
Proof of a theorem
on discrete groups

By HANS ZASSENHAUS in Hamburg

It is shown that every matrix group contains a unique maximal solvable normal
subgroup (radical). As a generalisation of a theorem of Bieberbach and Frobe-
nius, it is proved that in a discrete group, all matrices whose components in the
representations on irreducible subspaces are arbitrarily close to the identity matrix
of the same degree belong to the radical of the group.

§ 1 The radical of a group

Theorem 1 The product of a solvable normal subgroup N with a solvable sub-
group U is a solvable subgroup.

H. Fitting1) showed that the product of two solvable normal subgroups is again
solvable. Theorem 1 is proved by almost identical reasoning.

UN is a subgroup with solvable normal subgroup N. The quotient group UN=N

is isomorphic to U=.U \ N/, hence solvable. UN is a solvable extension of a
solvable group, hence solvable itself.

Definition A solvable subgroup of an arbitrary group is called maximal solvable
normal subgroup, if any larger normal subgroup is not solvable.

Now it follows from Fitting (already from the lemma proved by him): There is at
most one maximal solvable normal subgroup. If it exists, then Fitting calls it the
radical of the group, and it contains every solvable normal subgroup of the group.

Definition A solvable subgroup of an arbitrary group is called maximal solvable
subgroup if any larger subgroup is not solvable.

1)Fitting, Beiträge zur Theorie der Gruppen endlicher Ordnung, Jahresbericht der Deutschen
Mathematiker-Vereinigung 48, 1938, 77-141.
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It follows from Theorem 1 that every solvable normal subgroup is contained in
every maximal solvable subgroup. As the intersection of all solvable subgroups is
a solvable normal subgroup, it follows:

Theorem 2 If a group contains maximal solvable subgroups, then the intersection
of all maximal solvable subgroups equals the radical of the group.

Theorem 3 If a group G and one of its normal subgroups N both have radicals
RG and RN, then

RN D N \ RG:

For N \ RG is a solvable normal subgroup of N, hence contained in RN. On
the other hand, RN is a solvable characteristic subgroup of N, hence a solvable
normal subgroup of G and thus contained in RG .

Now we try to embed solvable subgroups of an arbitrary group into maximal sol-
vable subgroups.

Definition A group is called quasi-solvable if finitely many of its elements always
generate a solvable subgroup.

Every solvable subgroup is quasi-solvable. Every subgroup and every quotient
group of a quasi-solvable group are again quasi-solvable.

Definition A subgroup of an arbitrary group is called maximal quasi-solvable
subgroup if it is quasi-solvable and every larger subgroup is not quasi-solvable.

Theorem 4 If M D .: : : ;U; : : : ;B; : : :/ is an ascending ordered set of quasi-
solvable subgroups, such that U � B implies U � B, then the union V.M/ of all
subgroups from M is a quasi-solvable subgroup.

PROOF: It is clear that V.M/ is a subgroup. Finitely many elements a1; : : : ; ar 2
V.M/ can always be ordered in such a way that ai is contained in the subgroup
Ui in M, and that Ui � Uk if i < k. But then it follows that Ur contains all
Ui , hence all ai . By assumption, a1; : : : ; ar generate a solvable subgroup of Ur ,
hence of V.M/. Therefore, V.M/ is quasi-solvable. }

Theorem 5 Every quasi-solvable subgroup U of an arbitrary group G can be em-
bedded into a maximal quasi-solvable subgroup.

PROOF: Assume the elements of G to be well-ordered: e � a1 � a2 � : : :. For
every element a 2 G , define a subgroup Ua by transfinite induction. Let Ue D U.
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Suppose Ub is defined for all b � a. Let ˙a be the subgroup generated by all Ub
for b � a. If ˙a together with a generates a quasi-solvable subgroup of G , then
set Ua D h˙a; ai. Otherwise, set Ua D ˙a. It is clear that Ub � Ua if b � a.
Moreover, it follows from Theorem 4 by transfinite induction that Ua is quasi-
solvable. It also follows from Theorem 4 that the union B of all Ua is a quasi-
solvable subgroup. U is contained in B, and if some element b 2 G together with
B generates a quasi-solvable subgroup, then h˙b; bi is quasi-solvable. Therefore
h˙b; bi and hence b is contained in B. So B is the required maximal quasi-
solvable subgroup. }

For the theorems below it is helpful to deduce some simple criteria for solvability.

For the commutator of two elements a1; a2 2 G we use the following notations

a1a2a
�1
1 a

�1
2 D .a1; a2/ D D

1.a1; a2/;

and we define higher commutators Di of weight 2i inductively,

Di.a1; : : : ; a2i / D D
1.Di�1.a1; : : : ; a2i�1/;D

i�1.a2i�1C1; : : : ; a2i //:

According to Hall2), it follows that:

Criterion 1 A group G is solvable and at most k-step metabelian if the higher
commutator Dk applied to elements of G is identically e.

This implies:

Criterion 2 A group G with generating set K is solvable and at most k-step
metabelian if finitely many elements of K always generate a solvable and at most
k-step metabelian subgroup.

For if a1; a2; : : : ; a2k are 2k arbitrary elements of G , every ai can be written as
a product of powers of elements in K, and in total only finitely many elements
b1; : : : ; br 2 K are used. By assumption, b1; : : : ; br generate a solvable and at
most k-step metabelian subgroup. Hence

Dk.a1; : : : ; a2k/ D e:

It is interesting and important for later applications that Criteria 1 and 2 can be
combined into one, if the condition “solvable” is replaced by “nilpotent”.

2)See Zassenhaus, Lehrbuch der Gruppentheorie, Teil I, Hamburger Mathematische
Einzelschriften 21, II §6, Satz 13.

Translator’s note: This book is available in English as The theory of groups, Dover 1999.
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Criterion 3 A group G with generating set K is nilpotent of class � c if and
only if all higher commutators .a1; : : : ; acC1/ of weight c C 1 and of step c C 1
of elements of K are identically e.

PROOF: It is clear that the condition is necessary. Conversely, if G is gene-
rated by the complex K, then let Ki denote the complex comprising the higher
commutators .a1; : : : ; ai/ of elements of K. Clearly, the normal subgroup Zi of
G generated by Ki is contained in the i th component Zi of the descending central
series of G . By assumption on K, Z1 D G D Z1. Suppose we proved that
Zn D Zn, then .K;Kn/ D KnC1 � ZnC1. Since ZnC1 is a normal subgroup, it
follows3) that

.hKi; hKni/ D .G; hKni/ � ZnC1:

Moreover, .G;ZnC1/ � ZnC1, hence .G; hKniZnC1/ � ZnC1. It follows that the
subgroup hKniZnC1 is even a normal subgroup of G . As the normal subgroup
generated by Kn equals Zn, Zn is contained in hKniZnC1. Finally, it follows that

ZnC1 D .G;Zn/ � .G; hKniZnC1/ � ZnC1 � ZnC1; ZnC1 D ZnC1:

So if KcC1 D feg, then ZcC1 D feg. }

Similar to before, we define: A group is called quasi-nilpotent if finitely many el-
ements of the group always generate a nilpotent subgroup. The properties derived
above for the term “quasi-solvable” also hold for the term “quasi-nilpotent”.

As any nilpotent group is solvable, any quasi-nilpotent group is quasi-solvable.

Criterion 4 A group with generating set K is quasi-nilpotent if finitely many
elements of K always generate a nilpotent subgroup.

PROOF: If a1; : : : ; ar are finitely many elements of the group, then it requires
only finitely many elements b1; : : : ; bs 2 K to represent them as powers and
products of elements of K. By assumption, the elements bi generate a nilpotent
subgroup which contains the subgroup generated by the ai . Hence the elements
a1; : : : ; ar generate a nilpotent subgroup. }

3)See the notes in 2), p. 104; for the proofs and definitions needed for Criterion 3, see II §6 and
IV §5.
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§ 2 Solvable groups of substitutions

In the following, a matrix is called n-row if it is quadratic with n rows and n
columns. A matrix group or group of matrices of degree n is any multiplicative
group consisting of non-singular n-row matrices with coefficients in a fixed alge-
braically closed field. The identity matrix is denoted by E or E1; E2; : : :.

Definition For any group G of matrices of degree n, the linear hull HG is the set
of linear combinations

�1A1 C : : :C �rAr

of finitely many matricesA1; : : : ; Ar 2 G with coefficients in the coefficient field.

One readily sees that the linear hull of a group is a hypercomplex system over
the coefficient field containing that group, and that every reduction of the group
to a semireduced form also effects a reduction of the linear hull to a semireduced
form. For later, it is important to remark that a semireduced form of the full group
induces a semireduced form for every subgroup whose linear hull coincides with
the linear hull of the full group, that is, every irreducible subrepresentation of the
full group induces an irreducible subrepresentation of the subgroup.

Theorem 6 A solvable absolutely irreducible and primitive4) group G of n-row
matrices with determinant 1 is finite and its order is bounded by a number M.n/
depending only on n.

PROOF: Every normal subgroup N of G is fully reducible according to Clifford5).
As G is primitive, the irreducible components of N are all equivalent according
to Clifford. If N is abelian, then the irreducible components of G are of degree 1.
From what we showed above it follows that an abelian normal subgroup consist of
non-zero scalar matrices only. Hence every abelian normal subgroup is contained
in the centre Z of G . The centre Z consists of scalar matrices of degree n whose
determinant is 1. Hence Z is cyclic and the order of Z divides n. Now let N=Z

be the maximal abelian normal subgroup in the quotient group G=Z.6) G induces
a fully reducible representation � of N, which is a multiple of an irreducible
representation � of N. The degree m of � is thus a divisor of n. By a theorem of
Burnside there exist m2 linearly independent matrices

� .x1/; : : : ; � .xm2/; xi 2 N:

4)Translator’s note: For the definition of primitive and imprimitive, see 2) II §2.
5)Clifford, Representations induced in an invariant subgroup, Annals of Mathematics 23, 1937.
6)For the existence, see 2) p. 108.

5



When transformed by elements in N, every xi is changed only by a factor in Z.
Hence the subgroup N1 generated by the xi and Z is a normal subgroup of N,
and transformations by elements of N yield at most nm

2

distinct automorphisms
of N1. By construction, � induces an irreducible representation of N1. Hence
every element in N commuting with the elements of N1 is mapped to a non-zero
scalar matrix under � , so it is contained in Z.

N is finite, and the order of N is at most nm
2C1. The elements in G commuting

with the normal subgroup N form a normal subgroup ZN in G . Since G is solv-
able, ZN is solvable as well. Now suppose that ZN is k-step metabelian. If k > 1,
then Dk�2N would be a non-abelian normal subgroup of G . D.Dk�2ZN/ D

Dk�1ZN is an abelian normal subgroup of G , hence contained in Z. The cen-
tre of N is an abelian normal subgroup of G , hence also contained in Z. Thus
Dk�2ZN is no longer contained in N. But by construction NDk�2ZN=Z is an
abelian normal subgroup of G=Z which properly contains N=Z, and this contra-
dicts the construction of N.

ZN is an abelian normal subgroup of G , hence contained in Z. The quotient group
G=Z is isomorphic to a group of automorphisms of the finite group N. As there
are at most nm

2C1Š distinct automorphisms of N, it follows that G is finite and the
order of G is at most M.n/ D nm

2C1Šn. }

Theorem 7 Every solvable group of matrices of degree n is at most k.n/-step
metabelian, where k.n/ is a positive number only depending on n, and vice versa.

PROOF: Every matrix group of degree 1 is abelian, so the theorem holds for
n D 1 with k.1/ D 1. Proceed by induction on n. Let n > 1 and suppose the
theorem holds for matrix groups of degree < n. Now let G be a solvable group of
matrices of degree n.

1. Suppose G is reducible, so that all matrices in G have the form

A D

�
A1 �

0 A2

�
;

and A 7! Ai maps the group homomorphically onto a matrix group Gi of
degree ni . For both these homomorphisms let the normal subgroup Ni of G

be mapped to the ni -row identity matrix. Then it follows from the induction
hypothesis: Dk.ni /Gi D fEni g and Dk.ni /G � Ni , i D 1; 2. The normal
subgroup N D N1 \N2 consist of matrices of the form

�
En1 �

0 En2

�
, hence

6



is abelian. It now follows that

Dmaxfk.n1/;k.n2/gC1G D fEg:

Let k.n/ D 1C max
1�ni<n

fk.ni/g, then we found that every solvable reducible

matrix group of degree n is at most k.n/-step metabelian.

2. Suppose the matrix group G is imprimitive. Then there exists a family of
m > 1 systems of imprimitivity, so that we may consider G to be a group of
permutations of these m systems. All elements of G that fix every system
in this family form a normal subgroup N whose quotient group G=N is
isomorphic to a solvable subgroup of the symmetric permutation group on
m numbers. It is clear that for every number m there exists an upper bound
k.m/ such that every solvable permutation group on m numbers is at most
k.m/-step metabelian.

The representation of N induced by G is fully reducible and decomposes
into m irreducible under G-conjugate components, each of degree n

m
.6)

HenceDk. n
m
/N D fEg. Moreover,Dk.m/G is contained in N and therefore

Dk.m/Ck. n
m
/G D fEg. We now set

k.n/ D max
1<m<n

˚
k.m/C k. n

m
/
	
:

It follows that every irreducible imprimitive solvable group of matrices of
degree n is at most k.n/-step metabelian.

3. Suppose G is irreducible and primitive and the determinant of every matrix
in G is 1. By Theorem 6, G is finite and the order of G is smaller than a
certain number M.n/. Then there exists an upper bound k0.n/ so that G is
at most k0.n/-step metabelian.

4. Suppose G is an arbitrary solvable group of matrices of degree n. The
matrices in the commutator subgroup of G have determinant 1, so one of
the three cases above applies to DG . It follows that if we set

k.n/ D 1Cmaxfk.n/; k.n/; k0.n/g;

then every solvable group of matrices of degree n is at most k.n/-step
metabelian. }

6)See 5), Theorem 1, 2.
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This theorem, together with Criterion 2 implies: Every quasi-solvable group of
matrices of degree n is solvable and at most k.n/-step metabelian. From this and
Theorem 5 we conclude:

Theorem 8 Every solvable subgroup of a group of matrices of degree n can be
embedded into a maximal solvable subgroup.

Corollary Every group of matrices of degree n has a radical.

We note that the solvability of quasi-solvable matrix groups implies:

Corollary Every quasi-nilpotent group of matrices of degree n is solvable.

§ 3 Inequalities

Let k be a valued field, that is, there is function ' on k with values in the non-
negative reals, such that

1. '.0/ D 0 and '.1/ D 1,

2. '.x C y/ � '.x/C '.y/,

3. '.xy/ D '.x/'.y/.

For a vector a D .a1; : : : ; an/, define

'.a/ D

ˇ̌̌̌
ˇ̌
vuut nX

iD1

'.ai/2

ˇ̌̌̌
ˇ̌ : (1)

Set a D .'.a1/; : : : ; '.an//, so that

'.a/ D jaj: (2)

Let b be a second vector with n components. Since '.ai C bi/ � '.ai/C '.bi/,
also jaC bj � jaj C jbj, and

'.aC b/ � '.a/C '.b/; (3)

moreover,

'.ab/ D '

 
nX
iD1

aibi

!
�

nX
iD1

'.ai/'.bi/ D ab � jajjbj;
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so
'.ab/ � '.a/'.b/: (4)

For matrices A D .aik/, where i D 1; : : : ; s, k D 1; : : : ; r , we define:

'.A/ D

ˇ̌̌̌
ˇ̌
vuut sX

iD1

rX
kD1

'.aik/2

ˇ̌̌̌
ˇ̌ : (5)

It immediately follows that

'.˛A/ D '.˛/'.A/ for all ˛ 2 k: (6)

If '.A/ D 0; then A D 0: (6a)

If we consider two matrices A;B as vectors with rs components, then

'.AC B/ � '.A/C '.B/: (7)

If A is a matrix with r rows and s columns, B is a matrix with s rows and t
columns, a1; : : : ; ar are the row vectors of A, and b1; : : : ;bt are the column vec-
tors of B , then

'.AB/2 D

rX
iD1

tX
kD1

'.aibk/
2

�

rX
iD1

tX
kD1

'.ai/
2'.bk/

2
D

 
rX
iD1

'.ai/
2

! 
tX

kD1

'.bk/
2

!
D '.A/2'.B/2:

Hence
'.AB/ � '.A/'.B/: (8)

Now, let A be an n-row matrix with the property '.A � E/ � �. For any n-row
matrix X it follows that

'.XA/ D '.X CX.A �E// � '.X/.1C '.A �E//;

'.XA/ � '.X/.1C �/;

and similarly
'.AX/ � '.X/.1C �/: (9)

If in addition � < 1, then A is not a left zero divisor, for AX D 0 implies:

0 � '.X/ D '..E � A/X/ � �'.X/;

9



hence '.X/ D 0, so X D 0. As A is not a left zero divisor, it follows that A has
an inverse matrix.

Since

A�1 �E D �.A �E/ � .A �E/.A�1 �E/;

A �E D �.A�1 �E/ � .A �E/.A�1 �E/;

it follows that

'.A�1 �E/ � '.A �E/C '.A �E/'.A�1 �E/;

'.A �E/ � '.A�1 �E/C '.A �E/'.A�1 �E/;

and

1

1C �
�

'.A �E/

1C '.A �E/
� '.A�1 �E/ �

'.A �E/

1 � '.A �E/
�

�

1 � �
: (10)

From (9) and (10), it follows for any n-row matrix X that

'.XA�1/ � '.X/
1

1 � �
;

'.A�1X/ � '.X/
1

1 � �
:

(9a)

Let A, B be quadratic and non-singular matrices with

A D E C A1; '.A1/ � � < 1;

B D E C B1; '.B1/ � � < 1:

Then
AB � BA D A1B1 � B1A1

and
'.A1B1 � B1A1/ � 2'.A1/'.B1/ � 2��:

Moreover,

ABA�1B�1 �E D .AB � BA/A�1B�1 D .A1B1 � B1A1/A
�1B�1;

so by (9a):

'.ABA�1B�1 �E/ �
2��

.1 � �/.1 � �/
: (11)
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If A is arbitrary and B non-singular, then

'.BAB�1 �E/ D '.B.A �E/B�1/ � '.B/'.B�1/'.A �E/: (12)

If we replace B by B�1 and A by B�1AB , then:

'.BAB�1 �E/ �
'.A �E/

'.B/'.B�1/
: (12a)

Now let A D
�
A1 P
0 A2

�
and B D

�
B1 Q
0 B2

�
be partially reduced matrices, such that

the submatrices A1; B1 have n1 rows, the submatrices A2; B2 have n2 rows, and
P;Q are rectangular and moreover

'.Ai �Eni / � � < 1;

'.Bi �Eni / � � < 1:

Set C D ABA�1B�1 D
�
C1 R
0 C2

�
. We want to estimate R. It is easy to check that

R DA1QA
�1
2 B

�1
2 � A1B1A

�1
1 B

�1
1 QB�12 C PB2A

�1
2 B

�1
2 � A1B1A

�1
1 PA

�1
2 B

�1
2

DA1.Q.A
�1
2 �En2/ � B1.A

�1
1 �En1/B

�1
1 Q/B�12

C .P.B2 �En2/ � A1.B1 �En1/A
�1
1 P /A

�1
2 B

�1
2 :

So by (7), (8), (9), (10):

'.R/ � .1C�/'.Q/

�
�

1 � �
C
1C �

1 � �

�

1 � �

�
1

1 � �
C'.P /

�
�C

1C �

1 � �
�

�
1

1 � �

1

1 � �
;

and

'.R/ �
2�

1 � �

1

.1 � �/2
'.P /C 2�

1C �

1 � �

1

.1 � �/2
'.Q/: (13)

§ 4 Proof of the main theorem

Let G be a group of partially reduced matrices of degree n of the form

A D

0BBB@
A.1/ �

0 A.2/

:::
: : :

: : :

0 � � � 0 A.r/

1CCCA ;
such that the map A 7! A.j / is a representation of G of degree nj .
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To every complex K in G we define Ki to be the complex of all higher commuta-
tors .A1; : : : ; Ai/ of weight i and of step 1 with all components from K. Note that
K D K1. Moreover, let �i be the upper bound for all numbers '.Ki � E/, where
Ki runs through the matrices of Ki .

Theorem 9 If K contains only finitely many elements, and if the the maximum
of all values '.K.�/ � En�/, where K.�/ runs through the r components of the
matrices in K, is less than 2 �

p
3, then the �i converge to 0.7)

PROOF: Let �i be the upper bound of all numbers '.K.�/
i �En�/whose argument

runs through the r components of the matrices in Ki , minus the identity matrix of
the same degree. We have �1 D �.

Set � D 2�
.1��/2

. Then � < 1 since � < 2 �
p
3. Assume it has already been

proved that
�i � ��

i�1
� �: (14)

The elements in KiC1 arise by taking commutators of elements in K with elements
in Ki . So it follows from (11), applied to all components of G , that

�iC1 �
2��i

.1 � �/.1 � �i/
�

2�

.1 � �/2
�i � ��

i :

So (14) holds for all i , and our claim is proved in the case r D 1, for

lim
i!1

�i D lim
i!1

�i � lim
i!1

��i�1 D 0:

It is clear that we can reduce the proof of the general case via induction to the case
r D 2. So assume the number of components of G is r D 2, so that the matrices
in G are of the form

A D

�
A.1/ A0

0 A.2/

�
:

Let � 0i be the maximum of all values '.K 0i/, where the argument runs through the
upper right submatrices in Ki . Now (13) implies the following inequality:

� 0iC1 �
2�i

1 � �i
� 01

1

.1 � �/2
C 2�

1C �

1 � �
� 0i

1

.1 � �i/2
:

7)Compare Frobenius, Über den von L. Bieberbach gefundenen Beweis eines Satzes von C.
Jordan, Berliner Berichte 1911, p. 241-248.
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Then

2�
1C �

1 � �
� 2.2 �

p
3/
3 �
p
3

p
3 � 1

�

�
27

28

�2
:

As limi!1 �i D 0, there exists N such that for all i � N :

1 � �i �
55

56

and

� 0iC1 �
2�i

1 � �i
� 01

1

.1 � �/2
C

�
54

55

�2
� 0i :

Since also
�i �

1

2
;

�

�
� 1;

it follows from (14) that

� 0iC1 � 16�
0
1�i C

�
54

55

�2
� 0i � 16�

0
1�
i�1
C

�
54

55

�2
� 0i :

Set � D maxf�; .54
55
/2g and it follows that � < 1, and for all i � N ,

� 0iC1 � 16�
0
1�

i�1
C �� 0i :

By induction we prove for i D 1; 2; : : :

� 0NCi � �
i.i16� 01�

N�1
C � 0N /:

This implies that limi!1 �
0
i D 0. By our rules in §3 above,

0 � �i � 2�i C �
0
i ;

and hence limi!1 �i D 0. }

Definition A group of matrices of degree n is called discrete, if the lower bound
of distances '.A �E/ of all matrices A ¤ E in the group is positive.

By (12a), discrete groups transform again into discrete groups on conjugation with
a fixed non-singular matrix. We consider a discrete group G of partially reduced
matrices of degree n of the form

A D

0BBB@
A.1/ �

0 A.2/

:::
: : :

: : :

0 � � � 0 A.r/

1CCCA ;
13



such that as before the map A 7! A.i/ is a representation of degree ni of G . For
every positive number � we define the complex K.�/ as the set of all matrices
A 2 G which satisfy

'.A.i/ �Eni / � � for i D 1; : : : ; r:

K.�/ generates a subgroup G.�/ of G . By Theorem 9, applied to the discrete group
G , if � < 2 �

p
3, for any finite number of matrices A1; : : : ; Ar in K.�/ there is

an index c, such that all higher commutators formed with these matrices that are
of weight c C 1 and step 1 equal E. It follows from Criterion 4 that G.�/ is a
quasi-nilpotent group and from the second corollary in §2 it follows that G.�/ is
solvable, if only � < 2 �

p
3 holds both times.

Since G.�/ � G.�0/ for � � � 0, the dimension of the linear hull of G.�/ is a
monotonously growing function of � with values in the positive integers. Then
there exists �0 > 0 such that for all positive numbers � not greater than �0, the lin-
ear hulls of the G.�/ have the same dimension as that of G.�0/, and therefore these
hulls all coincide. As noted at the beginning of §2, every irreducible subrepresen-
tation X 7! � .X/ of degree m of G.�0/ induces an irreducible subrepresentation
of any group G.�/ with 0 < � � �0.

Suppose the representation � was imprimitive. Then there is a non-singular ma-
trix T independent of n, such that the matrices in TG.�/T �1 take the form

TAT �1 D

0B@� � � � �

0 � .X/
:::

0 0 �

1CA
with

� .X/ D S� .X/S�1 D .ı�.i/;k�i.X//;

where � is a permutation of d numbers, S is a non-singular m-row matrix, and
�i.X/ are m

d
-row matrices, i; k D 1; : : : ; d , d > 1. Since for 0 < � � �0,

S� .G.�//S�1 is irreducible if � .G.�// is, the generating system K.�/ of G.�/

contains least one element K.�/ whose imprimitive matrix � .K.�// has a 0 on its
diagonal. Then

'.TK.�/T �1 �E/ � 1:

On the other hand,

'.TK.�/T �1 �E/ D '.T .K.�/
�E/T �1/ � '.T /'.T �1/�:

14



If we choose � sufficiently small, we obtain a contradiction.

The irreducible subrepresentations of the groups G.�/ are therefore all primitive,
if only 0 < � � �0. Now we determine a number � 0 satisfying the inequalities
0 < � 0 � �0 and � 0 < 2 �

p
3, and we form the sequence

U1 D G.�0/; U2 D G.�
0

2
/; : : : ; Ui D G.�

0

i
/; : : : :

The Ui form a descending sequence of subgroups with the following four proper-
ties:

1. Every element of the sequence is a solvable subgroup.

2. The linear hulls of the groups in the sequence are identical.

3. Every irreducible component of every matrix group in the sequence is prim-
itive.

4. For every index i and every element X 2 G there is an index � D �.i; X/
such that XU�X

�1 � Ui .8)

We will call sequences with these four properties A-sequences.

Before proving the main theorem on A-sequences, we first show the following
lemma: Let G be a reducible group of matrices of degree n of the form A D�
A.1/ �
0 A.2/

�
, and let G.i/ be the matrix group formed by all matrices A.i/ from the

subrepresentation A 7! A.i/. For short, we call A.i/ or G.i/ the components of A
and G , respectively.

Lemma 1

1. The reducible group G is solvable if and only if both of its components are.

2. The radical of G consists of all elements in G whose two components are
both contained in the radical of the respective component of G .

3. A subgroup of G is contained in the radical of G if and only if both of its
components are contained in the radical of the respective component of G .

PROOF:
8)4. follows from (12).
Translator’s note: Then (12) also implies XU�X

�1 � Ui for all � � �.
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1. If G is solvable, the all homomorphic images are solvable, in particular
the groups G.1/, G.2/. Conversely, if G.1/ and G.2/ are solvable, so that
DkG.1/ D fEn1g, D

kG.2/ D fEn2g, then it follows that matrices in
DkG are of the form

�
En1 �

0 En2

�
and thus form an abelian group. Hence

DkC1G D fEg.

2. All elements in G , both of whose components are contained in the radical
of the respective component of G , form a normal subgroup RG of G . By
1., RG is solvable, hence contained in the radical RG of G . Since every
homomorphism maps a solvable normal subgroup to a solvable normal sub-
group, each component of RG is contained as a solvable normal subgroup
in the radical of the respective component of G .

3. Follows directly from 2. }

Let G be an arbitrary group of matrices of degree n, and let

U1 � U2 � U3 � : : :

be an A-sequence of subgroups.

Theorem 10 From a certain index on, the subgroups in an A-sequence are con-
tained in the radical of the whole group G .

PROOF: It is sufficient to show that a certain subgroup U� is contained in the
radical of G . To this end, note that any subsequence of an A-sequence is again an
A-sequence, so we may replace any A-sequence in the proof by a subsequence.
Since for any X 2 G there is an index � D �.1;X/ such that XU�X

�1 � U1, it
follows from property 2 of A-sequences that HU� D HU1 D H , and further

X.HU�/X
�1
� HU1; XHX�1 � H D HU1:

All elements of G contained in H form a normal subgroup G1 of G which con-
tains U1 and whose linear hull is H . If we have shown that U� is contained in
the radical of G1, then it follows from Theorem 3 that U� is also contained in the
radical of G . By replacing G by G1, we may assume that the linear hull of G

coincides with the linear hull of every subgroup in the A-sequence. By Lemma
1, part 3, we may further assume that G is irreducible. So now we need to prove
Theorem 9 under the additional assumption that all matrix groups G;U1;U2; : : :

16



are irreducible. It follows from property 3 of A-sequences that in our case all Ui
are primitive. Now we want to ensure that all matrices in Ui have determinant 1.
Let Z be the group of non-zero scalar matrices. Let Ui be the normal subgroup of
all matrices with determinant 1 in UiZ. Clearly UiZ D UiZ, as for every matrix
A 2 Ui , det.A/ D ˛n is solvable and ˛�1A is contained in Ui . If we already
proved that U� is contained in the radical of GZ, then it follows that U�Z is also
contained in the radical. As U�Z D U�Z, by Theorem 3, U� is also contained in
the radical of G .

Now we can and will assume that all matrices in U1 have determinant 1. By
Theorem 6, all subgroups Ui are finite and there exists an index N from which on
all subgroups in the A-sequence are identical. From property 4 of A-sequences it
follows now that UN is a solvable normal subgroup in the whole group G , hence
UN is contained in the radical of G . }

We apply the above theorem to the A-sequence U1 � U2 � U3 � : : : constructed
on page 14 for a discrete subgroup G . Then we find:

Theorem 11 For every discrete group G of matrices of degree n of the form

A D

0BBB@
A.1/ �

0 A.2/

:::
: : :

: : :

0 � � � 0 A.r/

1CCCA ;
there exists a positive number " such that all matrices A 2 G that satisfy the
inequality '.A.i/ �E/ � " are contained in the radical of G .

§ 5 Refinements

Now we want to show that for sufficiently small � all irreducible components of
G.�/ have degree 1.

Let U1 be a group of matrices of the form

A D

0BBB@
A.1/ �

0 A.2/

:::
: : :

: : :

0 � � � 0 A.�/

1CCCA :

17



An A-sequence U1 � U2 � U3 � : : : is called a B-sequence, if there exists a
sequence of positive numbers �i converging to 0, such that the Ui are generated
by matrices Ai with the property '.A.�/i �En�/ � �i , � D 1; : : : ; r . We show:

The irreducible components of the subgroups in a B-sequence have degree 1.

PROOF: Considering (12), (12a), it follows by the same reasoning as in the
proof of Theorem 10 that we may restrict to the case in which all groups in the
B-sequence are irreducible. Moreover, by changing to a subsequence, we can
assume that �i < 1.

Again, we want to change the U1 so that all matrices in U1 have determinant 1.

All matrices9) Ai in U1 with '.Ai �E/ � �i that generate Ui form a complex Bi .
For the determinant ˛i of Ai , an estimate of the form10)

'.˛i � 1/ � C�i

holds, where C is a positive constant which is independent of the �i . Let � denote
a primitive nth root of unity contained in the algebraically closed coefficient field
of U1. Then:

1 � ˛i D ˙

nY
�D1

.1 � �� n
p
˛i/;

'.1 � ˛i/ D

nY
�D1

'.1 � �� n
p
˛i/;

and there is at least one � for which

'.1 � �� n
p
˛i/ �

n
p
C�i ;

and hence
'.�� n
p
˛i/ > 1 �

n
p
C�i :

Let Bi be the complex consisting of the matrices 1
�� n
p
˛i
Ai . The matrices in the

group Ui generated by Bi have determinant 1, and as in the proof of Theorem 11,
UiZ D UiZ, where Z is the group of non-zero scalar matrices. After changing

9)Translator’s note: In the original it is somewhat unclear whether Zassenhaus wants Ui to
contain all matrices Ai with '.Ai �E/ � �i or just be generated by some of them. However, this
is not relevant for the following argument.

10)Translator’s note: This inequality holds if we assume �i < 2�
p
3 < 1. Otherwise replace it

by '.˛i � 1/ � C�ni , which does not affect the validity of the ensuing argument.
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to a subsequence we may assume that C�i � 1
2
, and then we have the following

estimate for Ai �E:

'.Ai �E/ �
'.Ai �E/C '..1 � �

� n
p
˛i/E/

'.�� n
p
˛i/

�
�i C

p
n n
p
C�i

1 � n
p
C�i

� D n
p
�i

for a suitable constant D.

Hence U1 � U2 � : : : is a B-sequence. As in the proof of Theorem 11 it follows
that the groups Ui are finite and coincide from a certain index on. For the distance
from E of the matrices in U1nfEg we have a positive lower bound.11) Hence, for
sufficiently large indexN , we have UN D fEg, UN � Z. Since UN is irreducible,
the degree of UN is 1. }

We know that in a discrete group G the subgroups G.�/ are quasi-nilpotent if
0 � � < 2�

p
3. Now we want to show that they are even nilpotent. This follows

from the above together with the following lemma:

Lemma 2 Let U be a semireducible group of matrices of degree n of the form

A D

�
A.1/ A0

0 A.2/

�
;

such that the maps A 7! A.i/ map the group U homomorphically to the matrix
group U.i/ of degree ni , for i D 1; 2. If the whole group U is quasi-nilpotent and
each of the two components is nilpotent, then U is nilpotent.

PROOF: All matrices A 2 U with A.i/ D Eni form a normal subgroup Ni of U,
so that U=Ni Š U.i/. We assume that U.1/ and U.2/ are nilpotent. Hence there is
a number c such that

ZcC1.U
.i// D fEni g; i D 1; 2;

ZcC1.G/ D N � N1 \N2:

The matrices in the normal subgroup N have the form
�
En1 A0

0 En2

�
.

Let K be a complex of matrices of the form

K D

�
�En1 K 0

0 �En2

�
11)Translator’s note: We are still assuming that G is discrete.
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that contains the identity matrix, and let V be a group of non-singular matrices of
the form

V D

�
V .1/ V 0

0 V .2/

�
:

We set

.V;K/ D

�
En1 K 0 � V .1/K 0.V .2//�1

0 En2

�
:

If � ¤ 0, then .V;K/ D VKV �1K�1.

Let .V;K/ be the complex of all matrices .V;K/. For the linear hulls we can
easily derive the following formula from the above:

H.V;HK/ D H.V;K/: (15)

Now let V be a subgroup generated by finitely many elements of U. By our
assumptions, all subgroups of this kind are nilpotent. Set

K1 D V \N; K2 D .V;K1/; : : : ; KiC1 D .V;Ki/; : : :

Since V is nilpotent, there exists an index m D m.V/ such that KmC1 D fEg.
From (15):

H.V;HKi/ D HKiC1:

It follows that
HK1 > HK2 > : : : > HKmC1 D kE:

As HK1 contains at most n1n2C 1 linearly independent matrices, we have in any
case

HKn1n2C1 D kE; Kn1n2C1 D fEg:

Now let X1; : : : ; Xn1n2 be n1n2 arbitrary elements in U and N an arbitrary ele-
ment in N. Set

V D hX1; : : : ; Xn1n2; N i

and obtain
.X1; : : : ; Xn1n2; N / D E:

By Hall’s substitution principle12) this implies

.U; : : : ;U„ ƒ‚ …
n1n2 times

;N/ D fEg;

12)See 2), II, §6, Satz 13.
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and together with N D ZcC1.U/,

ZcC1Cn1n2.U/ D fEg;

that is, U is nilpotent. }

We have obtained the following result:

In a discrete matrix group of degree n whose matrices are all of the form

A D

0BBB@
A.1/ �

0 A.2/

:::
: : :

: : :

0 � � � 0 A.r/

1CCCA ;
all matrices A in the group that satisfy

'.A.�/ �En�/ � " .� D 1; : : : ; r/

generate a nilpotent subgroup with irreducible components of degree 1, where "
is a sufficiently small number.

§ 6 Groups of affinities

We apply Theorem 11 to groups of affinities. By an affinity in n dimensions we
mean any nC 1-row matrix of the form

A D

�
A p
0 1

�
;

where the homogeneous part A is an n-row matrix, and the translation compo-
nent is a vector with n components. The affinity is called non-degenerate if the
homogeneous part is non-singular. The totality of non-degenerate affinities forms
a group, the affine group in n dimensions. Its subgroups will be called groups of
affinities for short.

A group of affinities is called decomposable after Bieberbach, if all of its matrices
are of the form 0@A.1/ 0 0

0 A.2/ p2
0 0 1

1A :
21



An affinity is called a translation if its homogeneous part is the n-row identity
matrix. All translations in a group G of affinities form an abelian normal sub-
group T of the group, such that the quotient group G=T is isomorphic to the
group consisting of the homogeneous parts of G . A finite number of translations
in G is called independent if their translation parts are linearly independent. This
property is preserved by transformations with non-degenerate affinities. A group
of affinities in n dimensions is called isotropic if it contains n independent trans-
lations. An isotropic group is indecomposable.

Definition A matrix all of whose eigenvalues are 1 is called a semi-translation.
Translations are always semi-translations.

Theorem 12 Every abelian normal subgroup A in an indecomposable group G

of affinities in n dimensions consists of semi-translations.

PROOF: The matrices in G have the form

A D

0BBB@
a11 � � � a1n a1;nC1
:::

: : :
:::

:::

an1 � � � ann an;nC1
0 � � � 0 1

1CCCA :
Let M D spanfu1; : : : ; unC1g be a representation module for G with operation

uiA D

nC1X
kD1

aikuk; .i D 1; : : : ; n/; unC1A D unC1:

The vectors u in M that satisfy u.A � E/nC1 D 0 for all A 2 A form an A-
invariant submodule, which is the submodule M1 corresponding to the eigenvalue
1. It follows from the representation theory of abelian groups that M is the direct
sum of M1 and a second A-invariant submodule M2, and that this M2 is uniquely
determined. As A is a normal subgroup of G , M1 and M2 are also invariant
under G . As G is indecomposable and M1 contains the vector unC1, it follows
that M2 D 0, hence M DM1. Thus A consists of semi-translations. }

§ 7 Groups of motions

Mow suppose the field of coefficients is the field of complex numbers, and the
valuation ' is the absolute value. Let A denote the complex conjugate matrix to
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A. An n-row matrix is called unitary if AA
>
D E. If A is unitary, so is A

>
. The

unitary matrices form the unitary group. The unitary matrices A are characterised
by the relation '.Ax/ D '.x/ for all vectors x. This implies: '.AB/ D '.B/ for
all n-row unitary matrices A and arbitrary n-row matrices B . If C is a matrix with
n columns, then

'.CA/ D '..A>C>/>/ D '.A>C>/ D '.C>/ D '.C /:

Hence
'.ABA�1/ D '.B/ (16)

for all unitary n-row matrices A and arbitray n-row matrices B .

By a motion we mean any affinity whose homogeneous component is unitary. The
motions in n dimensions form a group. In a given discrete group G of motions, let
as before G.�/ denote the subgroup generated by all matrices A whose homoge-
neous component A satisfies the inequality '.A�E/ � �. Then G.�/ is solvable
if � < 2 �

p
3.10) Moreover, by (16), G.�/ is a normal subgroup. So in this case,

Theorem 10 is not required to prove Theorem 11. As the identity matrix is an
accumulation point in an infinite unitary group, Theorem 11 yields:11)

Every infinite discrete group of motions has a radical different from fEg.

More generally:

Theorem 13 Every infinite discrete group of matrices with complex coefficients
whose irreducible components are bounded has a radical different from fEg.

According to Maschke, a finite group of motions G is always decomposable, that
is, any representation module M of G decomposes uniquely into invariant sub-
modules M1 and M2, such that M1 consists of all the vectors that are fixed by
every transformation in G . An indecomposable group of motions does not contain
any finite normal subgroup with more than one element.

10)It is sufficient to require � < 1
2

, as the inequalities (11), (13) can be sharpened for unitary
matrices A;B:

'.ABA�1B�1 �E/ � 2��;

'.R/ � 2�'.P /C 2�'.Q/;

and this implies a sharpened version of Theorem 8.
11)Translator’s note: The reasoning here is erroneous, as the identity is only an accumulation

point in a continous unitary group, but not in a discrete one. This also affects Theorem 13.
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If we note further that every motion that is a semi-translation is even a translation,
then Theorems 12 and 13 imply, that every infinite discrete group of motions
contains translations other than the identity.

Moreover, Frobenius and Bieberbach proved: In an isotropic discrete group of
motions, the index of the normal subgroup of translations is finite in the full
group.

§ 8 Decompositions by translations

Let G be a group of affinities in n dimensions. The translations in G form an
abelian normal subgroup T .

We choose a representation module M D spanfu1; : : : ; unC1g such that

Auk D

nC1X
iD1

aikuk

for all matrices A in G ,

A D

0BBB@
a11 � � � a1n a1;nC1
:::

: : :
:::

:::

an1 � � � ann an;nC1
0 � � � 0 1

1CCCA :
The submodule M0 D spanfu1; : : : ; ung is G-invariant. All vectors .T �E/unC1
with T 2 T generate a G-invariant submodule m of M0, whose dimension p is
the maximal number of linearly independent translations. The invariance follows,
because

.T �E/ui D 0; if i � n;

hence

.T �E/M � m;

A.T �E/M D A.T �E/A�1M

D .ATA�1 �E/M � m:

Choose a basis v1; : : : ; vp of m and extend it to a basis v1; : : : ; vn of M0. Define
a non-degenerate affinity S via Sui D vi (for 1 � i � n), SunC1 D unC1, so that

SAS�1 D

0@A.1/ 0 p1
� A.2/ p2
0 0 1

1A
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where A.1/ p-row, A.2/ .n � p/-row, for all A 2 G . The map A 7! A.i/ maps G

homomorphically onto a matrix group G.i/. All matrices in G that are mapped to
the identity by the map for i D 1 or i D 2, form a normal subgroup N1 or N2,
respectively. The map

A 7!

�
A.1/ p1
0 1

�
also gives rise to a group G.11/ of affinities. N11 is the normal subgroup contain-
ing the matrices mapped to the identity. Then

G=Ni Š G.i/ .i D 1; 2/; (17)

G=N11 Š G.11/: (18)

G.11/ is isotropic. In fact, N
.11/
1 is precisely the normal subgroup of all transla-

tions in G.11/.

TN11 � N1; (19)

T \N11 D fEg; (20)

DN1 � N11: (21)

Now let G be a group of motions. The module M has a non-degenerate unitary
orthogonal metric and the orthogonal space m? to m is mapped to itself by G . As
the decomposition M D mCm? is direct, let the preceding construction provide
that

m? D spanfvpC1; : : : ; vng:

Moreover, we can assume that G.1/ and G.2/ are unitary. Then the matrices in G

are all of the form

SAS�1 D

0@A.1/ 0 p1
0 A.2/ p2
0 0 1

1A :
The map

A 7!

�
A.2/ p2
0 1

�
maps G homomorphically onto a group G.22/ of motions. Let N22 be the normal
subgroup of matrices mapped to E. Then:

G=N22 Š G.22/; (22)

T .22/
D fEg: (23)
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If in addition G in indecomposable, then G.22/ is indecomposable. Now assume
further that G is discrete. If N11 contained a non-trivial solvable normal sub-
group, then N11 also contained a non-trivial abelian normal subgroup of G . But,
as shown above12), N11 would then contain non-trivial translations. This is not
possible, so the radical of N11 is the identity, hence N11 is a finite group of mo-
tions. As the full group G is indecomposable, this normal subgroup N11 is trivial.
By (21), N1 is an abelian normal subgroup, hence contained in T by Theorem
12, and hence N1 D T by (19). As G.11/ is isotropic and T .11/ is the largest
group of translations in G.11/, it follows that G.11/=T .11/ and hence G=T is
finite. Now T .22/ is trivial, hence G.22/ is finite. As G.22/ is indecomposable,
G.22/ is necessarily trivial. Hence p D n. This proves Bieberbach’s fundamental
theorem:

Every indecomposable discrete group of motions contains n linearly independent
translations.

12)Translator’s note: Here, Zassenhaus refers to Theorem 12 and the remark immediately fol-
lowing Theorem 13.
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