimate the mean value of jg.s/j2 on the half line � D �0 <
1
2
,

t � 0, that is, the expression

T �1
Z T

0

jg.� C t i/j2dt; � <
1

2
:
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This could be done using the asymptotic expansion (82), but the most elegant
derivation uses (58), for according to this, for " > 0,Z 1
0

jf .�Ct i/j2e�"tdt D
Z 1
0

e�"t
 Z

0.1

Z
0&1

x���t iy��Ct ie i.x2�y2/

.e ix � e� ix/.e iy � e� iy/
dxdy

!
dt;

and here the right hand side can be transformed by deformation of the path of
integration, interchange of the order of integration and application of the residue
theorem. This computation yieldsZ 1

0

jf .� C t i/j2e�"tdt �
1

2"
.2 "/��

1
2�

�
1

2
� �

�
;

valid for � < 1
2

and "!1, and it further follows thatZ 1
1

jf .� C t i/j2
�
t

2 

��
e�"tdt �

.2"/�
3
2

1 � 2�
:

Hence, for any fixed � < 1
2
,Z T

1

jf .� C t i/j2
�
t

2 

��
dt �

1

3
p
2 

T
3
2

1
2
� �

:

On the other hand, by Stirling’s formula,

jg.s/j �
p
2 �

�
2

�
t

2

��
2

jf .s/j; (87)

and thus the desired formula

T �1
Z T

1

jg.� C t i/j2dt �
1

3

r
2

 

T
1
2

1
2
� �

is obtained for fixed � < 1
2
. It follows further thatZ T

0

log jg.� C t i/jdt <
T

2
log

 p
2T

1
2

3
p
 .1

2
� �/

!
C o.T /; � <

1

2
; T !1:

(88)
For � D 1

2
we can state a lower bound for

R T
0

log jg.� C t i/jdt . In fact, by (60),
on the critical line we haveˇ̌̌

 �
s
2�
� s
2

�
—.s/

ˇ̌̌
�

ˇ̌̌
2 �

s
2�
� s
2

�
f .s/

ˇ̌̌
;
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that is, by (87),

jg.s/j � .8 /�
1
4 t

1
4 j—.s/j.1C o.1//; � D

1

2
;Z T

0

log
ˇ̌̌̌
g

�
1

2
C t i

�ˇ̌̌̌
dt >

T

4
log.T / � .log.8 /C 1/

T

4

C

Z T

0

log
ˇ̌̌̌
—

�
1

2
C t i

�ˇ̌̌̌
dt C o.T /:

(89)

Finally, for � � 2, by (87) and (84),Z T

0

log j.g� C t i/jdt D �
�
T

2
log

�
T

2 

�
�
T

2

�
C
T

2
log.2/C o.T /: (90)

Now let t0 > 0, T > t0 and the lines t D t0, t D T are assumed to contain no
zeros of g.s/. Moreover, let �0 > �T

3
7 D �1. Consider the rectangle with the

sides � D �0, t D T , � D �1, t D t0. On the left side � D �1, t0 � t � T , there
is no zero of g.s/ for sufficiently large T according to (64). The zeros contained in
the inside of the rectangle are to be connected to the right side � D �0 by sections
that are parallel to the real axis. In the cut up rectangle log.g.s// is unique. A
branch of this function is determined by the requirement 0 � arc.g.�1 C T i// <
2 . As is well-known, then

2 
X
˛<�0

.�0 � ˛/ D

Z T

t0

log jg.�0 C t i/jdt �
Z �0

�1

arc.g.� C T i//d�

�

Z T

t0

log jg.�1 C t i/jdt C
Z �0

�1

arc.g.� C t0i//d�;

(91)

where ˛ runs through the real parts of all zeros of g.s/ contained in the rectangle.
The first integral can be estimated from above for �0 < 1

2
, from below for �0 D 1

2
,

and given precisely for �0 � 2. The third and fourth integral contribute only a
term of order T

13
14 , as can be easily seen from (86). The second integral can be

estimated as O.T
6
7 log.T // in the usual way using (84) and (85). Therefore, by

(88),X
˛<�

.��˛/ <
T
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log.T /�

T
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2
; (92)

by (89)X
˛< 1
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T
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log.T /�.1Clog.8 //
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Z T
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log
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2
C t i

�ˇ̌̌̌
dtCo.T /;

(93)
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and by (90),X
˛

.� �˛/ D �

�
T

4 
log

�
T

2 

�
�
T

4 

�
C
T

4 
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In the last equation, ˛ runs through the real parts of all zeros of g.s/ contained in
the strip 0 < t < T . If their number is denoted by N1.T /, then due to (94),
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In the upper half plane the zeros of g.s/ coincide with those of f .s/. If all except
o.T / many zeros of N1.T / were located to the right of � D 1

2
, then the change of

arc.f .1
2
C t i// in the interval 0 < t < T would equal �.T

2
log. T
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2
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and we would not obtain any statement on the zeros of —.1
2
C t i/. However, firstly

it follows from (94) that X
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there are certainly infinitely many zeros of f .s/ located to the left of � D 0. More-
over, (92) and (93) yield, independently of (94), by subtraction a lower bound for
the number of zeros of f .s/ located in the domain � < 1

2
, 0 < t < T . Namely, if

N2.T / denotes this number, then it follows for every � < 1
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As is well-known, and follows from an ansatz (91) with —.s/ instead of g.s/,
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where ˛— runs through the real parts of the zeros of the zeta function located in the
strip 0 < t < T to the right of the critical line. This implies
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Within the strip 0 < t < T , at most N1.T / � N2.T / zeros of f .s/ are located to
the right of � D 1

2
, and therefore arc.f .1

2
C t i// decreases by at most 2 .N1.T /�

N2.T //CO.log.T // in the interval 0 < t < T . As a consequence, arc.'.1
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increases by at most
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in this interval, and this number is at least 2 N2.T / C o.T / by (63), (95), (96).
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the inequality
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The density of the zeros of —.s/ located on the critical line, that is, the lower bound
of the ratio N0.T / W T for T ! 1, is therefore positive, namely it is at least
3
8 

e�
3
2 , and thus greater than 1

38
. Aside from this numerical value, this insight is

not at all new, but was already proved by Hardy and Littlewood in 1920 in a much
easier way. Despite of this rather negligable result, the current proof may have
some value in its own right due to the insight into the properties of f .s/.

A further remark on equation (97). In a way, the sum
P
.˛— �

1
2
/ measures the

“wrongness” of Riemann’s conjecture. It is known from Littlewood’s work that
this sum is at most O.T log.log.T ///, but we do not know a better estimate. If
Riemann’s conjecture is wrong, then the sum might grow faster than T . But then
N0.T / would grow faster than T by (97), and Riemann’s conjecture couldn’t bee
“all too wrong”. If  .t/ is any positive function of t that diverges more slowly
than log.t/, then (97) implies further that in the narrow domain 0 � �� 1

2
�

 .t/

log.t/ ,

2 � t � T , at least 3
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e�
3
2T .T /.1C o.1// zeros of —.s/ are contained. This is a

new result in the situation that  .t/ also grows more slowly than log.log.t//. For
example, the domain 0 � �� 1

2
�

19
log.t/ , 2 � t � T , contains more than T Co.T /

zeros.

The question remains whether the lower bound forN2.T / given in (96) can be im-
proved. For the proof of Riemann’s claim thatN0.T / is asymptotically T

2 
log. T

2 
/�
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T
2 

, it is sufficient to show the corresponding statement for N2.T /. It seems this
can hardly be achieved by the analytical methods employed so far in the theory of
the zeta function without any significant new idea. In particular, this is so for any
attempt to prove Riemann’s conjecture.
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Original: Über Riemanns Nachlaß zur analytischen Zahlentheorie, Quellen und Studien zur Geschichte
der Mathematik, Astronomie und Physik 2, 1932, 45-80

Translation by Wolfgang Globke, Version of March 27, 2018.
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