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1 Introduction

It is the aim of this work to prove a general result on the arithmetic properties of
analytic homomorphisms between commutative algebraic groups. Many results
and problems in transcendental number theory can be reduced to this question,
and our main result gives an answer to a series of open problems.

It became apparent that the study of analytic homomorphisms between commu-
tative algebraic groups has been very beneficial for transcendental number theory
and leads to beautiful results. This was noted by S. Lang about twenty years ago,
and he proved in [L1] that for Q-defined commutative algebraic groups G and
elements ˛ ¤ 0 in T.G/.Q/, the image expG.˛/ under the exponential map in
general does not lie in G.Q/. Here, T.G/ denote the tangent space of G at the
identity element, T.G/.Q/ the set ofQ-rational points of T.G/ andG.Q/ the sub-
group of algebraic points of G. In other words, G.Q/ is the group of Q-valued
points of the group scheme G. From this result by Lang a whole series of results
on transcendence can be derived. Among others, one can derive the transcendence
of e˛ for algebraic ˛ ¤ 0, if we setG D Gm, where Gm denotes the multiplicative
group scheme. This is the famous Lindemann Theorem. This result corresponds
to a result on one-parameter subgroups of algebraic groups. Shortly after, it was
extended by Lang [L2, L3] in several directions to d -parameter subgroups of al-
gebraic groups. All these works were based on a method developed by Schneider
[Sch1, Sch2].

A second fundamental method was developed by A. Baker [Ba1, Ba2] in connec-
tion with the study of linear forms of logarithms of algebraic numbers. It will
play a central role in our investigations, together with the so-called zero estimates
of algebraic groups. These were developed in recent years by D.W. Masser and
the author [Ma-Wü1, Ma-Wü2, Ma-Wü3] and extended by the author [Wü1] to
multiplicity estimates.

In the following letG be a connected commutative algebraic group of dimension n
and T.G/ its tangent space at the identity element. As a Q-vector space of deriva-
tions of the local ring of G at the identity element, the latter has a Q-structure in
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a natural manner that extends to left- and right-invariant vector fields. In particu-
lar, the exponential map can be chosen such that the analytic functions appearing
in it have a power series extension at the origin with algebraic coefficients. The
exponential map

expG W T.G/! G

is thus also Q-defined (however, not in the category of schemes with respect to
the Zariski topology).

If G and G 0 are complex Lie groups, then a homomorphism

' W G 0 ! G

is called analytic if ' is a homomorphism of complex Lie groups. In the following,
we only consider commutative Lie groups. It is well-known that ' induces a linear
map

d' W T.G 0/! T.G/

between the tangent spaces, such that the diagram

G 0
' // G

T.G 0/

expG0

OO

d' // T.G/

expG

OO

commutes. If G 0 and G are Q-defined algebraic groups, then we call ' Q-defined
if d' is a homomorphism of Q-vector spaces. Note that in general '.G 0/ is not
a closed subgroup of G. If the differential d' is injective, we call ' an analytic
subgroup of G.

Main Theorem Let G and G 0 be Q-defined connected commutative algebraic
groups with dimG; dimG 0 > 0 and

' W G 0 ! G

a Q-defined analytic homomorphism. If '.G 0/.Q/ ¤ 0, then there exists an alge-
braic subgroup H � '.G 0/ defined over Q with dimH � 1.

Remarks

1. If H is a Q-defined algebraic subgroup of '.G 0/, then clearly H.Q/ �
'.G 0/.Q/. So the Main Theorem is just the converse of this trivial fact.

2. If H � '.G 0/ is the maximal Q-defined algebraic subgroup, then

H.Q/ D '.G 0/.C/ \G.Q/:
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To see this, consider the canonical homomorphism � W G ! G=H . As
H 0 D .� ı '/�1.0/ is a closed Lie subgroup of G 0, we can form G 0=H 0

and obtain a Lie group G 00. Now consider the induced homomorphism ' W

G 00 ! G=H and obtain an analytic homomorphism

T.G 00/
expG00

�! G 00
'
�! G=H:

This one we call '0 W T.G 00/! G=H . It is a Q-defined analytic homomor-
phism with injective differential d'0 between two commutative algebraic
groups. If dim T.G 00/ D 0 or dimG=H D 0, then we are done. Otherwise
we can apply the Main Theorem to find that '0.T.G 00// \ .G=H/.Q/ D 0.

3. In Remark 2 we already used the fact that we can always assume without
loss of generality that G 0 is a vector space. In fact, we only need to set
V D T.G 0/ and replace ' by ' ı expG0 .

4. We may assume without loss of generality that d' is injective, and can then
identify V with a vector subspace of T.G/.

5. The theorem is non-trivial only if dim'.G 0/ < dimG. Otherwise, H D G
has the desired property.

6. It is enough to prove the theorem for the case dimG 0 D n � 1, where
n D dimG. In fact, by Remark 3 we may assume thatG 0 is a d -dimensional
vector space V and by Remark 4 we may assume that d < n. Now d' is
injective, so that we can identify V with a subalgebra of T.G/. But this is
always contained in an n � 1-dimensional subalgebra W of T.G/. If V is
Q-defined, then W can also be chosen as Q-defined. Once we have found
an algebraic subgroup H D H.W /, we set

H D
\
W�V

H.W /;

where the intersection is taken over all such W . This is a non-trivial alge-
braic subgroup of dimension different from 0 that is contained in '.G 0/ and
is Q-defined. In fact, we have

H.Q/ D
\
W�V

H.W /.Q/ D '.G 0/.C/ \G.Q/:

If the right-hand side contains an element different from 0, then it contains
infinitely many. Thus H.Q/ is infinite and dimH ¤ 0.
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As the perhaps most interesting application of this theorem we mention the fol-
lowing theorem which will be proved in a future article. LetX be a smooth quasi-
projective variety over Q and let 
 represent a class in H1.X;Z/. If ! represents
a class in H0.X;˝1

X/, then the following holds:

Theorem The integral
R


! is either 0 or transcendent.

Remark The integral depends only on the classes of 
 and !.

2 Some preliminary remarks

To employ the techniques of the theory of transcendental numbers, we need some
preparations. In particular, we need an explicit description of the exponential map.
This is done in [F-W], and we will briefly recall it here.

Let G be a commutative connected algebraic group. It is known that there is a
maximal connected linear subgroup L of G such that G is an extension of an
abelian variety A by L. After an algebraic extension of the base field, L becomes
isomorphic to a product of multiplicative groups Gm and additive groups Ga,

L
�
�! Gl1

a �Gl2
m :

The linear subgroupL is compactified in a suitable manner toLwithL-operations,
and we set G � L=L D G. This is a fiber bundle over A with fiber L. We then
obtain divisors E1; : : : ; El1Cl2 on G that come from the compactification of L.
Set E 0 D E1 C : : : C El1 , E 00 D El1C1; : : : ; El1Cl2 and E D E 0 C E 00. The
divisor E 0 belongs to the additive and the divisor E 00 belongs to the multiplicative
part of L. If p W G ! A is the canonical projection andD an ample divisor on A,
then we set

Da;b D a � p
�.D/C b �E

for integers a; b � 1. This divisor is very ample for a � 3 and b � 1. For
such numbers a and b we consider the sheaf OG.Da;b/ on G. Then every basis
x0; : : : ; xN of H0.G;OG.Da;b/

/ gives an embedding j of G into PN . Here, N D
dim H0.G;OG.Da;b/

/ � 1. This embedding is such that the divisor E is contained
in the divisor on G defined by x0 � � � xN D 0.

If Œl � denotes the multiplication on G with 0 ¤ l 2 N that extends to a mor-
phism on G, then Œl ��Da;b � l

2Da;b � bZ1 for a positive divisor Z1 on G with
support contained in that of E. Therefore, there exist homogeneous polynomials
˚
.l/
0 ; : : : ; ˚

.l/
N in x0; : : : ; xN such that for g 2 G the homogeneous coordinates of

lg are given by

.x0; : : : ; xN /.lg/ D .˚
.l/
0 ; : : : ; ˚

.l/
N /.g/:
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Now set '.l/i D j �˚
.l/
i for 0 � i � N . Then '.l/ D .'

.l/
0 ; : : : ; '

.l/
N / defines a

rational map fromG toG. This is undefined along a divisor QE � E, but otherwise
coincides with Œl �.

By the height of a point or a polynomial we mean the Weil height. For ˛ 2 Pn.K/
for an algebraic number field K this is defined by

H.˛/ D
Y
�

max
i
.j˛i j�/;

where ˛ D .˛0; : : : ; ˛N / and j � j� runs through the normed absolute values of K.
If P is a polynomial of degree d.P / � D in n variables with coefficients in K,
then it corresponds to a point in the projective space PN , where N D

�
DCn

n

�
. Its

height is defined to be that of the corresponding point.

Proposition 2.0 Let G be defined over Q and l � 1 integer. Then there are
constants c1; c2 > 0 with the following property. If m � 0 is an integer and
g; g0 2 G.Q/ with lmg0 D g, then the logarithmic height h.g0/ of g0 can be
estimated by

h.g0/ � c1l
c2m.h.g/C 1/:

PROOF: We set �i D xi.g/ for 0 � i � N , and

fij D �i'
.l/
j � �j'

.l/
i .0 � i; j � N/:

Furthermore, let g.1/; : : : ; g.ı/ be the solutions of lg0 D g and �.�/i D xi.g
.�//.

Then ıjl2n. For s < t we set

R D R.xs; xt/ D

ıY
jD1

.�
.j /
t xs D �

.j /
s xt/;

so that R vanishes in g.1/; : : : ; g.ı/. If � D x0 � � � xN , then �R vanishes on
.'.l//�1.g/. Then it holds by Hilbert’s Nullstellensatz that .�R/e 2 I for some
positive exponent e, that is,

.�R/e D
X

hijfij

with homogeneous polynomials hij in x0; : : : ; xN . This is a system if linear equa-
tions in the coefficients of R and the hij . According to [Ma-Wü1], Chapter 4, in
particular Theorem IV and Lemma 4, we find the following estimate for the height
of .�R/e,

logH..�R/e/ � c1ıc2.h.g/C 1/:
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Since H..�R/e/ D H.Re/, we obtain the desired inequality for m D 1 after
some known estimates. Form D 0 the inequality is trivial anyway, and form > 1

it follows by induction. }

The following observation is important in what follows. If � � G is a finitely
generated subgroup of G, we can choose a basis x0; : : : ; xN of H0.G;OG.Da;b//

such that x0.
/ ¤ 0 for all 
 2 � . This can be achieved via an automorphism of
H0.G;OG.Da;b// over Q.

Let U denote the open affine set G \ .x0 ¤ 0/ of G. As the translationally
invariant vectro fields on G extend to translationally invariant vector fields on G,
for every vector field � W OG ! OG the induced map

� W �.U;OG/! �.U;OG/

is a derivation. Thus � stabilizes the affine algebra of U . A basis of the Lie alge-
bra of invariant vector fields induces linearly independent derivations @1; : : : ; @n
of this affine algebra.

Now let ' W G 0 ! G be an analytic subgroup with image B � G. Though
this is not closed, but itself a Lie group with tangent space T.B/ in the unity
element. Henceforth we will identify the analytic subgroup ' with its image B
and its tangent space T.B/ with a subspace of T.G/. We can do this, as the Main
Theorem only makes a claim about the image. Finally, we identify the algebraic
group G with its image in PN .

Let X0; : : : ; XN be coordinates of PN with xi D j �Xi for 0 � i � N . Then we
set for 0 � i � N

fi D Xi ı j ı expG D xi ı expG :

As f0; : : : ; fN are sections of exp�G /.Da;b/ and the latter is a trivial line bundle,
we can identify f0; : : : ; fN with functions on the tangent space T.G/. This again
can be identified with Cn via @1; : : : ; @n.

The function fi are analytic and have order of growth at most 2 (see for example
[F-W]). Further, we set

gi D fi=f0 .1 � i � N/

and obtain meromorphic functions that are analytic in a neighbourhood of the
origin of T.G/.

Henceforth we will also assume that G as well as ' is Q-defined. The the func-
tions g1; : : : ; gN satisfy a system of algebraic differential equations with algebraic
coefficients, since the derivations @1; : : : ; @n form a basis of the vector space of
derivations of �.U;OG/ over Q. Let z D .z1; : : : ; zn/ be the coordinates of T.G/
in this basis. Then the functions gi.z/ (0 � i � N ) have power series expansions
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with algebraic coefficients at the origin. The functions f0.z/; : : : ; fN .z/ and the
functions g1.z/; : : : ; gN .z/ have order of growth � 2. Hence

log jfi.z/j � c1kzk2 .0 � i � N/; (1)

where we set kzk2 D .jz1j2C: : :Cjznj2/
1
2 , with a positive constant c1 independent

of z. Moreover, f0.u/ ¤ 0 for u 2 exp�1G .� /, where � denotes the group
introduced before.

The addition C W G � G ! G extends to a morphism C W G � G ! G ([Se]).
Instead ofC we shall occasionally write m. So the following lemma holds:

Lemma 2.1 There is a finite set E, an integer b > 0, a map � W � ! E and
bihomogeneous polynomials

Ee;i.Y0; : : : ; YN IX0; : : : ; Xn/ .e 2 E;� � i � N/

of bidegree b with coefficients in Q, as well as open affine sets Ue � G �G with
.
; 0/ 2 U�.
/, such that the following holds:

(i) The sets Ue, e 2 E, cover all of G �G.

(ii) For .g; g0/ 2 Ue,

t .g; g0/ �Xi.g C g
0/ D Ee;i.Y0.g/; : : : ; YN .g/IX0.g

0/; : : : ; Xn.g
0//

for 0 � i � N and 0 ¤ t .g; g0/ 2 Q independent of i .

(iii) The height of the polynomials Ee;i is bounded by a constant c2 > 0.

Remark The Xi ; Yi (0 � i � N ) are actually sections of a line bundle. Upon
restriction to open affine sets we may view them as functions. In fact, the pullback
of a line bundle via the inclusion map of an affine set is trivial.

PROOF: (of Lemma 2.1) It all follows immediately from the fact that the addition
on G is a morphism G � G ! G and the topological space G with the Zariski
topology is noetherian. }

We now fix the analytic subgroup B with 0 < d D dimB < dimG. Its tan-
gent space T.B/ is identified with the Lie algebra of B . This is a subalgebra of
Lie.G/ D T.G/. A basis of T.G/ is given by @1; : : : ; @n. As we assumed that B
is Q-defined, there exists a basis �1; : : : ; �d of Lie.B/ with

�i D ˛i1@1 C : : :C ˛in@n .1 � i � d/

and ˛11; : : : ; ˛dn 2 Q.
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If P.X0; : : : ; XN / is a homogeneous polynomial and g 2 G such thatX0.g/ ¤ 0,
the define the order of P.X0; : : : ; XN / in g as the minimal t for which there exist
non-negative numbers t1; : : : ; td with t1 C : : :C td D t and

�
t1
1 : : : �

td
d
P

�
1;
x1

x0
; : : : ;

xN

x0

�
.g/ ¤ 0:

The order is thus a non-negative integer or infinite. In particular, all elements in
the homogeneous ideal I.G/ of G have order infinite. The definition of order of
course depends on B , and we also call it the order along B . We write ordg;B.P /.

As the derivations �1; : : : ; �d are invariant under translations, it immediately
follows that the order of P.X0; : : : ; XN / in 
 2 � equals the order of

P.E�.
/;0.Y .
/IX/; : : : ; E�.
/;N .Y .
/IX//

in the point 0, where Y D .Y0; : : : ; YN / and X D .X0; : : : ; XN / (see [Wü2] for
details).

The following remark will be important later on. If G;B and � are Q-defined,
then there exists an algebraic number fieldK over which these objects are defined.

We now show that we can find an “addition rule” on G that is valid on all points
of � . For this, let � be the cardinality of E in Lemma 2.1 and L � K the smalles
algebraic number field such that G and � are defined over L. Then we want to
choose K large enough for ŒK W L� � � to hold, and choose elements !e 2 K,
e 2 E, that span an L-vector space of dimension �. We then set

Ei.Y ;X/ D
X
e2E

!eEe;i.Y IX/

for 0 � i � N . Then there exists a neighbourhood V � � � 0 with the property
that for .g; g0/ 2 V and some t ¤ 0,

t �Xi.g C g
0/ D Ei.Y ;X/.g; g

0/ .0 � i � N/:

In fact, either all Ee;i.Y .g/IX.g0// are zero, or the coordinate of g C g0 up to a
multiplicative factor te.g; g0/which is independent of i . In particular,E0.Y ;X/.
; 0/ ¤
0, since X0.
/ ¤ 0 by the choice of the coordinates. The addition rule will be
called

E.Y ;X/ D .E0.Y ;X/; : : : ; EN .Y ;X//:

In other words, E.Y ;X/.g; g0/ are the coordinates of g C g0.
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3 A lemma on differentiation

For the following we need precise estimates for the growth and height of derived
polynomials, depending on the degree of the differential operators. For this, we
first give an explicit description of the differential operators.

We fix an algebraic number field K over which G, A, E and � are defined. The
affine algebra �.U;OG/ of U is generated by �i D xi

x0
for 1 � i � N and can

be written as KŒ�1; : : : ; �N �. As the derivations @1; : : : ; @n stabilize the algebra
KŒ�1; : : : ; �N �, we have

@i�j D pij .�1; : : : ; �N / .1 � i � nI 1 � j � N/

with polynomials pij in �1; : : : ; �N with coefficients inK. If P is a homogeneous
polynomial in X0; : : : ; XN , then P ı E is bihomogeneous in X0; : : : ; XN and
Y0; : : : ; YN , respectively. We can then apply the derivations �1; : : : ; �d to

.P ıE/.X0; : : : ; XN I 1; �1; : : : ; �N /

and obtain the following proposition:

Proposition 3.1 If P has degree D and height H , t1; : : : ; td are non-negative
integers with t1 C : : :C td D T and � D �t11 � � ��

td
d

, then

�.P ıE/.X0; : : : ; XN I 1; �1.0/; : : : ; �N .0//

is a homogeneous polynomial P� in X0; : : : ; XN with

(i) degP� D bD.

(ii) logH.P�/ � c.D C T / log.D C T /C logH .

Here, c is a constant which is independent of D;T;H .

PROOF: A simple exercise using induction. }

4 The auxiliary polynomial

As before, let G be defined over an algebraic number field K, let G 0 be a vector
space (or a vector group), assume ' to be injective and d D n � 1. We identify
G 0 with a subspace of T.G/. Then we choose 0 ¤ u 2 '�1.G.Q// and set
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0 D '.u/. By assumption, we can choose u such that 
0 ¤ 0. Let � denote the
subgroup generated by 
0 and e its order. For positive S , set

� .S/ D fs � 
0 j 0 � s � Sg:

The differential operators�1; : : : ; �n�1 generate a multiplicative monoid D whose
elements have the form �

t1
1 � � ��

tn�1

n�1 with integers t1; : : : ; tn�1 � 0. For integers
T � 0 we consider the subset D.T / of those elements for which t1C : : :C tn�1 �
T holds. Finally, let m D ŒK W Q� and choose the coordinates X0; : : : ; XN such
that X0.
0/ D 1. We now choose positive integers S; T;D with

Dn
� 2nm.T C n/n�1j� .S/j: (2)

Further assume that T is sufficiently large to “swallow up” the constants c1; c2; : : :
appearing below.

Lemma 4.1 There exists a homogeneous polynomial P.X0; : : : ; XN / with inte-
ger coefficients that is not contained in I.G/, and has degree D such that for all
� 2 D.T

2
/ and all 
 2 � .S/:

(i) ord
;B P� � T
2

.

(ii) logH.P�/ � c1.D C T / log.D C T /C c2DS2.

PROOF: Since dimG D n, we may assume without loss of generality that the
homogeneous coordinates X0; : : : ; Xn are algebraically independent modulo the
ideal I.G/. Then let P.X0; : : : ; Xn/ be a homogeneous polynomial with yet un-
defined coefficients whose degree is D. The number of unknowns is then 

D C n

n

!
�
Dn

nŠ
:

We will now determine it so that

P�.X.
// D 0 (3)

holds for � 2 D.T /, 
 2 � .S/. This is a homogeneous system of linear equa-
tions with coefficients in K in the yet undetermined coefficients of P , since we
can choose Xi.
/ 2 K due to � � G.K/ for 0 � i � N . The number of
equations is at most

m �

 
T C n � 1

n � 1

!
� j� .S/j � m

.T C n/n�1

.n � 1/Š
j� .S/j:
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As in the proof of Proposition 3.1 one verifies that the coefficients of this system
of equations are bounded by

.D C T /c3.DCT /
�

max
0�i�N

jXi.
/j
�c4D

:

By Proposition 5 in [Se], the second factor in this estimate satisfies

max
0�i�N

jXi.
/j
c4D � cDS

2

5 ;

as 
 is of the form s
0 with s � S . Overall, we obtain the following estimate for
the coefficients and their conjugates,

.D C T /c3.DCT /cDS
2

5 :

One obtains a similar estimate for the denominator which is the same up to the
constants. According to Siegel’s Lemma and considering (2) and Proposition 3.1
(ii), we obtain a polynomial P with (ii) and (3). It remains to show that (3) implies
condition (i). This follows from Proposition 2 in [Wü2]. }

5 Some estimates

The coordinates in T.G/ D Lie.G/ are denoted by z D .z1; : : : ; zn/. The point
u D .u1; : : : ; un/ now defines a one-parameter subgroup of G in the following
way: Define the linear map

L W C! Lie.G/; z 7! z � u:

Then expG ıL is the one-parameter group we are looking for. Note: It is not
defined over Q. This is the main difficulty with Baker’s method.

On the other hand, we have the subspace Lie.B/ in Lie.G/ of codimension 1
which is defined over K. Thus it can be defined by a linear equation

ˇnzn D ˇ1z1 C : : :C ˇn�1zn�1

with ˇ1; : : : ; ˇn 2 K and, without loss of generality, ˇn D 1. The vector u lies in
Lie.B/ and thus satisfies the equation

un D ˇ1u1 C : : :C ˇn�1un�1:

We now set
�i D @i C ˇi@n .0 � i � n � 1/:

11



Then
d

dz
D u1�1 C : : :C un�1�n�1:

For r > 0 and homogeneous polynomials P.X0; : : : ; XN / in CŒX0; : : : ; XN � we
set

kP kr D max
kzk�r

j.P ı expG/.z/j

and
kP kr;L D max

kzk�r
j.P ı expG ıL/.z/j:

If P is the polynomial from Lemma 4.1, then the following lemma holds.

Lemma 5.1

(i) For � 2 D.T
2
/ we have the estimate

log kP�kr � c6.D C T / log.D C T /C c7D.S2 C r2/:

(ii) For � 2 D.T
2
/ and r > r 0 > S ,

log kP�kr 0;L � log kP�kkukr C
ST

2
log

�
2rr 0

r2 C r 02

�
:

PROOF: The estimate in (i) follows immediately from Lemma 4.1 together with
the estimates fi.z/ (i D 0; : : : ; N ) at the beginning. To see the estimate (ii), set

	.z/ D P� ı expG ıL.z/:

From the representation for d
dz and Lemma 4.1 it follows that 	.z/ has zeros in

z D s for 0 � s � S , which have at least multiplicity T
2

. For a function F that is
holomorphic in jzj � r we set

jF jR D max
jzjDR

jF.z/j:

If ns is the order of 	 in s and we set

h.z/ D

SY
sD0

�
r2 � sz

r.z � s/

�ns

;

then 	h is holomorphic in jzj � r , so that by the Maximum Principle

j	hjr 0 � j	hjr :
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If one also considers that jhjr D 1 holds, and for jzj D r 0 the inequalityˇ̌̌̌
r2 � sz

r.z � s/

ˇ̌̌̌
�
r2 C r 02

2rr 0

holds, then, considering ns � T
2

for 0 � s � S , we obtain the inequality

j	 jr 0 � j	 jr �

�
2rr 0

r2 C r 02

�ST=2
:

Now j	 jr � kP�kkukr , from which the claimed inequality follows. }

We now consider the multiplication in G by a positive number l � 1 of the form
l D 2M for some M � 0. This is given by g 7! l � g for g 2 G. Now choose
v 2 T.A/ with l � v D u and set 
 00 D expG.v/. Then l � 
 00 D 
0 and thus

 00 2 G.K/. Finfally, let � 0 be the subgroup of G generated by 
 00. As the degree
of the multiplication-by-l map is at most l2n, there is an algebraic number field
L � K with ŒL W K� � l2n and � 0 � G.L/.

Lemma 5.2 Let � 2 D.T
2
/ and s an integer with 0 � s � l � S , and let

ı D P�.X/.s
0/:

Then either ı D 0, or

log jıj � �c8l2n
�
.D C T / log.D C T /CD.S2 C lc9/

�
:

PROOF: Because of � 0 � G.L/, ı 2 L. This is an algebraic number field
of degree at most ml2n. We now compute the height of s
 00. To this end, write
s D s0l C s00 with 0 � s00 < l and 0 � s0 � S . Then s
 00 D s0
0 C s

00
0. By the
addition law,

h.s
 00/ � c10.h.s
0
0/C h.s

00
 00//:

We estimate an upper bound for the height h.s00
 00/ using Proposition 2.0,

c1l
c2.h.s00
0/C 1/

and obtain via [Se] the estimate

h.s
 00/ � c11.s
2
C lc2C2/:

With this, we find as in Lemma 4.1 the height ı for the estimate

h.ı/ � c12.D C T / log.D C T /C c13D.S2 C lc14/:

If now ı ¤ 0, then we have

log jıj � �h.ı/;

which is easily verified from the product formula using known properties of the
height. From this, the desired inequality immediately follows. }
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6 The extrapolation

We now choose a constant � � 5 and a sufficiently large integer parameterM � 0.
Then set S D l .2nC1/c9 and S 0 D j� .S/j. With this, set

D D 2mnS 0 � S .n�1/�;

T D 2mnS 0 � Sn� � n:

Clearly, (2) is satisfied, and the following lemma holds.

Lemma 6.1 For 
 0 2 � 0.lS/,

ord
 0;B.P / �
�
T

2

�
:

PROOF: By using Proposition 2 in [Wü2], it is enough to show that for � 2
D.T

2
/, we have

P�.X.

0// D 0:

We have called the number on the left ı. Now we write 
 0 D s
 00 for some
0 � s � S and set v0 D sv, and ı0 D P�.expG.v

0//. This number was estimates
in Lemma 5.1 (ii). We set r D S2, r 0 D S C 1 and using (i) we obtain

log jı0j � c15S 0Sn� logS �
1

2
TS log

S

4
:

On the other hand, because of Lemma 5.2 and if ı ¤ 0, we have the estimate

log jıj � �c16S 0Sn�l2n logS:

If we set �i D fi.v
0/ and � 0i D Xi.


0/ for 0 � i; j � N , then the �i and the � 0i
determine the same point in PN . Thus, for all i; j with 0 � i; j � N ,

� 0i�j D �
0
j �i ;

from which
� 0bDi ı0 D �bDi ı

follows. Together with the estimates for ı, ı0 and the height of X.
 0/, we obtain
the estimate

bD log max
i
.j�i j/ � �"

00TS logS;

and then
log max

i
.j�i j/ � �"

0S5 logS

14



for positive ", "0. If we take into account that kv0j
leqc17S , it follows at last that

log max
i
.jfi.v

0/j/ � �"kv0k5:

The following lemma then yields the desired contradiction. }

We set ı.z/ D log maxi.jfi.z/j/ and let p denote map from Lie.G/ to Lie.A/
induced by the projection from G to A.

Lemma 6.2

(i) If G is unipotent, then
ı.z/ � log.c18kzk/:

(ii) If G is not unipotent, but linear, then

ı.z/ � �c19kzk:

(iii) If G is not linear, then

ı.z/ � �c20.kzk
2
C 1/:

PROOF: The statements (i) and (ii) are trivial due to the particular nature of the
exponential map in these cases. In case (iii), there is a subset of the fi (i D
0; : : : ; N ) of the form fp�g0; : : : ; p�gM g such that the gi yield an embedding � of
A into PM . The line bundle ��O.1/ is the assigned a positive definite Hermitian
form. We set ı0.p.z// D log maxi.jgi.p.z//j/. Then the function eı

0��H is
periodic and bounded from below by some c21 > 0. Hence eı

0

� c21e�H . From
the estimate H.p.z/; p.z// � c22kp.z/k2 it follows that

ı.z/ � ı0.p.z// � log c21 C c22kp.z/k2:

Since kp.z/k2 � �kzk2, we obtain the desired inequality. }

7 The zero estimate

The element 
 00 generates the subgroup � 0. In Section 4 we constructed a ho-
mogeneous polynomial P.X0; : : : ; XN / that is not identically zero on G and has
degree D. We showed in Section 6 that this polynomial vanishes in � 0.lS/ along
the analytic subgroup A with order at least

T 0 D

�
T

2

�
:

15



We can always arrange that

� 0.lS/ D l� .S/

holds. In fact, if 
0 is of infinite order, this is immediately clear. Otherwise, if
t is the order of 
0, we may assume without loss of generality that the t -torsion
elements of G are K-rational. This can be achieved by a finite field extension.
Moreover, we want to assume without loss of generality that 
0 62 2Gt.K/, where
Gt.K/ denotes the group of t -torsion elements. If t 0 is the order of 
 00, then t 0j2M t ,
and we write t 0 D 2r t 00 with gcd.2; t 00/ D 1. We consider 
 000 D 2r
 00. Then
t 00
 000 D 0, so 
 000 2 Gt.K/. It follows from this that r � M , since otherwise

0 2 2Gt.K/ would follow and from this 
 000 D 2r�M
0. Thus the order of 
 000 is
2M�r t D t 00. This implies t 0 D 2M t .

We now show that there exists an algebraic subgroup H with H � A which is
defined over Q and has positive dimension. To prove this, it is sufficient to show
that the index � D �.AIG/Q, defined in [Wü1], satisfies the inequality

� <
n � 1

n
: (4)

Moreover, it is proved in [Wü1] that �.AIG/Q D �.AIG/Q. So the inequality (4)
holds if

� <
n � 1

n
(5)

holds. But this follows from the Main Theorem in [Wü1]. In fact, after choosing
S , T , l , D it holds with the constants from there that�

T 0

n

�r
� .cD/r .1 � r � n/;

if S is sufficiently large, and moreover,�
T 0

n

�n�1 ˇ̌̌̌
� 0
�
l
S

n

�ˇ̌̌̌
�

�
T 0

n

�n�1
l �
S 0

n
� .cD/n;

again by the choice of parameters.

Since the polynomial P is not identically zero on G, it follows from this that at
least one �r for 1 � r < n satisfies the inequality

�r < �:

This means that there exists an algebraic subgroup H � G of codimension r
which is Q-defined and contained in A. As r < n, it follows that

dimH D n � r > 0:

This concludes the proof of the Main Theorem.

16



References

[Ba1] A. Baker, Linear forms in the logarithms of algebraic numbers I,
Mathematika 13 (1966), 204-216

[Ba2] A. Baker, Linear forms in the logarithms of algebraic numbers II,
Mathematika 14 (1967), 102-107

[F-W] G. Faltings, G. Wüstholz, Einbettungen kommutativer algebraischer
Gruppen und einige ihrer Eigenschaften, Journal für reine und ange-
wandte Mathematik 354 (1984), 175-205

[L1] S. Lang, Transcendental points on group varieties, Topology 1 (1962),
313-318

[L2] S. Lang, Algebraic values of meromorphic maps I, Topology 3 (1965),
183-191

[L3] S. Lang, Algebraic values of meromorphic maps II, Topology 5
(1966), 363-370

[Ma-Wü1] D.W. Masser, G. Wüstholz, Zero estimates on group varieties, Inven-
tiones Mathematicae 64 (1981), 489-516

[Ma-Wü2] D.W. Masser, G. Wüstholz, Fields of large transcendence degree gen-
erated by values of elliptic functions, Inventiones Mathematicae 72
(1983), 407-464

[Ma-Wü3] D.W. Masser, G. Wüstholz, Zero estimates on group varieties II, In-
ventiones Mathematicae 80 (1985), 233-267

[Sch1] Th. Schneider, Zur Theorie der Abelschen Funktionen und Integrale,
Journal für reine und angewandte Mathematik 183 (1941), 110-128

[Sch2] Th. Schneider, Ein Satz über ganzwertige Funktionen als Prinzip für
Transzendenzbeweise, Mathematische Annalen 121 (1949), 133-140

[Se] J-P. Serre, Quelques propriétés des groupes algébriques commutatifs,
Astérisque 69-70 (1979), 191-202

[Wü1] G. Wüstholz, Multiplicity estimates on group varieties, Annals of
Mathematics 129 (1989), 471-500

[Wü2] G. Wüstholz, Über das abelsche Analogon des Lindemannschen
Satzes I, Inventiones Mathematicae 72 (1983), 363-388

17



Original: Algebraische Punkte auf analytischen Untergruppen algebraischer Gruppen, Annals of
Mathematics 129, 1989, 501-517

Translation by Wolfgang Globke, Version of June 6, 2016.

18


	Introduction
	Some preliminary remarks
	A lemma on differentiation
	The auxiliary polynomial
	Some estimates
	The extrapolation
	The zero estimate
	Index

