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1 Introduction

This first chapter provides a brief summary of the motivation for this thesis, its
objectives and the results. This overview is not ordered by the chapters of the
thesis, but rather it is structured in a way as to make the background and the
motivation for the proceeding in this thesis clear.

1.1 Overview

A left-symmetric algebra (V, ∗) is a vector space V defined over a field k, endowed
with a (not necessarily asociative) product ∗, such that

x ∗ (y ∗ z) − y ∗ (x ∗ z) = (x ∗ y) ∗ z − (y ∗ x) ∗ z

holds. These algebras are introduced in chapter 6.

It follows from this property that every left-symmetic algebra (V, ∗) becomes a Lie
algebra (g, [·, ·]) by taking the commutator

[x, y] = x ∗ y − y ∗ x.

In this case we say that g “admits” a left-symmetric product. Some examples can
be found in section 6.2.

Conversely, not every Lie algebra admits a left-symmetric product. For example,
it is not possible to define a left-symmetric product on a semisimple Lie algebra.
It is still an open problem to determine which Lie algebras admit a left-symmetric
product. In particular, the classification of those reductive Lie algebras which
admit a left-symmetric product is still an open problem. A reductive Lie algebra
g is a direct sum of Lie algebras

g = a ⊕ s,

where a is an abelian Lie algebra and s is a semisimple Lie algebra. A classification
of the left-symmetric products on gln has been given in Baues [2].

In chapter 7, we learn how to exploit the relations between left-symmetric algebras
and affine étale representations of Lie algebras. An étale representation of a Lie
algebra g is a representation d% of g by affine transformations of a vector space V,

d% : g→ aff(V) =
{(A v

0 0

) ∣∣∣ A ∈ gl(V), v ∈ V
}
,

with the property that there exists a generic point v0 ∈ V, such that the evaluation
map

evv0 : g→ V, x 7→ d%(x).v0
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is an isomorphism of vector spaces. This means starting from v0, every point in V
can be reached by the action of g in a unique way.

We find that such an étale representations induces a left-symmetric product - and
vice versa: If d% is an étale representation, we can define a left-symmetric product
by

x ∗ y = ev−1
v0

(
d%(x)lin.(evv0(y))

)
,

where d%(x)lin is the linear part of the affine transformation d%(x). Conversely, if a
left-symmetric product ∗ on g and an isomorphism ϕ : g→ V of vector spaces are
known, then we obtain an étale representation for g by

g 3 x 7→
(
ϕ ◦ Lx ◦ ϕ−1 ϕ(x)

0 0

)
∈ aff(V),

where Lx = (y 7→ x ∗ y) denotes the left-multiplication by x.

If one knows the étale representations, one also knows the left-symmetric algebras.

It is the objective of this thesis to further investigate which reductive Lie algebras
g = a⊕ s admit left-symmetric products. In the case of reductive Lie algebras with
dim(a) = 1, it is sufficient to consider linear representations g → gl(V) ⊂ aff(V).
For the case that s a simple Lie algebra, this problem has already been dealt with
in Baues [2].

This question is strongly linked to the theory of prehomogeneous vector spaces
(or prehomogeneous modules, as we shall call them here). A module (%,V) for a
group G is called prehomogeneous if there exists an open (hence Zariski-dense)
orbit under the action of G on V, where % is a linear rational representation. In
particular, dim(G) ≥ dim(V) must hold. We introduce this theory in chapter 9,
where we study some of the basic properties and get acquainted with the castling
transformation, which is a potent tool for studying and constructing prehomo-
geneous modules. In chapter 10, we study how relative invariants determine
certain useful properties of prehomogeneous module. A rational function f is a
relative invariant if its value changes homomorphically under the action of G, i.e.
f (%(g).x) = χ(g) f (x) for some group character χ.

Several classifications of reductive prehomogeneous modules with rational re-
presentations have been given by a group of Japanese mathematicians from the
1970s up to the present. Nevertheless, a complete classification of prehomoge-
neous modules is not available.

The task ahead is to pick those modules out of the available classifications sa-
tisfying dim(G) = dim(V). If we consider the reductive Lie algebra g of G, the
representation % of G corresponds to an étale representation d% of g in this case.
So, this is a way to find new examples for left-symmetric algebras. This task is
approached in chapter 13 and proves to be very easy in some of the cases, i.e. in
the cases when group has a simple semisimple part, or when representation is
irreducible (see section 13.1). But in other cases, the classification is so general that
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it is far from obvious which modules satisfy dim(G) = dim(V). These are the cases
treated in section 13.2. The modules found here are summarised in appendix B.

Aside from picking modules from the classifications, we present a few criteria on
when a group admits an étale representation in chapter 12. For example, we prove
that groups which do not admit a non-trivial homomorphism χ : G → k

× also
do not admit a linear rational étale representation. Further, we establish that any
module for a reductive group with one-dimensional centre and a non-irreducible
étale representation must be composed of so-called non-regular irreducible com-
ponents, even though the module itself must be regular. As an application, these
theorems can be used to decide if irreducible prehomogeneous modules can be
composed to yield an étale representation. For example, we see that this is not the
case for a group GL1 × SLn × SLn in chapter 14.

Part I provides a brief summary of the mathematical preliminaries for the whole
subject. It can be used to look up definitions or some fundamental theorems, but
for a reader already acquainted with these topics, it is not essential for the rest of
the thesis.

1.2 Description of the Results

We summarise the results on linear rational étale representations of reductive
algebraic groups. Here, k is algebraically closed.

1.2.1 Results known so far

A complete classification of étale representations for groups GL1 × G with one-
dimensional centre and simple G is known. These modules are (up to equivalence):

• (GL2, 3ω1, Sym3
k

2).

• (GL1 × SLn, µ ⊗ ω⊕n
1 , (k

n)⊕n).

For groups GL1 × G, where G is semisimple, all irreducible étale representations
are given (up to equivalence) by the following modules:

• (GL2, 3ω1, Sym3
k

2).

• (SL3 ×GL2, 2ω1 ⊗ ω1, Sym2
k

3
⊗ k

2).

• (SL5 ×GL4, ω2 ⊗ ω1,
∧2
k

5
⊗ k

4).

If we admit a centre GLk
1 of dimension k ≥ 1, then all étale representations for

groups GLk
1×G, where G is simple, are given (up to equivalence) by the following

modules:
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• (GL1 × SLn, µ ⊗ ω⊕n
1 , (k

n)⊕n).

• (GLn+1
1 × SLn, ω⊕n+1

1 , (kn)⊕n+1).

• (GLn+1
1 × SLn, ω⊕n

1 ⊕ ω
∗

1, (k
n)⊕n
⊕ k

n∗).

• (GL2
1 × SL2, 2ω1 ⊕ ω1, Sym2

k
2
⊗ k

2).

If G1 and G2 are simple groups, all non-irreducible étale representations of reduc-
tive groups GLk

1 ×G1 ×G2 of type I (see section 11.3) are (up to equivalence) given
by:

• (GL2
1 × SL4 × SL2, (ω2 ⊗ ω1) ⊕ (ω1 ⊗ ω1), (

∧2
k

4
⊗ k

2) ⊕ (k4
⊗ k

2)).

• (GL2
1 × SL4 × SL2, (ω2 ⊗ ω1) ⊕ (ω1 ⊗ 1) ⊕ (1 ⊗ ω1), (

∧2
k

4
⊗ k

2) ⊕ k4
⊕ k

2).

• (GL3
1 × SL5 × SL2, (ω2 ⊗ ω1) ⊕ (ω∗1 ⊗ 1) ⊕ (ω(∗)

1 ⊗ 1), (
∧2
k

5
⊗ k

2) ⊕ k5∗
⊕ k

5(∗)).

• (GL2
1 × Sp2 × SL3, (ω1 ⊗ ω1) ⊕ (ω2 ⊗ 1) ⊕ (1 ⊗ ω∗1), (k4

⊗ k
3) ⊕ V5

⊕ k
3).

• (GL3
1 × Sp2 × SL2, (ω1 ⊗ ω1) ⊕ (ω1 ⊗ 1) ⊕ (1 ⊗ ω1), (k4

⊗ k
2) ⊕ k4

⊕ k
2).

• (GL3
1 × Sp2 × SL4, (ω1 ⊗ ω1) ⊕ (ω1 ⊗ 1) ⊕ (1 ⊗ ω∗1), (k4

⊗ k
4) ⊕ k4

⊕ k
4).

In particular, there exist étale representations for groups with simple factors other
than SLn:

• (GL2
1 × Sp2 × SL3, (ω1 ⊗ ω1) ⊕ (ω2 ⊗ 1) ⊕ (1 ⊗ ω∗1), (k4

⊗ k
3) ⊕ V5

⊕ k
3).

• (GL3
1 × Sp2 × SL2, (ω1 ⊗ ω1) ⊕ (ω1 ⊗ 1) ⊕ (1 ⊗ ω1), (k4

⊗ k
2) ⊕ k4

⊕ k
2).

• (GL3
1 × Sp2 × SL4, (ω1 ⊗ ω1) ⊕ (ω1 ⊗ 1) ⊕ (1 ⊗ ω∗1), (k4

⊗ k
4) ⊕ k4

⊕ k
4).

1.2.2 New Results in this Thesis

Let G1 and G2 be simple groups and 1 ≤ j ≤ k. We construct several examples of
non-irreducible étale representations (GL j

1 ×G1 ×G2, %1 ⊕ . . . ⊕ %k,V1 ⊕ . . . ⊕Vk) of
type II (see section 11.4), which are listed in appendix B and labelled by KII. In
particular, this list contains all étale representations with j = k, i.e. those where
an independent scalar multiplication acts on each irreducible component Vi.

We present a few criteria on when a group admits an étale representation.

• We prove that groups which do not admit non-trivial characters χ : G →
k
× do not admit linear rational étale representations (as it is the case for

semisimple or unipotent groups).
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• Also, we show that any non-irreducible modules for a reductive algebraic
group must be composed of non-regular irreducible components. From this,
we conclude that a group GL1×SLn×SLn does not admit any linear rational
étale representations. We also conclude that a reductive group with one-
dimensional centre admitting a non-irreducible étale representation may
contain at most one simple factor G , SLn.

1.2.3 Open Questions

We conjecture that the examples of the étale representations of type II for GL j
1 ×

G1 × G2, where G1 and G2 are simple and 1 ≤ j ≤ k, is a complete list, but this
remains to be shown (see remark 13.11 and the cases labelled by KII II and KII III
in section 13.2).

Another question yet to be answered is whether there exist special modules for
reductive groups whose semisimple part has a simple factor other than SLn or
Sp2. For the case of a one-dimensional centre, it is even not clear if Sp2 can appear
as a simple factor.

More generally, the classification of non-irreducible étale representations for
groups GLk

1 × G, where G is any semisimple group, is an open problem. A
first step should be the classification for the case k = 1. Here, the investigation
of which non-regular irreducible prehomogeneous modules appear as irreducible
components can serve as a starting point.

1.2.4 Primary Sources

Of particular interest are those algebras with one-dimensional centre. The classi-
fication of étale representations for gln has already been done by Baues [2] (cf.
chapter 8), see also Burde [5].

For the case GL1 × G, where G is semisimple, we can pick all irreducible étale
representations from the classification by Sato and Kimura [28].

Kimura et al. [15] studied the prehomogeneity of modules (GLk
1 × G, %1 ⊕ . . . ⊕

%k,V1 ⊕ . . . ⊕ Vk) where G is a simple group, see also theorem 11.2. For each of
these modules, the generic isotropy subgroup is known and so we obtain étale
representation by picking those modules with finite isotropy subgroup from this
classification.

Furthermore, Kimura et al. [16], [17] studied the prehomogeneity of modules
(GLk

1 × G1 × G2, %1 ⊕ . . . ⊕ %k,V1 ⊕ . . . ⊕ Vk), where G1 and G2 are simple groups,
under the assumption that one independent scalar multiplication acts on each
irreducible component. This assumption is a non-trivial simplification of the
problem, especially for the modules studied in [17], as it is far from obvious if one
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of these modules could be prehomogeneous with less than k factors GL1 acting on
the module. The étale representations obtained from these articles are considered
in proposition 13.5 in section 13.1 and in section 13.2.

1.3 Notation

In this section, we introduce some notation that is used throughout the text.

• We write Vm to denote some abstract vector space of finite dimension m.

• The unit element of a group G is denoted by 1 or 1G. For matrix groups, we
also use In to denote the identity matrix.

• When there is no ambiguity about the field k, we will write GLn instead of
GLn(k) (resp. SLn, Spn, SOn, Spinn).

• The set of m × n-matrices is denoted by Matm,n. For quadratic matrices we
write Matn rather than Matn,n.

• The transpose of a matrix A is denoted by A>.

• We use the notation %(g).v for the action of a group element g on a vector v via
the representation %. When there is no ambiguity about the representation,
we sometimes write g.v instead. When %(g) is given by a matrix A, we use
the usual notation Av for matrix multiplication.

• For convenience, we will often denote a module (%,V) by the representation
% only. In this case, we also write dim(%) for dim(V).

• For multiple direct sums or tensor products (of both vector spaces and
matrices), we use the notation V⊕k = V ⊕ . . . ⊕ V︸       ︷︷       ︸

k times

and V⊗k = V ⊗ · · · ⊗ V︸       ︷︷       ︸
k times

.

• The dual pairing of an element v ∈ V with v∗ ∈ V∗ is denoted by 〈v|v∗〉.

• For elements x1, . . . , xn of a vector space (group, algebra or ring, resp.), let
〈x1, . . . , xn〉 denote the linear span (subgroup, ideal) generated by the xi. If
necessary, we write 〈x1, . . . , xn〉k and 〈x1, . . . , xn〉g to distinguish between the
linear span and the ideal generated by the xi.
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Part I

Preliminaries

2 Multilinear Algebra

At first, we will define tensor products for matrices, providing the coordinate
version for some of the abstract definitions in the sections of this chapter.

Definition 2.1 The direct sum of matrices A ∈Matm and B ∈Matn is given by

A ⊕ B =
(
A

B

)
∈Matm+n.

The tensor product of two matrices A ∈Matm,n and B ∈Matp,q is given by

A ⊗ B =


a11B · · · a1nB
...

. . .
...

am1B · · · amnB

 ∈Matmp,nq,

where the ai j are the coefficients of A.

Remark 2.2 For matrices A,C ∈Matm and B,D ∈Matn, we have:

• (A ⊗ B) · (C ⊗D) = (AC) ⊗ (BD).

• (A ⊕ C) ⊗ B = (A ⊗ B) ⊕ (C ⊗ B).

• (A ⊗ B) = (Im ⊗ B) · (A ⊗ In) = (A ⊗ In) · (Im ⊗ B).

These identities show that the definition of matrix tensor products is compati-
ble with the abstract definition of tensor products of vector spaces and group
representations defined later.

Remark 2.3 For A ∈ Matm, B ∈ Matn and v ∈ km, w ∈ kn, it is often convenient to
identify v ⊗ w with

X = v ⊗ w> = v · w> ∈Matm,n,

because then the action of A ⊗ B on v ⊗ w is given by AXB>.
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2.1 Tensor Algebra

In this section, we give a definition of the tensor algebra
⊗

V generated by a vector
space V. This is the most general associative algebra over V in the sense that it
satisfies the relations for associativity, but no other relations. It is constructed as
the direct sum of the vector spaces V⊗k generated by the products v1 ⊗ · · · ⊗ vk

of k elements of V. Proofs for the propositions in this chapter can be found in
appendix A of Knapp [20].

Definition 2.4 Let V and W be vector spaces over k. The tensor product of V and
W is a vector space V ⊗k W together with a bilinear map

τ : V ×W → V ⊗k W, (v,w) 7→ v ⊗ w

with the following universal property: For every bilinear map b : V ×W → U,
where U is some vector space over k, there exists a unique surjective linear
mapping ϕ : V ⊗k W → U, such that ϕ ◦ τ = b, i.e. the diagramm

V ×W τ //

b
��

V ⊗k W

∃1ϕxxrrrrrrrrrrr

U

commutes. When there is no ambiguity about the field k, we shall write V ⊗W
instead of V ⊗k W.

Remark 2.5 There exists a unique tensor product for V and W. With definition
2.4 one can define tensor products of more than two vector spaces inductively and
show that (V ⊗W) ⊗U � V ⊗ (W ⊗U) (see appendix A.1 in Knapp [20]). Further,
the tensor product distributes over direct sums, V ⊗ (W ⊕U) = (V ⊗W)⊕ (V ⊗U).

Remark 2.6 For finite-dimensional vector spaces V and W with bases {v1, . . . , vm}

and {w1, . . . ,wn} a basis of V ⊗W is given by

{v1 ⊗ w1, . . . , v1 ⊗ wn, . . . , vm ⊗ w1, . . . , vm ⊗ wn},

so we have dim(V ⊗W) = mn. For V = km and W = kn, vi ⊗ w j coincides with the
matrix tensor product.

Definition 2.7 Let V1, V2, W1 and W2 be vector spaces overk. For linear mappings
ϕ1 : V1 → W1 and ϕ2 : V2 → W2, the tensor product of ϕ1 and ϕ2 is the unique
map ϕ1 ⊗ ϕ2 given by the universal property of W1 ⊗W2 such that

b(v1, v2) = (ϕ1 ⊗ ϕ2) ◦ τ,

with a bilinear map b : V1 × V2 →W1 ⊗W2, (v1, v2) 7→ ϕ1(v1) ⊗ ϕ2(v2).

Remark 2.8 With definition 2.7 one can define tensor products for more than two
linear mappings inductively.
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Remark 2.9 If A is a matrix representation of ϕ1 : V1 → W1, and B is a matrix
representation of ϕ2 : V2 →W2, then A ⊗ B is a matrix representation of ϕ1 ⊗ ϕ2.

Definition 2.10 Let V be a vector space over k and set V⊗0 = k. We define the
tensor algebra generated by V as

⊗
V =

∞⊕
k=0

V⊗k.

Proposition 2.11 The tensor algebra
⊗

V generated by V has the following uni-
versal property: Let ι : V →

⊗
V be the embedding of V in

⊗
V. If ϕ : V → A is

a linear map into an associative algebra A with identity, then there exists a unique
algebra homomorphism Φ :

⊗
V → A with Φ(1) = 1 and Φ ◦ ι = ϕ, i.e. the

diagramm

V ι //

ϕ

��

⊗
V

∃1Φ}}{{
{{

{{
{{

A

commutes.

The tensor algebra is often used to construct associative algebras by taking the
quotient over some ideal in

⊗
V which represents the defining relations of the

respective algebra.

2.2 Symmetric Algebra

In this section we construct a symmetric quotient algebra of
⊗

V by factoring out
the ideal of alternating expressions in

⊗
V. To this end, let

Ak = 〈v1 ⊗ · · · ⊗ vk − vσ(1) ⊗ · · · ⊗ vσ(k) | v1, . . . , vk ∈ V, σ ∈ Sk〉 ⊂ V⊗k

be the ideal of alternating expressions in V⊗k.

Definition 2.12 The k-fold symmetric product of a vector space V is

SymkV = V⊗k/Ak.

We write v1 · · · vk for the image of v1 ⊗ · · · ⊗ vk in SymkV.

SymkV can be embedded in V⊗k via the map v1 · · · vk 7→
1
k!

∑
σ∈Sk

vσ(1) ⊗ · · · ⊗ vσ(k).

Proposition 2.13 The k-fold symmetric product SymkV has the following uni-
versal property: Let ι : V⊕k

→ SymkV be the map ι(v1, . . . , vk) = v1 · · · vk. If
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ϕ : V⊕k
→ W is a symmetric k-linear map into a vector space W, then there exists

a unique linear map Φ : SymkV →W with Φ ◦ ι = ϕ, i.e. the diagramm

V⊕k ι //

ϕ

��

SymkV

∃1Φ{{vvvvvvvvv

W

commutes.

Remark 2.14 For V = kn, the 2-fold symmetric product Sym2
k

n can be identified
with the symmetric matrices via

v1v2 7→
1
2

(v1 · v>2 + v2 · v>1 ).

Definition 2.15 Let A =
⊕
∞

k=1A
k and Sym0V = k. The symmetric algebra over V

is defined as

SymV = (
⊗

V)/A =
∞⊕

k=0

SymkV.

Proposition 2.16 The symmetric algebra SymV has the following universal prop-
erty: Let ι : V → SymV be the embedding of V in SymV. If ϕ : V → S is a linear
map into an commutative associative algebra S with identity, then there exists a
unique algebra homomorphism Φ : SymkV → S with Φ(1) = 1 and Φ ◦ ι = ϕ, i.e.
the diagramm

V ι //

ϕ

��

SymV

∃1Φ||xx
xx

xx
xx

x

S

commutes.

Remark 2.17 For a finite-dimensional vector space V, the elements of a basis
{v1, . . . , vn} are algebraically independent in SymV. It follows that SymV can be
identified with the polynomial ring k[x1, . . . , xn]. The space SymkV corresponds
to the space of homogeneous polynomials of degree k. We have dim(SymkV) =(n+k−1

n−1

)
.

Remark 2.18 For the dual V∗ of a finite-dimensional vector space V, there is a
canonical isomorphism SymV∗ 7→ k[x1, . . . , xn] given by

(v∗1 · · · v
∗

k)(w1, . . . ,wk) =
∑
σ∈Sk

v∗1(wσ(1)) · · · v∗k(wσ(k))

with v∗i ∈ V∗ and w j ∈ V.
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2.3 Exterior Algebra

In this section we construct an alternating quotient algebra of
⊗

V by factoring
out the ideal of symmetric expressions in

⊗
V. To this end, let

Sk = 〈v1 ⊗ · · · ⊗ vk | v1, . . . , vk ∈ V,∃ i , j : vi = v j〉 ⊂ V⊗k

be the ideal of symmetric expressions in V⊗k.

Definition 2.19 The k-fold exterior product of a vector space V is∧k
V = V⊗k/Sk.

We write v1 ∧ · · · ∧ vk for the image of v1 ⊗ · · · ⊗ vk in
∧k V.∧k V can be embedded in V⊗k via the map v1 · · · vk 7→
1
k!

∑
σ∈Sk

sgn(σ)vσ(1)⊗· · ·⊗vσ(k).

Proposition 2.20 The k-fold exterior product
∧k V has the following universal

property: Let ι : V⊕k
→

∧k V be the map ι(v1, . . . , vk) = v1∧ · · · ∧ vk. If ϕ : V⊕k
→W

is an alternating k-linear map into a vector space W, then there exists a unique
linear map Φ :

∧k V →W with Φ ◦ ι = ϕ, i.e. the diagramm

V⊕k ι //

ϕ

��

∧kV

∃1Φ||yy
yy

yy
yy

W

commutes.

Remark 2.21 For V = kn, the 2-fold exterior product
∧2
k

n can be identified with
the skew-symmetric matrices via

v1 ∧ v2 7→
1
2

(v1 · v>2 − v2 · v>1 ).

Definition 2.22 Let S =
⊕
∞

k=1S
k and

∧0 V = k. The exterior algebra over V is
defined as ∧

V = (
⊗

V)/S =
∞⊕

k=0

∧k
V.

Proposition 2.23 The exterior algebra
∧

V has the following universal property:
Let ι : V →

∧
V be the embedding of V in

∧
V. If ϕ : V → A is a linear map

into an associative algebra A with identity, then there exists a unique algebra
homomorphism Φ :

∧k V → A with Φ(1) = 1 and Φ ◦ ι = ϕ, i.e. the diagramm

V ι //

ϕ

��

∧
V

∃1Φ}}{{
{{

{{
{{

A

commutes.
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Remark 2.24 For an n-dimensional vector space V, we have dim(
∧k V) =

(n
k

)
.

Remark 2.25 Let n = dim(V). Then
∧k V∗ is canonically isomorphic to (

∧k V)∗ by

〈w1, . . . ,wk|v∗1 ∧ · · · ∧ v∗k〉 = det
(
(〈v∗i |w j〉)i j

)
with v∗i ∈ V∗ and w j ∈ V.

Remark 2.26 Let n = dim(V) and b1, . . . , bn be a basis of V. Then
∧n−k V can be

identified with (
∧k V)∗ by

〈v1∧ · · · ∧ vk|vk+1∧ · · · ∧ vn〉b1∧ · · · ∧ bn,= (v1∧ · · · ∧ vk)∧ (vk+1∧ · · · ∧ vn) ∈
∧n

V � k

with vi ∈ V.

3 Algebraic Geometry

In this chapter, some basic knowledge about groups, rings and ideals is assumed.
A brief introduction to affine algebraic geometry can be found in Kraft’s notes
[22]. The book by Harris [12] provides a fine introduction to classical algebraic ge-
ometry, with emphasis on the geometric aspect. Contrary to this, Hartshorne [13]
gives a modern presentation of the subject, emphasising the algebraic concepts.

3.1 Commutative Algebra and Field Extensions

In this section, R is a commutative ring with 1 and k a field of characteristic 0.

Definition 3.1 R is called Noetherian if every Ideal in R is finitely generated.

Proposition 3.2 If I1 ⊆ I2 ⊆ . . . is an ascending chain of ideals in a Noetherian
ring R, then this chain is stationary, i.e. for some n ∈ Nwe have In = Im for m > n.

Theorem 3.3 (Hilbert’s Basis Theorem) If R is a Noetherian ring, then the poly-
nomial ring R[x] is Noetherian.

Definition 3.4 Let I ⊆ R be an ideal. Then I is called

• maximal, if R/I is a field (or equivalently: there is no idealJwithI ( J ( R).

• prime, if R/I is an integral domain (or equivalently: if ab ∈ I, then a ∈ I or
b ∈ I holds).

• primary, if ab ∈ I and a < I implies bn
∈ I for some n ∈ N.
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Definition 3.5 Let I ⊆ R an ideal. Then the ideal
√

I = {a ∈ R | ∃ n ∈ Nwith an
∈ I}

is called the radical of I. If I =
√
I, then I is called radical.

Lemma 3.6 If I ( R is a primary ideal, then
√
I is prime.

Example 3.7 For the ideal 〈4〉 ⊂ Z, the radical is
√
〈4〉 = 〈2〉. For 〈x2, y〉 ⊂ k[x, y],

the radical is
√
〈x2, y〉 = 〈x, y〉.

Definition 3.8 Let S ⊂ R and define the localisation S−1R of R at S to be the ring
formed by the equivalence classes of fractions r

s with r ∈ R, s ∈ S, where r1
s1

and r2
s2

are equivalent if there exists t ∈ S such that

t(s1r2 − s2r1) = 0.

Remark 3.9 The localisation of R at R\{0} is a field called the quotient field of R.

Definition 3.10 Let K be a field and k ⊆ K. Then K is called a field extension of
k. If M is a subset of K, then k(M) is the smallest field extension of k containing
M. If M is finite, then the field extension is called finitely generated.

Definition 3.11 Let K be a field extension of k. Then a ∈ K is called algebraic, if
there exists f ∈ k[x] with f (a) = 0. If a is not algebraic, it is called transcendent.
If all a ∈ K are algebraic, then the field extension is called an algebraic extension,
otherwise it is called a transcendent extension.

Definition 3.12 If k is field such that every non-constant polynomial f ∈ k[x] has
a zero in k, then k is called algebraically closed.

Example 3.13 The field of complex numbers C is algebraically closed.

Definition 3.14 LetK be a field extension of k and a1, . . . , an ∈ K. The a1, . . . , an are
called algebraically independent, over k if f (a1, . . . , an) = 0 for f ∈ k[x1, . . . , xn]
implies f = 0, i.e. algebraically independent elements do not satisfy any algebraic
equations over k. A maximal (with respect to the inclusion) subset T ⊂ K such
that every finite subset of T is algebraically independent is called a transcendence
basis.

Definition 3.15 LetK be a field extension of k. Then

[K : k] = sup{n ∈ N0 | ∃ a1, . . . , an algebraically independent over k}

is called the algebraic degree of the field extension, and

trdeg
k
(K) = card(T)

for a transcendence basis T of K is called the transcendence degree of the field
extension.
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Proposition 3.16 Let k3 be a field extension of k2, and k2 a field extension of k1.
Then we have

[k3 : k1] = [k3 : k2] · [k2 : k1],
trdeg

k1
(k3) = trdeg

k2
(k3) + trdeg

k1
(k2).

3.2 Algebraic Sets and Varieties

To keeps things simple, we assume the field k to be algebraically closed. The
space kn is regarded as the n-dimensional affine space.

In algebraic geometry, the geometric object to be studied are zero sets of polyno-
mials in k[x1, . . . , xn].

Definition 3.17 An algebraic set X ⊆ kn is the common zero set of a collection of
polynomials F ⊆ k[x1, . . . , xn],

X = Z (F) = {p ∈ kn
| f (p) = 0 for all f ∈ F}.

Obviously, if X is the zero set of the polynomials in F, then it is also the zero set of
the polynomials in the ideal generated by F, i.e. X = Z (〈F〉).

Proposition 3.18 The union of finitely many algebraic sets is an algebraic set. The
intersection of any family of algebraic sets is an algebraic set. The empty set and
the whole space are algebraic sets.

This proposition allows us to define a topology on kn.

Definition 3.19 The Zariski topology on kn is the topology whose closed sets are
the algebraic sets.

In the following, all topological terms refer to the Zariski topology.

Definition 3.20 A non-empty subset Y of a topological space X is called irre-
ducible if it cannot be express as the union Y = Y1 ∪ Y2 of two proper subsets,
each one of which is closed in Y.

Definition 3.21 An affine algebraic variety is an irreducible closed subset of kn.
An open subset of an affine variety is a quasi-affine variety.

Proposition 3.22 Every algebraic set can be expressed uniquely as a union of
affine varieties, no one containing another.

Remark 3.23 Any non-empty open subset of an irreducible subset in kn is dense.
Hence, an open subset Y0 of an affine variety Y is a dense subset of Y. Intuitively,
this means that Y0 contains “almost everything” of Y, except for some “thin”
subset.
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For any subset Y of kn, we can define the ideal

I(Y) = { f ∈ k[x1, . . . , xn] | f (y) = 0 for all y ∈ Y}

Now we have a function Z mapping subsets of k[x1, . . . , xn] to algebraic sets, and
a function Imapping subsets of kn to ideals.

Proposition 3.24

1. Let A ⊆ B ⊆ k[x1, . . . , xn]. Then Z (B) ⊆ Z (A).

2. Let Y ⊆ X ⊆ kn. Then I(X) ⊆ I(Y).

3. For X,Y ⊆ kn, we have I(X ∪ Y) = I(X) ∩ I(Y).

4. For any ideal H ⊆ k[x1, . . . , xn], we have I(Z (H)) =
√
H.

5. For any subset X ⊆ kn, we have Z (I(X)) = clos(X), the Zariski closure of X.

Theorem 3.25 (Hilbert’s Nullstellensatz) Let k be an algebraically closed field, I
an ideal in k[x1, . . . , xn] and f a polynomial vanishing at all points in Z (I). Then
f k
∈ I for some k ∈ N.

Corollary 3.26 There is a bijective inclusion-reversing correspondence between
algebraic sets in kn and radical ideals in k[x1, . . . , xn], given by X 7→ I(X) and
H 7→ Z (H). Furthermore, an algebraic set is irreducible if and only if its ideal is
prime.

Example 3.27 Examples for irreducible algebraic sets are kn = Z (0), or the zero
set Z ( f ) of any irreducible polynomial f . A point p = (p1, . . . , pn) ∈ kn is an
irreducible algebraic set, and the corresponding ideal is a maximal ideal Mp =
〈x1 − p1, . . . , xn − pn〉.

Definition 3.28 The affine coordinate ring of an affine algebraic set X ⊆ kn is

k[X] = k[x1, . . . , xn]/I(X).

Proposition 3.29 If X is an affine variety, then k[X] is an integral domain and a
finitely generated k-algebra. Conversely, any integral domain which is a finitely
generated k-algebra is the coordinate ring of some affine variety.

3.3 Regular Functions and Morphisms

Definition 3.30 Let X be a (quasi-)affine variety. A function f : X→ k is called a
regular function if for every x ∈ X there exist polynomials g, h ∈ k[x1, . . . , xn] and
an open subset Ux ⊂ X with x ∈ Ux such that h(y) , 0 and f (y) = g(y)

h(y) for all y ∈ Ux.
The ring of rational functions on X is denoted by O(X). Its quotient field, the field
of rational functions, is denoted by k(X).
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Proposition 3.31 If X is an affine variety, then the ring of regular functions O(X)
is isomorphic to the coordinate ring k[X].

Due to this proposition and the fact that we consider affine algebraic sets only, we
can use O(X) and k[X] interchangably.

Proposition 3.32 Regular functions are continuous with respect to the Zariski
topology.

Definition 3.33 Let X and Y be algebraic sets. A continuous mapping ϕ : X→ Y
is called a morphism if for all f ∈ k[Y] the composition f ◦ϕ is a regular function,
f ◦ ϕ ∈ k[X]. If there exists a morphism ψ : Y → X such that ϕ ◦ ψ = idY and
ψ ◦ϕ = idX, then ϕ is called an isomorphism, and X and Y are called isomorphic.
For a morphism ϕ : X→ Y, we call the map ϕ∗ given by

ϕ∗ : k[Y]→ k[X], f 7→ f ◦ ϕ

the comorphism of ϕ.

Definition 3.34 Two (quasi-)affine varieties are called birationally equivalent if
there exist open subsets X0 ⊆ X and Y0 ⊆ Y such that X0 and Y0 are isomorphic.

Definition 3.35 A morphism ϕ : X→ Y is dominant if ϕ(X) is dense in Y.

Remark 3.36 It can be shown that X and Y are birationally equivalent if and only
if k(X) � k(Y).

Remark 3.37 Let x1, . . . , xn denote the coordinate functions on kn and let X be any
affine variety and Y be an affine variety in kn. The fact that a map ϕ : X → Y
is a morphism is equivalent to saying that ϕ is regular in each coordinate, i.e.
xi ◦ ϕ ∈ k[X] for all i.

Proposition 3.38 Let X ⊆ kn be an affine variety. Then:

1. The affine coordinate ring of X is the ring of regular functions on X, i.e.
k[X] = k[x1, . . . , xn]/I(X).

2. For each x ∈ X, there is a maximal idealMx ⊂ k[X] of functions vanishing at
x. Then x 7→ Mx gives a bijective correpondence between points on X and
maximal ideals in k[X].

Example 3.39 The ring of regular functions on kn is the polynomial ring k[kn] =
k[x1, . . . , xn].

Proposition 3.40 The correspondence

ϕ 7→ ϕ∗

gives a natural bijection between the morphisms of affine varieties X→ Y and the
homomorphisms of rings k[Y] → k[X]. In particular, X and Y are isomorphic if
and only if k[Y] and k[X] are isomorphic.



3.4 Dimension and Tangent Spaces 17

3.4 Dimension and Tangent Spaces

Definition 3.41 Let X ⊆ kn be an affine variety. The dimension of X is defined to
be

dim(X) = trdeg
k
(k(X)).

For an algebraic set Y = Y1 ∪ . . .∪Yk ⊆ k
n with irreducible components Y1, . . . ,Yk,

define
dim(Y) = max

i
{dim(Yi)},

For any y ∈ Y define the local dimension by

dimy(Y) = max
i:y∈Yi
{dim(Yi)}.

This definition is based on the intuition that the transcendce degree corresponds
to the degrees of freedom on a variety.

The codimension of a closed subset Y of X is

codim(Y) = dim(X) − dim(Y).

A hypersurface S in kn is a Zariski closed subset of kn such that S does not contain
any irreducible component of codimension > 1.

Proposition 3.42 Let S be a closed subset of kn. Then S is a hypersurface if and
only if kn

\S is an affine variety.

Remark 3.43 The dimension function x 7→ dimx(X) is upper-semicontinuous on
X, i.e. for any r ∈ R, the set {x ∈ X | dimx(X) < r} is open in X.

Lemma 3.44 If X is an affine variety and Y ( X a closed subset, then dim(Y) <
dim(X).

Proposition 3.45 Let X and Y be affine varieties and ϕ : X → Y a dominant
morphism. For y ∈ ϕ(X), let F be an irreducible component of the fibre ϕ−1(y).
Then we have

dim(F) ≥ dim(X) − dim(Y).

Further, there exists an open subset U ⊆ ϕ(X) such that for any y ∈ U each
irreducible component of ϕ−1(y) has dimension dim(X) − dim(Y).

As every point p in an affine variety satisfies certain polynomial equations f (p) = 0,
one would expect a vector v to be tangent to this variety if the value of f does
not change in the direction of v, i.e. (grad f )p(v) = 0. This motivates the following
definition.
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Definition 3.46 Let X be an algebraic set, and let 〈 f1, . . . , fr〉 = I(X). The tangent
space at p ∈ X is

TpX =
{
(v1, . . . , vn) ∈ kn

∣∣∣∣ n∑
i=1

vi
∂ fk(p)
∂xi

= 0 for k = 1, . . . , r
}
.

Remark 3.47 There are some equivalent definitions of tangent spaces. For exam-
ple, by the above definition, the tangent space at p is the kernel of the Jacobi matrix
of f = ( f1, . . . , fk),

Jacp( f ) =
(
∂ fi(p)
∂x j

)
i, j

.

Alternatively, a vector v can be identified with the differential operator ∂v mapping
a function f to the directional derivative in the direction of v. Then the tangent
space at p is the space of derivations of O(X), i.e. the linear maps D : O(X) → k

satisfying
D( f g) = f (p)D(g) + g(p)D( f ).

See chapter 4 in Kraft [22] for more background on this definition. A third way to
define the tangent space is to define its dual space first via

T∗pX =Mp/M
2
p,

where Mp is the maximal ideal of functions vanishing at the point p, and then
define TpX = (M/M2

p)∗. See chapter 16 in Tauvel, Yu [30] for more background on
this definition.

Remark 3.48 If dim(X) = m, then the rank of the Jacobi matrix of ( f1, . . . , fk) is at
most n −m at any point p ∈ X. We have

dim(TpX) ≥ dimp(X).

Definition 3.49 Let X be an algebraic set and p ∈ X. If dim(TpX) = dimp(X), then
the point p is called smooth, and if all points are smooth, then X is called smooth.
The points q ∈ X with dim(TqX) > dimq(X) are called singular points.

Proposition 3.50 Let X be an affine variety. Then the set of singular points is a
proper closed subset of X whose complement is open and dense in X.

Definition 3.51 Let X and Y be algebraic sets and ϕ : X → Y a morphism. Then
the differential dϕx of ϕ at x is defined by

dϕx : TxX→ Tϕ(x)Y, D 7→ D ◦ ϕ∗,

where we consider the tangent vectors as derivations.

The usual chain rule holds for the differential.
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Proposition 3.52 Let X,Y and Z be algebraic sets and ϕ : X → Y, ψ : Y → Z
morphisms. Then the differential of ψ ◦ ϕ at x ∈ X is given by

d(ψ ◦ ϕ)x = dψϕ(x) ◦ dϕx.

Example 3.53 Let ϕ : kn
→ k

m be a morphism. In coordinate representation, the
differential dϕx is given by the Jacobi matrix

Jacx(ϕ) =
(
∂ϕi(x)
∂x j

)
i, j

,

where the ϕi are the coordinate functions of ϕ.

Proposition 3.54 Let ϕ : X→ Y be a morphism, x ∈ X and F = ϕ−1(ϕ(x)) the fibre
through x. Then TxF ⊂ ker(dϕ). Further, if x is smooth and dϕx is surjective, then
Y is smooth in ϕ(x) and dimx(F) = dimx(X) − dimϕ(x)(Y).

3.5 Normal Varieties

Definition 3.55 Let S ⊆ R be rings. An element r ∈ R is integral over S if r satisfies
a polynomial equation over S, i.e. there exists f ∈ S[x] such that f (r) = 0.

Definition 3.56 Let R be an integral domain and K = Quot(R). Then R is called
integrally closed if every integral element x ∈ K over R is already contained in R.

Definition 3.57 Let X be an affine variety. Then X is called normal if O(X) is
integrally closed.

Example 3.58 The affine space kn is normal.

Proposition 3.59 Let X be a normal affine variety. Let S be the subset of singular
points in X. Then codim(S) ≥ 2.

Corollary 3.60 Let X be a normal affine variety and dim(X) = 1. Then X is smooth.

3.6 Grassmann Varieties

An important structure in algebraic geometry is the Grassmann variety Grk(V)
of k-dimensional subspaces of an n-dimensional vector space V. Technically
speaking, Grassmann varieties are not affine varieties, but projective varieties,
which we do not treat here.

If U is a k-dimensional subspace of V, it is determined by vectors v1, . . . , vk span-
ning U. We can associate to U the exterior product

v1 ∧ · · · ∧ vk ∈

∧k
V.
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Then v1∧ · · · ∧ vk is determined by U up to a scalar factor. Thus, we can identify U
with the equivalence class of scalar multiples of v1∧ · · ·∧vk, and Grn(V) is defined
to be the whole of these equivalence classes.

Grassmann varieties are treated in detail in chapter 6 of Harris [12].

4 Algebraic Groups and Lie Algebras

In this chapter, we summarise the background on affine algebraic groups with
a focus on reductive groups. The ground field k is of characteristic 0, but not
necessarily algebraically closed. For an exhaustive treatment of algebraic groups
and all algebraic preliminaries, see Tauvel, Yu [30].

4.1 Algebraic Groups and Homomorphisms

Definition 4.1 An affine algebraic group is a group endowed with the structure of
an algebraic set, such that the inversion g 7→ g−1 and the multiplication (g, h) 7→ gh
are morphisms of algebraic sets.

Although there exists algebraic groups which are not affine, they will play no part
in this thesis, so from now on we use the term “algebraic group” in the sense of
“affine algebraic group”.

Definition 4.2 A morphism of algebraic groups is a group homomorphism which
is also a morphism of algebraic varieties.

Isomorphisms and automorphisms of algebraic groups are defined in an obvious
way.

Proposition 4.3 Let G be an algebraic group. Then there exists a unique irre-
ducible component G◦ ⊆ G which contains the identity 1G. Further, G◦ is a
subgroup of G.

The irreducible component G◦ containing 1G is called the connected component
of G. This naming is justified by the following proposition.

Proposition 4.4 For an algebraic group G, the following are equivalent:

1. G is connected.

2. G is irreducible (i.e. an affine variety).

3. Each closed normal subgroup of finite index in G is G itself.
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Remark 4.5 We shall use the term connected algebraic group instead of irre-
ducible algebraic group. As the set of smooth points in G is not empty, every
point can be shown to be smooth as it is the image of a smooth point under
multiplication with some element of G.

Proposition 4.6 Let ϕ : G → H be a morphism of algebraic groups. Then the
kernel and the image of ϕ are closed subgroups of G resp. H. Furthermore,
ϕ(G◦) = ϕ(G)◦ and

dim(G) = dim(ker(ϕ)) + dim(ϕ(G)).

4.2 Structure of Algebraic Groups

Definition 4.7 Let G be an algebraic group and H a subgroup of G. Then the
subgroup

NG(H) = {g ∈ G | gHg−1 = H}

is called the normaliser of H in G. The subgroup

ZG(H) = {g ∈ G | gh = hg for all h ∈ H}

is called the centraliser of H in G. The subgroup commuting with all elements of
G is Z(G) = ZG(G), the centre of G.

Definition 4.8 If G and H are algebraic groups, their Cartesian product G × H
becomes an algebraic group by setting (g1, h1) · (g2, h2) = (g1g2, h1h2). A more
general version of this is the semidirect product G nH, where the group product
is defined by

(g1, h1) · (g2, h2) = (g1g2, h1(g1.h2)),

where the action of g1 on h2 is defined via some automorphism of H.

In this thesis, semidirect products appear as sets of the form G · H, where G and
H are matrix groups, so we will also use the notation G · H to denote semidirect
products.

Definition 4.9 A connected algebraic group G is called simple1) if every normal
subgroup is finite and dim(G) ≥ 3. An algebraic group G is called semisimple if
its connected component G◦ is the direct product of simple groups up to a finite
subgroup of the centre, i.e.

G◦ = (G1 × · · · × Gk)/H,

where H ⊆ Z(G) is finite and each Gi is simple.

1)Some authors use the term almost simple instead, and simple only for groups without non-
trival normal subgroups.
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Definition 4.10 Let G be an algebraic group. Define the commutator subgroup
[G,G] as the subgroup generated by the elements

[g, h] = ghg−1h−1

for g, h ∈ G. Define a sequence G(k) by

G(0) = G, G(k) = [G(k−1),G(k−1)] for k > 0.

Then G is called solvable if there exists an integer n such that G(n) = {1G}.

Definition 4.11 Let G be an algebraic group. The radical Rad(G) of G is the largest
connected normal solvable subgroup of G.

Definition 4.12 An algebraic group G is called a torus if it is isomorphic to the
group of diagonal n × n-matrices for some n ∈ N.

Remark 4.13 For algebraically closed k, a torus is isomorphic to a product of
copies of GL1.

4.3 Lie Algebras of Algebraic Groups

Lie algebras can be thought of as an infinitesimal version of algebraic groups.
They usefulness arises from the fact that many problems for algebraic groups can
be reformulated as linear problems for Lie algebras. A fine introduction to Lie
algebras (albeit in the context of Lie groups) is given by Hall [11].

Definition 4.14 Let V be a vector space overk. A bilinear product [·, ·] : V×V → V
is called Lie bracket if [x, x] = 0 for all x ∈ V and if the Jacobi identity

[[x, y], z] + [[y, z], x] + [[z, x], y] = 0

is satisfied for all x, y, z ∈ V. In this case, (V, [·, ·]) is called a Lie algebra.

We use small German letters to denote Lie algebras, g = (V, [·, ·]).

Example 4.15 The quadratic matrices with the commutator product

[x, y] = xy − yx

form a Lie algebra denoted by gln.

Definition 4.16 Let g be a Lie algebra. A subspace h of g with [x, y] ∈ h for all
x, y ∈ h is a Lie subalgebra. If [x, y] ∈ h even holds for all x ∈ g, y ∈ h, then h is an
ideal.

Remark 4.17 For two Lie algebras g1 and g2, the direct sum of vector spaces
becomes a Lie algebra if we define [x, y] = 0 for x ∈ g1, y ∈ g2.
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Definition 4.18 A Lie algebra g is called simple if the only ideals in g are {0} and
g itself. It is called semisimple if g can be written as the direct sum of simple Lie
algebras.

Proposition 4.19 Let g = g1 ⊕ . . . ⊕ gm be a semisimple Lie algebra with simple
components gi. Then h is an ideal of g if and only if

h = gi1 ⊕ . . . ⊕ gik

for some i1, . . . , ik ∈ {1, . . . ,m} (where the i j are pairwise distinct).

Homomorphisms, isomorphisms and automorphisms for Lie algebras are defined
in an obvious way, via ψ([x, y]) = [ψ(x), ψ(y)]. As for every algebra, the kernel of
a homomorphism is an ideal.

We will now define the Lie algebra of an algebraic group. For simplicity, we give
the definition for matrix groups only, as more general definition would require
excessive preparations. See chapter 23 of Tauvel, Yu [30] or section I.3 in Borel [4]
for a general definition.

Proposition 4.20 Let G ⊆ kn2 be an algebraic (matrix) group. Let Lie(G) denote
the tangent space T1GG of G at the identity, which can be identified with a subset
of gln(= Matn). Then Lie(G) is a Lie algebra, where the Lie bracket is given by the
commutator of matrices

[X,Y] = XY − YX

for X,Y ∈ gln.

Theorem 4.21 Let ϕ : G→ H be a homomorphism of algebraic groups. Then the
differential of dϕ1G : Lie(G) → Lie(H) at the identity is a homomorphism of Lie
algebras.

Remark 4.22 We speak of a local homomorphism ϕ of algebraic groups G and
H of there is an open connected subset 1G ∈ U ⊆ G such that ϕ(xy) = ϕ(x)ϕ(y)
for all x, y ∈ U. If two groups are locally isomorphic, then their Lie algebras are
isomorphic.

Whenever a Lie algebra homomorphism arises as the differential dϕ1G of a group
homomorphism ϕ, we omit the index 1G and just write dϕ.

Proposition 4.23 An algebraic group G is semisimple if and only if its Lie algebra
Lie(G) is semisimple.

Definition 4.24 The commutator subalgebra [g, g] of g is the subalgebra spanned
by all elements [X,Y] with X,Y ∈ g. Define a sequence g(k) by

g(0) = g, g(k) = [g(k−1), g(k−1)] for k > 0.

Then g is called solvable if g(n) = {0} for some n ∈ N.
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Remark 4.25 There exists a unique maximal sovable subalgebra of g. It is called
the radical rad(g) of g.

Semisimplicity and solvability can be seen as opposite extremes in the structure
of Lie algebras.

Proposition 4.26 If g is a semisimple Lie algebra, then [g, g] = g (or rad(g) = {0}).
Accordingly, if G is a semisimple group, then [G,G] = G (or Rad(G) = {1G}).

Similarly as in the group case, there are some special subalgebras.

Definition 4.27 Let g be a Lie algebra and h a subalgebra of h. Then the subalgebra

ng(h) = {X ∈ g | [X, h] ⊆ h}

is called the normaliser of h in g. The subalgebra

zg(h) = {X ∈ g | XY = YX for all Y ∈ h}

is called the centraliser of h in g. The ideal commuting with all elements of g is
z(g) = zg(g), the centre of g.

Remark 4.28 If g = Lie(G) for some algebraic group G, and H is a subgroup of G
with h = Lie(H), then

Lie(ZG(H)◦) = zg(h),
Lie(NG(H)◦) = ng(h).

And if H is a normal subgroup of G, then h is an ideal in g.

4.4 Dramatis Personae

In this thesis, we will mostly be concerned with subgroups of the general linear
group,

GLn(k) = {g ∈Matn(k) | det(g) , 0},

the group of invertible matrices. As GLn can be considered as the complement of
the closed set of singular matrices in kn2 , it is an affine variety by proposition 3.42,
and as such, it is an algebraic group. Its Lie algebra is the set of n×n-matrices, gln.

Definition 4.29 A linear algebraic group G is an algebraic group which is a
subgroup of GLn.

Equivalently, linear algebraic groups are the subgroups of GLn defined by certain
polynomial equations.
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4.4.1 SLn - The Hero of the Play

The special linear group is the group of unimodular matrices,

SLn(k) = {g ∈ GLn(k) | det(g) = 1}

with Lie algebra
sln(k) = {X ∈ gln(k) | tr(X) = 0}.

Its dimension is
dim(SLn) = n2

− 1.

This group is connected and simple (for n ≥ 2) and its centre is a finite subgroup
isomorphic to the group of n-th roots of unity in k.

For k = R, the elements of SLn can be interpreted geometrically as those linear
transformations preserving volume and orientation.

In the course of this thesis, we will be mostly concerned with SLn, as most linear
étale representations (see chapter 7) arise as representations of SLn.

4.4.2 Spn - The Hero’s Sidekick

Define the matrix J by

J =
(

0 In

−In 0

)
∈Mat2n.

The symplectic group2) is the group

Spn(k) = {g ∈ GL2n(k) | g>Jg = J}

with Lie algebra
spn(k) = {X ∈ gln(k) | X>J + JX = 0}.

Its dimension is
dim(Spn) = n(2n + 1).

By the condition gJg> one easily sees that det(g) = ±1, and even Spn ⊂ SL2n holds.
Further, Spn is a simple and connected group.

At least for the cases considered in this thesis, Spn is the only simple group aside
from SLn appearing as a simple factor of a group with étale representation.

2)Note that the notation Sp2n instead of Spn is also used in the literature.
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4.4.3 SOn and its Alter Ego, Spinn

The orthogonal group is

On(k) = {g ∈ GLn(k) | gg> = In},

and its intersection with SLn is the special orthogonal group

SOn(k) = {g ∈ On(k) | det(g) = 1}.

Both groups have the same Lie algebra

on(k) = son(k) = {X ∈ gln(k) | X> = −X}.

They are of the same dimension,

dim(On) = dim(SOn) =
1
2

n(n − 1).

SOn is connected, but On is not because

SOn = On/{±In},

and SOn = O◦n. For n ≥ 3, both groups are simple. But for n = 2, the group O2 is
abelian, hence not simple.

For k = R, the elements of On can be interpreted geometrically as the linear
transformations preserving angles and lengths.

The definition can be generalised by requiring gQg> = Q instead of gg> = In,
where Q is a matrix defining a symmetric non-degenerate bilinear form.

Closely related to the orthogonal groups is the spin group Spinn(k), of which a
detailed introduction can be found in chapter 20 of Fulton, Harris [8]. Here, we
will just note that Spinn/{±1} � SOn. In particular, the spin group has the same
Lie algebra as On and SOn (cf. section 4.3), and it is essential in constructing some
of the representations of this Lie algebra.

4.4.4 Exceptional Groups

Aside from the simple groups described above, there are five simple exceptional
groups. These are the groups G2, F4, E6, E7 and E8. They are rather complicated to
describe in detail, so we will not bother to do this here, but give some references
instead.

In the course of § 1 of Sato, Kimura [28], a description of these exceptional groups
is given. Chapter 22 of Fulton, Harris [8] is dedicated to the construction of their
Lie algebras from the root data. Additionally, a construction of the Lie algebra of
G2 as the derivation algebra of the Cayley numbers is given in chapter 7 of Baues,
Globke [3].
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4.4.5 Characters

Let G be an algebraic group. The group

X(G) = {χ : G→ k
×
| χ is a rational group homomorphism}

is called the group of characters of G. It is a free abelian group.

It is well known that the character group of any semisimple group is trival, see
for example the proof of proposition 10.21.

The character group of a torus of dimension n is isomorphic to Zn.

4.4.6 Other Groups

Some other groups which are not simple appear in the course of this thesis.

First, the additive group G+m of dimension m which can be considered as the vector
space km with its addition as a group operation. In this thesis, this group arises as
a semidirect factor of generic isotropy subgroups of prehomogeneous modules,
see chapter 11, and in this context it is often written as G+m(n−m), which indicates
that it appears as a group of matrices of the form(

In−m 0
A Im

)
,

with A ∈ Matm,n−m. Under multiplication, these matrices behave just like the
additive group.

Next, there is the n-dimensional multiplicative group (k×)n, with componentwise
multiplication in k×. This group is identical to GLn

1 , and we shall use the latter
notation most of the time.

A matrix group is unipotent if (In − g)k = 0 holds for some k ∈ N and any element
g. It can be shown that any unipotent group is isomorphic to a closed subgroup
of the group of upper triangular matrices with 1 on the diagonal,

1 ∗

. . .
0 1

 .
Unipotent groups appear as semidirect factors of generic isotropy subgroups of
prehomogeneous modules, see chapter 11. Be warned though that in many cases
these subgroups appear in a non-obvious representation, so see the cases in § 5 of
Sato, Kimura [28] for the respective appearance of these groups. To be consistent
with the notation of Sato, Kimura [28], we let Unn denote a unipotent group of
dimension n, but not the group of unipotent n × n-matrices, which would be the
more common usage.
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4.5 Representations and Group Actions

In representation theory, one studies how a given algebraic group (resp. Lie
algebra) can be written as a matrix group (resp. algebra).

Definition 4.30 Let V be a vector space over k. A homomorphism % : G→ GL(V)
of algebraic groups is called a representation of G. A Lie algebra homomorphism
d% : g→ gl(V) is called representation of g. The vector space V together with the
representation % (resp. d%) is called a module for G (resp. for g), written (%,V) or
(G, %,V) (resp. (d%,V)).

Remark 4.31 The notation d% for Lie algebra representations is justified as any
representation arises as the differential of a group representation %. In fact, many
definitions and results for representations and actions of Lie algebras arise as
differential expressions of the respective expressions for algebraic groups.

Remark 4.32 If (G, %,V) and (G, σ,W) are modules of G, the direct sum and the
tensor product are also modules via

(% ⊕ σ)(g).(v,w) = (%(g).v, σ(g).w),
(% ⊗ σ)(g).(v ⊗ w) = %(g).v ⊗ σ(g).w.

Tensor products representations can also be defined for cartesian products of
groups G and H. If (G, %,V) and (H, τ,U) are modules, then the tensor product
representation for G ×H is defined via

(% ⊗ τ)(g, h).(v ⊗ u) = %(g).v ⊗ τ(h).u.

The tensor product representations also induce representations for symmetric and
exterior products. See chapter 2 to learn how these definitions translate to matrix
notation.

Remark 4.33 Let g : d%→ gl(V) and g : dσ→ gl(W) be Lie algebra representations.
Representations for direct sums and tensor products are given by

(d% ⊕ dσ)(X).(v,w) = (d%(X).v,dσ(X).w),
(d% ⊗ dσ)(X).(v ⊗ w) = d%(X).v ⊗ w + v ⊗ dσ(X).w.

Tensor products representations can also be defined for direct sums of Lie al-
gebras g and h. If (g,d%,V) and (h,dτ,U) are modules, then the tensor product
representation for g ⊕ h is defined via

(d% ⊗ dτ)(X,Y).(v ⊗ u) = d%(X).v ⊗ u + v ⊗ dτ(Y).u.

Definition 4.34 Let G and H be algebraic groups.

1. Two representations of %1 : G → GL(V1) and %2 : G → GL(V2) are called
conjugate if there exists an isomorphism ϕ : V1 → V2 which satisfies

%2(g).ϕ(v) = ϕ(%1(g).v),
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i.e. the following diagram commutes:

V1
%1(g) //

ϕ

��

V1

ϕ

��
V2

%2(g) // V2

2. Two representations % : G → GL(V) and σ : H → GL(W) are called equi-
valent if there exists an isomorphismΨ : %(G)→ σ(H) and an isomorphism
ϕ : V →W of vector spaces such that

ϕ(%(g).v) = Ψ(%(g)).ϕ(v),

i.e. the following diagram commutes:

V1
%(g) //

ϕ

��

V1

ϕ

��
V2
Ψ(%(g))// V2

Definition 4.35 If (G, %,V) (resp. (g,d%,V)) is a module for G (resp. g), then
the dual representation %∗ (resp. d%∗) on the dual space V∗ of V is defined via
%∗(g) = (%(g)−1)> (resp. d%∗(X) = −d%(X)>).

Definition 4.36 A module (%,V) of an algebraic group G is called irreducible3)

if there exists no non-trival subspace W of V such that W is %(G)-invariant, i.e.
(%|W,W) is a representation. It is called fully reducible if V decomposes to a direct
sum V = V1 ⊕ . . . ⊕ Vk of G-modules (%|Vi ,Vi).

This definition is adopted in an obvious way for Lie algebras.

4.5.1 Adjoint Represenations and Semisimple Lie Algebras

The most natural representation of groups and Lie algebras are those where the
group (resp. algebra) acts on itself, as no additional information about the module
is required.

Definition 4.37 Let G be an algebraic group and g = Lie(G). For g ∈ G and X ∈ g,
set

Ad(g) : g→ g, Y 7→ gYg−1 and ad(X) : g→ g, Y 7→ [X,Y].

The representation
Ad : G→ GL(g), g 7→ Ad(g)

3)Note that for representations which are not irreducible, we will use the term non-irreducible
rather than reducible, to avoid further confusion with the terms reduced, reductive and fully
reducible.
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is called the adjoint representation of G. Its differential is

ad : g→ gl(g), X 7→ ad(X),

the adjoint representation of g.

Theorem 4.38 (Cartan’s criterion for semisimplicity) A Lie algebra g is semisimple
if and only if the bilinear form

κ : g × g→ k, (X,Y) 7→ tr(ad(X) ◦ ad(Y))

is non-degenerate.

The bilinear form κ in this theorem is called the Killing form, which is a major
tool in the study of semisimple Lie algebras.

Definition 4.39 Let g be a semisimple Lie algebra. A subalgebra c is a Cartan
algebra of g if c is a maximal commutative subalgebra and ng(c) = c holds. The
dimension of c is called the rank of g.

Definition 4.40 Let g be a semisimple Lie algebra and c a Cartan algebra of g. For
α ∈ c∗, define

gα = {X ∈ g | ∀ H ∈ c : ad(H)X = α(H)X}.

If gα , 0 and α , 0, then α is called a root and gα its root space. The set R of roots
of g is called the root system of g.

Theorem 4.41 Let g be a semisimple Lie algebra and c a Cartan algebra of g. Let
R ⊆ c∗ be the set of roots. For α ∈ R, we have −α ∈ R as well. The algebra g
decomposes into subspaces as follows:

g = c ⊕
⊕
α∈R

gα.

Furthermore, for α, β ∈ R we have [gα, gβ] ⊆ gα+β (resp. = {0} if α + β < R) and
g0 = c.

Definition 4.42 A root system R is called reduced if for any α ∈ R the only roots
proportional to α are α and −α.

It can be shown that a semisimple Lie algebra g is determined uniquely up to
isomorphism by its root system R, cf. chapter II.10 in Knapp [20]. Conversely,
one can define an abstract notion of a reduced root system independently of a
given Lie algebra (see for example chapter 5 in Baues, Globke [3] or chapter II.5
in Knapp [20]) and show that for any reduced root system R, there exists a Lie
algebra whose root system is R cf. chapter II.11 in Knapp [20]. After investing
quite some effort, one arrives at the following classification result for simple Lie
algebras.
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Theorem 4.43 (Classification of simple Lie algebras) Every simple Lie algebra g
over an algebraically closed field k is of one of the following root system types:

Type g dimk(g)
An sln+1(k) n ≥ 1 n2 + 2n
Bn o2n+1(k) n ≥ 2 2n2 + n
Cn spn(k) n ≥ 3 2n2 + n
Dn o2n(k) n ≥ 4 2n2

− n
G2 - 14
F4 - 52
E6 - 72
E7 - 133
E8 - 248

Where the index of the respective type is the rank of g. Further we have A1 = B1 =
C1, B2 = C2 and A3 = D3.

4.5.2 Irreducible Representations of Semisimple Lie Algebras

Definition 4.44 Let g be a semisimple Lie algebra and c a Cartan algebra of g.
Further, let d% : g → GL(V) be a representation of g on V. For an element ω ∈ c∗,
set

Vω = {x ∈ V | ∀ H ∈ c : d%(H).x = ω(H)x}.

If Vω , {0}, it is called the weight space for the weight ω of d%.

Remark 4.45 The roots of g are the non-zero weights of the adjoint representation.

Remark 4.46 Now, consider a g-module (d%,V) of a semisimple Lie algebra g. Let
R be the root system of g and consider

c∗0 = 〈R〉Q.

It is possible to introduce a lexicographic order on c∗0 such that R can be decom-
posed into two disjoint subsets, R = R+ ∪ R−. Then, an element v ∈ V is called a
highest weight vector of the representation if

d%(X).v = 0

for all X ∈ gα with α ∈ R+. Then v is contained in some weight space,

v ∈ Vω ⊂ V,

so ω ∈ c∗0 is called the highest weight of the representation d%. The highest
weight vector is unique for an irreducible representation. All weight spaces of
the representation d% are obtained by successively applying the elements Y ∈ gβ
with β ∈ R− to the highest weight vector v. These facts are explained exhaustively
in chapter 14 of Fulton, Harris [8], where the important special cases sl2(C) and
sl3(C) are treated in chapters 11 to 13.
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Remark 4.47 Depending on the choice of a basis of c∗ and an order in R, there
exist certain fundamental weights ω1, . . . , ωn ∈ c

∗, where n = rank(g), with the
property that the highest weight ω can be expressed uniquely as a non-negative
integral linear combination of the fundamental weights,

ω = m1ω1 + . . . +mnωn

for m1, . . . ,mn ∈ N0.

Theorem 4.48 Let g be a semisimple Lie algebra and c a Cartan algebra of g. Let
ω ∈ c∗0. Then there exists a unique irreducible representation d%ω of gwith highest
weight ω.

Instead of writing d%ω, we will identify the representation with its highest weight
and useω to denote both the representation and the weight throughout the thesis.

Example 4.49 Irreducible representations of simple Lie algebras.

1. For g = sln, the representation with highest weight ω = ω1 is the standard
representation where sln acts via matrix multiplication on kn.

2. For g = sln and 1 ≤ k ≤ n, the module for the representation ω = ωk is the
k-th exterior product

∧k
k

n.

3. For g = sln and 1 ≤ k ≤ n, the module for the representation ω = kω1 is the
k-th symmetric product Symk

k
n.

4. For g = sl2, an irreducible representation is a symmetric power of the stan-
dard representation.

5. For g = spn, the representation ω = ω1 is the standard representation on k2n.

6. For g = son, the representation ω = ω1 is the standard representation on kn.

The book by Fulton and Harris [8] provides a complete classification of the finite-
dimensional representations of the simple Lie algebras (for k = C). In fact, all of
them are given by a representation determined by some highest weight, except
for some representations of son which arise as representations of the group Spinn.
These are the spin representation, the (even and odd) half-spin representations
and the vector representation, see example 2.15 in Kimura [14].

The dimension of a module of a semisimple Lie algebra can be computed with the
help of the Killing form and the knowledge of the highest weight. Each α ∈ c∗ is
a dual element for some Xα ∈ c with respect to the Killing form. Then the Killing
form can be defined on c∗ via κ(α, β) = κ(Xα,Xβ).
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Theorem 4.50 (Weyl’s dimension formula) Let g be a semisimple Lie algebra
with root system R. The dimension of the irreducible representation ω is given by

dim(ω) =
∏
α∈R+

κ(ω + β, α)
κ(β, α)

,

with β = 1
2

∑
α∈R+ α.

Now we investigate the correspondence of the irreducible Lie algebra representa-
tions to representations of algebraic groups. We assume k = C.

Definition 4.51 Let G be a connected algebraic group with semisimple Lie algebra
g. Let c be a Cartan algebra of g and C ⊂ G the subgroup corresponding to c. Then
C is called a Cartan subgroup of G.

Theorem 4.52 Let G be a connected algebraic group with semisimple Lie algebra
g, and let C be a Cartan subgroup of G. Then an irreducible representation
d% : g → gl(V) of g corresponds to a rational represenation % : G → GL(V) if and
only if the highest weight of d% corresponds to the differential of an element of
X(C).

We use highest weights to denote both representations for groups and for Lie
algebras.

The irreducible representations of non-simple semisimple groups are obtained as
tensor products of the irreducible representations of simple groups.

Proposition 4.53 Let G1 and G2 be algebraic groups, and % : G1 × G2 → GL(V) an
irreducible represenation. Then there exist irreducible representations %1 : G →
GL(V1) and %2 : G2 → GL(V2) such that % = %1 ⊗ %2 and V � V1 ⊗ V2.

4.5.3 Reductive Groups and Lie Algebras

Definition 4.54 An algebraic group G is called reductive if every G-module is
fully reducible.

Theorem 4.55 An algebraic group G is reductive if and only if its radical is a torus.

Example 4.56 Reductive groups.

1. Finite groups are reductive.

2. If G1, . . . ,Gk are simple groups, then

GL j
1 × G1 × · · · × Gk

is a reductive group with torus GL j
1.
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Remark 4.57 If G is reductive, then [G,G] is semisimple.

Definition 4.58 Let g be a Lie algebra and h a subalgebra of g.

1. g is called reductive if the adjoint representation of g is fully reducible.

2. h is called reductive in g if the adjoint representation of h on g is fully
reducible.

In particular, if h is reductive in g, then h is reductive.

Proposition 4.59 A Lie algebra g is reductive if and only if g = s ⊕ a, where s is
semisimple and a is the centre of g.

Proposition 4.60 An algebraic group G is reductive if and only if g = Lie(G) is
reductive and all X ∈ z(g) are diagonalisable over the algebraic closure of k.

Remark 4.61 If G is an algebraic group with reductive Lie algebra, then G is not
necessarily reductive. For example, this is the case for G = G+.

Theorem 4.62 (Cartan) Let g be a Lie algebra over an algebraically closed field
k, and let d% : g → Vn be an irreducible representation of g. Then d%(g) is
either semisimple or a direct sum of a semisimple Lie algebra and the centre
z(d%(g)) = {λIn | λ ∈ k} � gl1.

Remark 4.63 Cartan’s Theorem tells us that the torus of an algebraic group acts
either trivially or via scalar multiplication on an irreducible module (the trivial
representation g 7→ In is denoted by 1). We denote the representation where
GL1 acts via scalar multiplication on a module by µ. As a consequence, for a
non-irreducible module, at most one scalar multiplication acts on each irreducible
component. But this does not necessarily imply that the torus acts via the same
scalar multiplication on all irreducible components. For example, if V = V1⊕V2⊕

V3 is a module with irreducible components Vi of respective dimensions ni, then
a possible GL1-action on V is given by

v 7→

λIn1

λ−1In2

In3

 · v.
So GL1 acts via scalar multiplication on V1 and V2, and trivially on V3. But GL1

does not act via scalar multiplication on V or even on V1 ⊕ V2.

4.5.4 Actions and Orbits

Definition 4.64 Let G be an algebraic group acting on an algebraic set V. For
v ∈ V, the set

G.v = {w ∈ V | ∃ g ∈ G : g.v = w}
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is called the orbit of v under the action of G. The subgroup Gv ⊂ G fixing v,

Gv = {g ∈ G | g.v = v},

is called the isotropy subgroup of v. A subset W ⊆ V is called G-stable if G.W ⊆W.

Proposition 4.65 Let G be an algebraic group acting on an algebraic set V.

1. An orbit G.v is open in its closure clos(G.v), and every orbit contains a closed
orbit in its closure.

2. We have the following dimension formula:

dim(G) = dim(G.v) + dim(Gv).

3. If G is connected, the irreducible components of V are stable under the action
of G.

Proposition 4.66 Let (G, %,V) be a module for G and g = Lie(G). The differential
(at 1G) of the orbit map β : G→ V, g 7→ %(g).v is given by

dβ : g→ V, X 7→ d%(X).v.

If v is fixed under G, then d%(X).v = 0 for all X ∈ g. If W ⊆ V is %(G)-stable, then
d%(g).W ⊆W.

In particular, we can define the isotropy algebra gv of v ∈ V to be the subalgebra
of g such that d%(X).v = 0 for X ∈ gv. We have gv = Lie(Gv).

Proposition 4.67 Let G be an algebraic group acting on an algebraic set V. For
v ∈ V, the coset space G/Gv is isomorphic to the orbit G.v.

The following theorems are essential for the characterisation of reductive preho-
mogeneous modules in section 10.3.

Theorem 4.68 (Luna) Let G be a reductive algebraic group acting on a smooth
affine variety V. Assume that for each point v ∈ V there exists a non-degenerate
symmetric bilinear form on the tangent space TvV which is invariant under Gv.
Then there exists a Zariski dense open subset U of V which is the union of closed
G-orbits in V. In particular, if an open dense orbit exists, it is V itself.

Theorem 4.69 (Matsushima) Let G be a reductive linear algebraic group and H a
closed subgroup of G. Then the coset space G/H is an affine variety if and only if
H is a reductive algebraic group.

A proof of Matsushimas theorem can be found in Richardson [27].
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4.6 Lie Groups and Algebraic Groups

We assume k = C in this section.

A complex Lie group is a group endowed with the structure of a complex mani-
fold, see chapter I.12 in Knapp [20].

Theorem 4.70 Let G be a semisimple algebraic group. Then G has the structure
of a complex Lie group, and this structure is compatible with its structure as an
algebraic group. If H is an algebraic group, then every analytic homomorphism
ϕ : G→ H is rational.

This theorem enables us to use facts from the theory of Lie groups for algebraic
groups as well. In particular, we need the following fact in section 10.3.

Proposition 4.71 Let G be a complex Lie group. Then G has a maximal compact
subgroup K, and G is the Zariski closure of K.

In chapter 8, we need a correspondence between representations of algebraic
groups and Lie algebras. Part of this is provided by theorem 4.21, and a con-
verse result for certain groups is provided by the following theorem (recall from
topology that a set is called simply connected if every loop can be contracted
continuously to a point).

Theorem 4.72 Let g, h be complex Lie algebras and ψ : g → h a homomorphism
of Lie algebras. There exist complex Lie groups G and H, where G is simply
connected, and a homomorphism ϕ : G→ H of Lie groups such that ψ = dϕ1G .

Remark 4.73 Even though the homomorphism ϕ in the previous theorem is con-
structed using the exponential map (see chapter 10 in Knapp [20]), theorem 4.70
tells us that the homomorphismϕ is rational, hence a homomorphism of algebraic
groups.

5 Invariant Theory

In this chapter we study polynomial functions which are invariant under the
action of some algebraic group. For an introduction to this subject, see Kraft [23],
[24]. A more abstract approach to the subject is taken by Schmitt [29].

We assume k to be algebraically closed.

Definition 5.1 Let G be an algebraic group and % : G → GL(V) a representation.
A function f ∈ k[V] is called invariant under G, if

f (v) = f (%(g).v)

for all g ∈ G and v ∈ V. The polynomial invariants form a subring of k[V], the
invariant ring, denoted by k[V]G.
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Example 5.2 Invariants.

1. All constant functions are invariants.

2. For G = SLn acting on kn via matrix multiplication, an invariant is given
by the determinant. In fact, the invariant ring k[kn]SLn is generated by the
determinant.

3. For G = GLn acting via ω1 ⊕ω∗1 on kn
⊕ k

n∗. The invariant ring k[kn
⊕ k

n∗]GLn

is generated by the dual pairing, 〈x|y〉 = 〈%(g).x|%∗(g).y〉.

4. The action of G = SL2n on the space
∧2
k

2n of skew-symmetric matrices
via %(g).X = gXg>. The determinant of a skew-symmetric matrix X can
always be written as the square of a polynomial in the matrix entries. This
polynomial is the Pfaffian

Pf(X) =
√

det(X).

The Pfaffian is an irreducible polynomial and it generates the ring of in-
variants k[

∧2
k

2n]SL2n .

5. The action of G = SL2 on the space of binary cubic forms Sym3
k

2 is given by
%(g). f = f (%(g).·). In general, the discriminant of a polynomial f is a function
which is equal to 0 if and only if f has multiple roots. For the binary cubic
forms, the discriminant is given by

dis( f ) = a2
2a2

3 + 18a1a2a3a4 − 4a1a3
3 − 4a3

2a4 − 27a2
1a2

4,

where f (x, y) = a1x3+a2x2y+a3xy2+a4y3. The ring of invariants k[Sym3
k

2]SL2

is generated by the discriminant.

5.1 Algebraic Quotients

Theorem 5.3 (Hilbert, Nagata) If G is a reductive algebraic group and V an alge-
braic set such that G acts in V. Then the invariant ring k[V]G is a finitely generated
k-algebra.

Now it follows from proposition 3.29, that there exists an affine variety with
coordinate ring k[V]G.

Definition 5.4 Let V be an algebraic set and G an algebraic group acting on V.
Then let V�G denote the variety with coordinate ring k[V]G, and π : V → V�G
be the comorphism of the embedding k[V]G

→ k[V]. Then the pair (V�G, π) is
called the algebraic quotient of V by G.

Proposition 5.5 Let V be an algebraic set and G an algebraic group acting on V,
and let (V�G, π) be its algebraic quotient.
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1. The map π is surjective and constant on the G-orbits.

2. The algebraic quotients satisfies the following universal property: If ϕ :
V → W is a morphism which is constant on the G-orbits, then there exists
a unique morphism ψ : V�G → W such that ϕ = ψ ◦ π, i.e. the following
diagram commutes:

V
ϕ //

π
��

W

V�G
∃1ψ

<<yyyyyyyy

3. If V is irreducible, then V�G is irreducible, and if V is normal, then V�G is
normal.

4. If Y is a closed G-stable subset of V, then π(Y) is a closed subset of V�G.
Furthermore, (π(Y), π|Y) is the algebraic quotient of Y by G.

5. If (Yi)i is a family of closed G-stable subsets of V, then

π
(⋂

i

Yi

)
=

⋂
i

π(Yi).

6. For v ∈ V, the fibreπ−1(π(v)) contains a unique closed G-orbit X and we have

π−1(π(v)) = {w ∈ V | X ⊂ clos(G.w)}.

Remark 5.6 By the last part of proposition 5.5, we can interprete V�G as the set
of closed G-orbits in V, or as the set of closures of orbits.

Proposition 5.7 Let V be a finite-dimensional module for an algebraic group G.
If the character group X(G) is trivial, i.e. X(G) = {1}, then

k(V�G) = k(V)G.

Example 5.8 The assumptions of proposition 5.7 are satisfied by any module of a
semisimple group.

Proposition 5.9 Let V be a finite-dimensional module for an algebraic group G.
Then

trdeg
k
(k(V)G) = dim(V) −max{dim(G.v) | v ∈ V}.

Theorem 5.10 (Rosenlicht) Let V be a variety and G an algebraic group acting on
V. Then there exists an open dense G-invariant subset U ⊆ V, an algebraic set W,
and a morphism ϕ : U→W such that

1. Every fibre ϕ−1(w) for w ∈W is precisely a single G-orbit.

2. U and W are smooth.
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3. ϕ∗ : k(W)→ k(U)G � k(V)G is an isomorphism.

4. ϕ∗ : k[W]→ k[U]G is an isomorphism.

Proposition 5.11 Let V be a module of an algebraic group G. If there exists an
orbit of codimension ≤ 1, then V�G is either a point or isomorphic to the affine
line k.

We shall learn some facts about the fibres of the quotient map π.

Definition 5.12 Let ϕ : V → W be a morphism and consider the fibre F = ϕ−1(w)
for some w ∈ ϕ(V) ⊆ W. Then F is called reduced if ϕ∗(Mw) generates a radical
ideal in k[V], i.e.

√
ϕ∗(Mw)k[V] = ϕ∗(Mw)k[V].

In the following, let V be a module for an algebraic group G, and let

F0 = π
−1(π(0)) = {v ∈ V | 0 ∈ clos(G.v)}

denote the zero fibre of π.

Proposition 5.13 Some facts about the zero fibre.

1. If the zero fibre F0 contains a dense orbit, so does any other fibre of π. Then
all fibres are of the same dimension.

2. We have dim(F0) ≥ dim(F) for any fibre F of π. In particular, all fibres are of
the same dimension if and only if

dim(F0) = dim(V) − dim(V�G),

i.e. dim(F0) is minimal.

3. If F0 is reduced and irreducible of dimension dim(F0) = dim(V)−dim(V�G),
the all fibres are reduced and irreducible. If additionally F0 is normal, then
all fibres are normal.

Theorem 5.14 Let G be an algebraic group acting on an algebraic set V. If

W = {v ∈ F0 | dπv : V → Tπ(0)(V�G) is surjective}

is not empty and codimF0(clos(F0\W)) ≥ 2, then all fibres of π are normal and V�G
is an affine space.

Proposition 5.15 If π(0) ∈ V�G is a smooth point, then V�G � kn for some
n ∈ N. In particular, k[V]G = k[V�G] is generated by algebraically independent
homogeneous elements f1, . . . , fn ∈Mπ(0).

Theorem 5.16 If dim(F0) = dim(V)−dim(V�G) and if F0 is reduced at some point
v ∈ F0, then the quotient V�G is an affine space.

Theorem 5.17 If G is semisimple and dim(V�G) = 2, then V�G � k2.
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5.2 The Fundamental Theorems

The Fundamental Theorems of invariant theory describe the ring of invariants
for certain modules in terms of generators and relations. These two are usually
seperated in “First” and “Second” Fundamental Theorems, but here we shall state
them together. By the fundamental theorems we obtain some information about
the quotient, e.g. if the generators are algebraically independent, then the quotient
is isomorphic to some affine space.

Theorem 5.18 (Fundamental Theorem for GLn) Consider the module

(
GLn, (ω1)⊕p

⊕ (ω∗1)⊕q, (kn)⊕p
⊕ (kn∗)⊕q

)
.

The ring of invariants k[(kn)⊕p
⊕ (kn∗)⊕q]GLn is generated by the dual pairings

〈xi|λ j〉 = λ j(xi) for i = 1, . . . , p, j = 1, . . . , q,

where (x1, . . . , xp, λ1, . . . , λq) ∈ (kn)⊕p
⊕ (kn∗)⊕q. The relations are generated by

0 = det


〈xi1 |λ j1〉 · · · 〈xi1 |λ jn+1〉

...
. . .

...
〈xin+1 |λ j1〉 · · · 〈xin |λ jn+1〉


for 1 ≤ i1 < . . . < in+1 ≤ p and 1 ≤ j1 < . . . < jn+1 ≤ q.

Theorem 5.19 (Fundamental Theorem for SLn) Consider the module

(
SLn, (ω1)⊕p

⊕ (ω∗1)⊕q, (kn)⊕p
⊕ (kn∗)⊕q

)
.

The ring of invariants k[(kn)⊕p
⊕ (kn∗)⊕q]SLn is generated by the dual pairings

〈xi|λ j〉 = λ j(xi) for i = 1, . . . , p, j = 1, . . . , q,

and, if p ≥ n (resp. q ≥ n), the determinants

det(xi1 , . . . , xin), det(λ j1 , . . . , λ jn)
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where (x1, . . . , xp, λ1, . . . , λq) ∈ (kn)⊕p
⊕ (kn∗)⊕q. The relations are generated by

det(xi1 , . . . , xin) det(λ j1 , . . . , λ jn) = det


〈xi1 |λ j1〉 · · · 〈xi1 |λ jn〉

...
. . .

...
〈xin |λ j1〉 · · · 〈xin |λ jn〉

 ,
n∑

k=1

(−1)k det(xi1 , . . . ,��xik , . . . , xin+1)〈xik |λ〉 = 0,

n∑
k=1

(−1)k det(λi1 , . . . ,��λik , . . . , λin+1)〈x|λik〉 = 0,

n∑
k=1

(−1)k det(xi1 , . . . ,��xik , . . . , xin+1) det(xik , y j1 , . . . , y jn−1) = 0,

n∑
k=1

(−1)k det(λi1 , . . . ,��λik , . . . , λin+1) det(λik , ξ j1 , . . . , ξ jn−1) = 0,

for 1 ≤ i1 < . . . < in(+1) ≤ p and 1 ≤ j1 < . . . < jn(+1) ≤ q.

Theorem 5.20 (Fundamental Theorem for SOn) Consider the module(
SOn, (ω1)⊕p, (kn)⊕p

)
.

The ring of invariants k[(kn)⊕p]SOn is generated by the inner products

〈xi|x j〉 for i, j = 1, . . . , p,

where (x1, . . . , xp) ∈ (kn)⊕p, and, for n ≤ p, the determinants

det(xi1 , . . . , xin),

where 1 ≤ i1 < . . . < in ≤ p. The relations are generated by

0 = det


〈xi1 |y j1〉 · · · 〈xi1 |y jn+1〉

...
. . .

...
〈xin+1 |y j1〉 · · · 〈xin+1 |y jn+1〉

 ,
det(xi1 , . . . , xin) det(y j1 , . . . , y jn) = det


〈xi1 |y j1〉 · · · 〈xi1 |y jn〉

...
. . .

...
〈xin |y j1〉 · · · 〈xin |y jn〉

 ,
where 1 ≤ i1 < . . . < in(+1) ≤ p and 1 ≤ j1 < . . . < jn(+1) ≤ p.

Theorem 5.21 (Fundamental Theorem for Spn) Consider the module(
Spn, (ω1)⊕p, (k2n)⊕p

)
.
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The ring of invariants k[(k2n)⊕p]Spn is generated by the inner products

〈xi|x j〉 for i, j = 1, . . . , p,

where (x1, . . . , xp) ∈ (k2n)⊕p. The relations are generated by

0 = Pf


〈xi1 |y j1〉 · · · 〈xi1 |y jn+2〉

...
. . .

...
〈xin+2 |y j1〉 · · · 〈xin+2 |y jn+2〉

 .
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Part II

Left-Symmetric Algebras

6 Introduction

Left-symmetric algebras generalise associative algebras in a way that they still
induce a Lie algebra structure when considering the commutator product. They
arise in many different areas of mathematics, of which a survey can be found in
an article by Burde [6].

In this and the following chapters, we shall follow Baues [2], [1] in the intro-
duction of left-symmetric algebras and some of their properties leading to a first
classification result. The exposition is further supplied by some examples taken
from Burde [6].

Definition 6.1 Let V be a vector space over the field k endowed with a k-bilinear
product ∗ satisfying

x ∗ (y ∗ z) − y ∗ (x ∗ z) = (x ∗ y) ∗ z − (y ∗ x) ∗ z.

Then the algebra (V, ∗) is called a left-symmetric algebra or pre-Lie algebra.

Introducing the associator product

(x, y, z) = x ∗ (y ∗ z) − (x ∗ y) ∗ z,

we can rewrite the defining condition for left-symmetric algebras as

(x, y, z) = (y, x, z).

6.1 Left-Symmetric Algebras and Lie Algebras

Proposition 6.2 Let (V, ∗) be a left-symmetric algebra. The commutator product

[x, y] = x ∗ y − y ∗ x

for x, y ∈ V satisfies the Jacobi identity, i.e. (V, [·, ·]) is a Lie algebra.

P: We have

[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = x ∗ (y ∗ z − z ∗ y) − (y ∗ z − z ∗ y) ∗ x
+ y ∗ (z ∗ x − x ∗ z) − (z ∗ x − x ∗ z) ∗ y
+ z ∗ (x ∗ y − y ∗ x) − (x ∗ y − y ∗ x) ∗ z,
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and reordering terms yields

(x, y, z) − (y, x, z)︸               ︷︷               ︸
=0

+ (z, x, y) − (x, z, y)︸               ︷︷               ︸
=0

+ (y, z, x) − (z, y, x)︸               ︷︷               ︸
=0

= 0,

so the Jacobi identity holds. �

If g is the Lie algebra arising from taking the commutator product of a left-
symmetric algebra (V, ∗), we call g the Lie algebra associated to (V, ∗). Conversely,
if g is a Lie algebra such that a left-symmetric product ∗ can be defined on g (as a
vector space), then we say that g admits a left-symmetric product.

Remark 6.3 Although every left-symmetric algebra has a Lie algebra associated to
it, not every Lie algebra admits a left-symmetric product. For example, semisimple
Lie algebras do not admit left-symmetric products, which follows from corollary
8.7.

Definition 6.4 For a left-symmetric algebra (g, ∗), let

Lx : g→ g, y 7→ x ∗ y

denote the left-multiplication on g. The map

L : g→ gl(g), x 7→ Lx

is called the left-regular representation of (g, ∗).

Proposition 6.5 For a left-symmetric algebra (g, ∗), the left-regular representation

L : g→ gl(g), x 7→ Lx

is a Lie algebra homomorphism.

P: We have to show L([x, y]) = [Lx,Ly] holds for all x, y ∈ g. The map
L([x, y]) = L[x,y] is defined to be(

z 7→ [x, y] ∗ z
)
=

(
z 7→ (x ∗ y) ∗ z − (y ∗ x) ∗ z

)
.

On the other hand, [L(x),L(y)] = [Lx,Ly] is defined to be(
z 7→ (LxLy − LyLx)(z)

)
=

(
z 7→ x ∗ (y ∗ z) − y ∗ (x ∗ z)

)
.

By the left-symmetry of ∗, both expressions are equal. �

Given a left-symmetric product on g, we can construct new left-symmetric pro-
ducts by the following transformation.

Proposition 6.6 Let (g, ∗) be a left-symmetric algebra and ψ : g → g a Lie algebra
endomorphism of g such that idg − ψ is bijective. Let ϕ = (idg − ψ)−1. Then

x • y = ϕ
(
x ∗ ϕ−1(y) − ϕ−1(y) ∗ ψ(x)

)
defines a left-symmetric product • on g.
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P: Direct computation. �

The product • from proposition 6.6 is called the Helmstetter transform of the
product ∗.

Two left symmetric products ? and ∗ on g are called isomorphic if there exists an
automorphism ϕ of g such that ϕ(x ∗ y) = ϕ(x) ? ϕ(y) holds for every x, y ∈ g.

Next, we meet the most gregarious elements of a left-symmetric algebra, those
who associate with everyone.4)

Definition 6.7 Let (g, ∗) be a left-symmetric algebra. The nucleus of g is

nuc(g, ∗) = {z ∈ g | (x, y, z) = 0 for all x, y ∈ g}.

The nucleus is an associative subalgebra of (g, ∗).

6.2 Examples

Example 6.8 The most obvious example for a left-symmetic algebra is an asso-
ciative algebra (V, ·). As (x, y, z) = 0 for all x, y, z ∈ V, the condition defining a
left-symmetric product are trivially satisfied.

Example 6.9 Let vect(M) be the Lie algebra of smooth vector fields on a manifold
M with an affine connection ∇. The connection ∇ is torsion free if

∇XY − ∇YX = [X,Y]

holds for any X,Y ∈ vect(M). Further, ∇ is flat if

∇X∇YZ − ∇Y∇XZ − ∇[X,Y]Z = 0

holds for all X,Y,Z ∈ vect(M). Such a flat, torsion free connection determines a
covariant derivative

∇X : vect(M)→ vect(M), Y 7→ ∇XY.

If we define a product ∗ on vect(M) by

X ∗ Y = ∇XY,

we see that this is a bilinear product over the field k = R, and the conditions that
∇ is flat and torsion free makes vect(M) into a left-symmetric algebra overR. This
example is further explained in section 2.8 in Burde [6].

4)This pun must be credited to Kevin McCrimmon.
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Example 6.10 A convex homogeneous cone C is a non-empty open subset of Rn

such that x ∈ C implies λx ∈ C for λ > 0, that x, y ∈ C implies x + y ∈ C and that
the closure of C does not contain any subspace of Rn of dimension > 0. Without
loss of generality, we may assume that the vertex of the cone C is 0, so the group
GC of affine transformations leaving C invariant is contained in GLn(R). We can
factor GC into

GC = HT,

where H is the isotropy subgroup of some v0 ∈ C and T is the maximal connected
triangular subgroup of GC. Let gC = Lie(GC) and t = Lie(T). Then

eval : t→ R
n, X 7→ X · v0

is an isomorphism of vector spaces. Let Xv = eval−1(v). Define a product ∗ on Rn

by
v ∗ w = Xv · w.

By the commutation rules in gC, we have

[Xv,Xw](v0) = Xv · w − Xw · v = v ∗ w − w ∗ v,
[Xv,Xw] = Xv∗w−w∗v.

This implies (u, v,w) = (v,u,w) for all u, v,w ∈ Rn, so (Rn, ∗) is a left-symmetric
algebra over k = R. It even shows that there exists a two-sided unit element
with respect to ∗. See section 2.7 in Burde [6] for a more general exposition of this
example.

7 Étale Representations

In this section we explain how certain representations of an affine Lie algebra g
are related to left-symmetric products on g.

7.1 Affine Representations

Definition 7.1 Let V be vector space over k. We can identify V with the hyper-
plane V × {1} in V ⊕ k. The affine group of V is

Aff(V) =
{(g v

0 1

) ∣∣∣∣ g ∈ GL(V), v ∈ V
}
⊂ GL(V ⊕ k).

Its Lie algebra is

aff(V) =
{(X w

0 0

) ∣∣∣∣ X ∈ gl(V),w ∈ V
}
⊂ gl(V ⊕ k).
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The affine group provides us with a matrix representation for the affine transfor-
mations on V. If we identify x ∈ V with

(x
1

)
∈ V⊕k, then the affine transformation

given by multiplication with a matrix g ∈ GL(V) and translation by a vector v,

y = g · x + v,

can be rewritten in matrix form:(
y
1

)
=

(
g v
0 1

)
·

(
x
1

)
.

Hence, for A =
(
g v
0 1

)
∈ Aff(V) (resp. A =

(
X w
0 0

)
∈ aff(V)) we call g (resp. X) the

linear part Alin of the affine transformation A, and v (resp. w) the translational
part Atra of A.

For every v ∈ V we have a map

evalv : aff(V)→ V, A 7→ A.v = Alinv + Atra,

which we call the evaluation map at v.

Remark 7.2 Let A ∈ Aff(V). Then evalAx and evalx are related by

evalAx ◦Ad(A) = Alinevalx.

To see this, let g = Alin, v = Atra. For any B =
(
X w
0 0

)
∈ aff(V) we have

(
evalAx ◦Ad(A)

)
(B) = evalAx(AXA−1) = (AXA−1).Ax = (AX).x

=

(
g v
0 1

) (
X w
0 0

)
.x =

(
gX gw
0 0

)
.x

and the last term equals g(Xx + w) = Alin(B.x).

Remark 7.3 For A =
(
X v
0 0

)
,B =

(
Y w
0 0

)
∈ aff(V), define a composition by the

matrix multiplication AB. Then

evalx(AB) = X · evalx(B),

because (
X v
0 0

)
·

(
Y w
0 0

)
=

(
XY Xw
0 0

)
,

which implies evalx(AB) = X(Yx + w) = X(B.x).

Let g be a Lie algebra and d% : g → aff(V) an affine representation of g. The
evaluation map at x ∈ V is defined by

evx = evalx ◦ d%.
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Remark 7.4 Let d%̃ = Ad(A) ◦ d% be a representation conjugate to d%. Then the
evaluation map ẽvAx with respect to d%̃ satisfies

ẽvAx = Alinevx.

Definition 7.5 A representation d% : g → aff(V) is called an étale representation
if there exists a point x0 ∈ V such that the evaluation map

evx0 : g→ V, X 7→ d%(X).x0

is an isomorphism of vector spaces. In this case, x0 is called a generic point.
Equivalently, a representation % : G → Aff(V) of an algebraic group G is called
an étale representation if there exists a point x0 ∈ V such that the orbit %(G).x0 is
Zariski-open in V and the isotropy subgroup Gx0 at x0 is a finite group.

We write (d%, x0) to indicate that x0 is the generic point of d%.

Remark 7.6 Let (d%, x) and (dσ, y) be étale representations of g on V.

1. If (d%, x) and (dσ, y) are conjugate with Ad(g) ◦ d% = dσ, g ∈ Aff(V), then we
have y = gx.

2. As étale representations must be faithful, (d%, x) and (dσ, y) are equivalent if
and only if (d% ◦ ψ, x) and (dσ, y) are conjugate for some automorphisms ψ
of g.5) This is because equivalence of representations requires the existence
of a Lie algebra isomorphism ϕ : d%(g)→ dσ(g):

g
d% //

dσ
��

d%(g)

ϕ{{vvv
vv

vv
vv

dσ(g)

As all maps in this diagram are bijective, we have dσ(g) = (ϕ◦d%)(g) and we
can set ψ = dσ−1

◦ ϕ ◦ d%.

Definition 7.7 An affine étale representation (dσ, x) is called linear if it is equiva-
lent to an étale representation d% : g→ gl(V), or equivalently, if it has a fixed point
in V.

7.2 The Correspondence with Left-Symmetric Algebras

Assume dim(V) = dim(g) throughout this section. We will now show that étale
representations induce left-symmetric products and vice versa.

5)It is in this sense that equivalence is defined in Baues [2] (where conjugate representations are
called isomorphic) and we will use it in this sense for the rest of the chapter.
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Proposition 7.8 Let ϕ : g → V a vector space isomorphism and ∗ are left-
symmetric product on gwith left-regular representation L. Then the map

d% : g→ aff(V), X 7→
(
ϕ ◦ LX ◦ ϕ−1 ϕ(X)

0 0

)
defines an étale representation of gwith generic point 0.

P: We have

ev0(X) = (ϕ(LX(ϕ−1(0))) + ϕ(X) = 0 + ϕ(X),

and as ϕ is an isomorphism, so is ev0. For [X,Y] ∈ gwe have

[d%(X),d%(Y)] =
(
ϕ ◦ LX ◦ ϕ−1 ϕ(X)

0 0

) (
ϕ ◦ LY ◦ ϕ−1 ϕ(Y)

0 0

)
−

(
ϕ ◦ LY ◦ ϕ−1 ϕ(Y)

0 0

) (
ϕ ◦ LX ◦ ϕ−1 ϕ(X)

0 0

)
=

(
ϕ ◦ LXLY ◦ ϕ−1 (ϕ ◦ LX)(Y)

0 0

)
−

(
ϕ ◦ LYLX ◦ ϕ−1 (ϕ ◦ LY)(X)

0 0

)
=

(
ϕ ◦ [LX,LY] ◦ ϕ−1 ϕ([X,Y])

0 0

)
= d%([X,Y]),

so d% is a Lie algebra representation. �

Proposition 7.9 Let d% : g → aff(V) be an affine étale representation of g with
generic point 0. Then

X ∗ Y = ev−1
0

(
d%(X)lin.(ev0(Y))

)
,

defines a left-symmetric product on g.

P: For X,Y,Z ∈ g, let

d%(X) =
(
A a
0 0

)
, d%(Y) =

(
B b
0 0

)
, d%(Z) =

(
C c
0 0

)
.

As we evaluate at 0, we have

ev0(d%(X)) = d%(X)tra = a, ev0(d%(Y)) = b, ev0(d%(Z)) = c.

To prove the left-symmetry of ∗, we must show

(X,Y,Z) − (Y,X,Z) = 0.

Because ev0 is an isomorphism, it is sufficient to show

ev0((X,Y,Z) − (Y,X,Z)) = ev0(X ∗ (Y ∗ Z) − Y ∗ (X ∗ Z)) − ev0((X ∗ Y) ∗ Z − (Y ∗ X) ∗ Z)
= 0. (∗)
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First, we have

ev0(X ∗ (Y ∗ Z)) = d%(X)lin.ev0(Y ∗ Z)
= A.(d%(Y)lin.ev0(Z))
= A.(B.c)

and accordingly ev0(Y ∗ (X ∗ Z)) = B.(A.c). Then it follows that

ev0(X ∗ (Y ∗ Z) − Y ∗ (X ∗ Z)) = A.(B.c) − B.(A.c)
= [A,B].c
= [d%(X),d%(Y)]lin.c. (∗∗)

Next, we have

ev0((X ∗ Y) ∗ Z) = d%(X ∗ Y)lin.c

= d%(ev−1
0 (d%(X)lin.ev0(Y)))lin.c

= d%(ev−1
0 (A.b))lin.c

and accordingly ev0((Y ∗ X) ∗ Z) = d%(ev−1(B.a))lin.c. This implies

ev0((X ∗ Y) ∗ Z − (Y ∗ X) ∗ Z) = d%(ev−1
0 (A.b))lin.c − d%(ev−1

0 (B.a))lin.c

= d%(ev−1
0 (A.b) − ev−1

0 (B.a))lin.c

= d%((ev−1
0 (A.b − B.a))lin.c (∗ ∗ ∗)

Now, ev−1
0 (A.b − B.a) must be some element of g which gets mapped to a matrix

with translational part A.b − B.a under d%. As ev0 is bijective, there is only one
such matrix in d%(g). On the other hand, such a matrix is given by

[d%(X),d%(Y)] =
(
[A,B] A.b − B.a

0 0

)
.

Now, by comparing (∗∗) and (∗ ∗ ∗), we get

[d%(X),d%(Y)] = d%((ev−1
0 (A.b − B.a)),

and so (∗) holds. �

Note that the constructions of proposition 7.9 can be extended to étale representa-
tions with generic point v , 0 by conjugation with a translation g ∈ Aff(V) moving
the origin 0 to v.

Remark 7.10 For X,Y ∈ gwe have

evv(d%(X ∗ Y)) = evv(d%(X) · d%(Y)),

where · is the associative matrix product.
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For a fixed Lie algebra g, let E0 (resp. E) be the set of étale representations with
generic point 0 (resp. with any generic point, i.e. E0 ⊂ E), and let L be the set of
left-symmetric products. By proposition 7.8 and 7.9, we obtain two maps

Φ : L → E0 and Ψ : E → L.

Proposition 7.11 The maps Φ andΨ induce a bijection between L and E0, where
isomorphic left-symmetric products are mapped to equivalent étale representa-
tions and vice versa.

S  : Let (d%, x) be an étale representation with generic point x. For
g ∈ Aff(V), the representation (dσ = Ad(g) ◦ d%, gx) is conjugate to d%. Using
that the evaluation map evgx for dσ is given by evgx = glin.evx, we see that the
left-symmetric products defined for d% and dσ coincide. This means that Ψ can
be defined on the set of conjugacy classes of étale affine representations.

From the definition of Φ and Ψ we have Ψ ◦ Φ = idL. To prove that Φ ◦Ψ(d%, x)
is an étale representation with generic point 0 conjugate to (d%, x), conjugate the
étale representation with some suitable element g ∈ Aff(V).

Similarly, one shows that isomorphic left-symmetric products are mapped to
equivalent étale representations, and vice versa.

For a full proof, see proposition 2.1 in Baues [2]. �

The next result gives us a criterion of linearity for an affine étale representation.

Proposition 7.12 An étale representation is isomorphic to a linear representation
if and only if the corresponding left-symmetric algebra has a right-identity.

P: Use the formula

X ∗ Y = ev−1
x0

(
d%(X)lin.(evx0(Y))

)
.

Then y ∈ V is a fixed point if and only if ev−1
x0

(x0 − y) is a right identity. �

8 Left-Symmetric Algebras for gln

In this chapter we assume k = C.

To prepare the classification of left-symmetric products for gln in section 8.3, we
have to study some properties of reductive and semisimple algebraic groups and
their relations to étale representations. In definition 7.5, we also gave a definition
of étale representations for groups.
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Definition 8.1 Let G be an algebraic group and % : G → Aff(V) a rational étale
representation of G. Then the module (G, %,V) is called a special module.6)

In this chapter, let g = gl1 ⊕ s be a reductive Lie algebra with centre gl1 and
semisimple part s. For s, there exists a connected, simply-connected algebraic
group S such that s = Lie(S). If (d%, x) is an étale representation of g, then dσ = d%|s
arises as the differential of a rational representation σ : S → Aff(V) (see theorem
4.72) and the module (GL1 × S, µ ⊗ σ,V) is a special module with Lie algebra g.
Thus we can view V as an algebraic variety for S. The restriction of the evaluation
map evx on s is the differential of the orbit map of S,

g 7→ σ(g).x.

As d% is an étale representation, the orbit σ(S).x must be of maximal dimension
dim(S)(= dim(G) − 1 = dim(V) − 1), and this is the case for all orbits on a Zariski-
open subset of V (this follows from proposition 3.45).

We may even assume σ to be a linear representation, as any semisimple group has
a fixed point in V.

8.1 Algebraic Quotients for Semisimple Groups

Recall from section 5.1 that the algebraic quotient V�G of the action of a reductive
algebraic group on an module V is the variety with coordinate ring C[V]G. It can
be interpreted as the set of closed orbits under the action of G.

We study the algebraic quotient for the action of a semisimple group S such
that S has orbits of dimension dim(S) = dim(V) − 1 on a Zariski-open subset of
V. In particular, this is the case if the action of S arises by restricting an étale
representation of a reductive group with centre GL1 to its semisimple part. We
will see in this section that the converse holds.

Proposition 8.2 The quotient variety V�S is isomorphic to the affine line C. The
ring of invariants C[V]S is generated by an irreducible, homogeneous f ∈ C[V]S

with deg( f ) > 0.

P: As S is semisimple, we haveC(V)S = Quot(C[V]S). By proposition 5.9, we
have

dim(V�S) = trdeg
C

(Quot(C[V]S))

= trdeg
C

(C(V)S) = dim(V) −max{dim(σ(S).v) | v ∈ V}
= 1.

6)This definition of special modules differs slightly from the definition in Baues [2], where the
definition is made for semisimple algebraic groups.
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Now the proposition follows from proposition 5.11, where f is the generator of
the homogeneous ideal of invariants vanishing at 0. �

As a consequence of this proposition, we can identify the quotient mapping
π : V → V�S with f : V → C.

Remark 8.3 The zero fiber F0 = f −1(0) is invariant under the action of GL1, and {0}
is the only closed S-orbit in F0, since the elements of V�S correspond bijectively
to the closed S-orbits. For c ∈ C×, let Fc = f −1(c). Then the action of GL1 permutes
the fibers, as a ∈ GL1 maps Fc to

aFc = f −1( f (aFc)) = f −1(ad f (Fc)) = f −1(adc) = Fadc,

where d = deg( f ).

Proposition 8.4 Every fiber Fc = f −1(c) for c ∈ C× consists of a single closed S-orbit
of codimension 1.

S  : S has an orbit of codimension 1 in every fiber Fc where c , 0.
Since the isotropy subgroup of such an orbit is finite, the orbit is an affine variety
by theorem 4.69. One can show that every such orbit is closed.

Since every fiber Fc contains exactly one closed orbit in its closure, Fc must consist
of a single closed orbit.

For a full proof, see theorem 3.4 in Baues [1]. �

Corollary 8.5 The only fixed point for the action of S on V is 0.

Combining remark 8.3 and proposition 8.4, we arrive at the following theorem.

Theorem 8.6 Let S be a semisimple algebraic group acting on a vector space V,
such that dim(S) = dim(V)−1 and S has orbits of codimension 1 on a Zariski-open
subset of V. This is the case if and only if V is a special module for the action of
GL1 × S on V induced by the action of S.

Corollary 8.7 The semisimple group S has no étale representations.

P: See corollary 3.7 in Baues [1]. �

8.2 Classification of Étale Representations

We consider an étale representation d% of the reductive Lie algebra g = gl1 ⊕ s.
We may assume that the representation dσ = d%|s is linear and that dσ is the
differential of a representation σ : S → GL(V) for semisimple S such that S has
orbits of dimension dim(S) = dim(V) − 1 on a Zarsiki-open subset of V.
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Remark 8.8 Consider the normaliser NAff(V)(σ(S)). Then the fixed point 0 is a
fixed point for NAff(V)(σ(S)) as well, so the normaliser is contained in GL(V). As a
consequence, we may assume d%(g) ⊆ gl(V).

Lemma 8.9 The generic point x of d% is not contained in the zero fiber F0 = f −1(0)
of the quotient V�S, where f is the invariant polynomial from proposition 8.2.

P: See lemma 3.10 in Baues [2]. �

Lemma 8.10 The representation d% of g is étale if and only if d fx(d%(gl1).x) , {0}.

P: The map evx restricted to s is the differential of the orbit mapping g 7→
σ(g).x of S, so it is injective. As evx is surjective, it is an isomorphism if and only
if it is injective on gl1, and this is the case if and only if d fx(d%(gl1).x) , {0}. �

Remark 8.11 Since d% is linear, d%(gl1) is contained in the centraliser z of d%(s) in
gl(V). The normaliser NGL(V)(σ(S)) acts on z via conjugation. Let

Nx = {g ∈ NGL(V)(σ(S)) | g.x = x}.

Then we have
NGL(V)(σ(S)) = GL1 · σ(S) ·Nx,

and GL1 · σ(S) acts trivially on z. Hence, the functional Y 7→ d fx(Y.x) is invariant
under the action of NGL(V)(σ(S)).

Theorem 8.12 Let S, x and f be as above. The set of equivalence classes of étale
affine representations of g = gl1 ⊕ s which induce (S, σ,V) (up to equivalence) by
restricting the representation to s is parametrised by the conjugacy classes under
NGL(V)(σ(S)) of elements Y which satisfy d fx(Y.x) = 1.

S  : Let (%1, x) and (%2, y) be étale representations which induce
(S, σ,V). As the generic point is not cointained in the zero fiber, one can find a
g ∈ GL1 × σ(S) that moves x to y, so %1 and %2 are equivalent.

Let a ∈ gl1. Then d%(a) ∈ z and d fx(d%(a)) , 0 by lemma 8.10. Conjugation with an
element g ∈ Nx induces an automorphism ϕ of s,

Ad(g)(d%(X)) = d%(ϕ(X))

for X ∈ s. Extend ϕ to an automorphism ψ of g such that ψ|s = ϕ and ψ(a) = λa
for some λ ∈ C×.

Now, d%̃ = Ad(g)(d% ◦ ψ−1) is a representation of g which induces the same
representation σ of S, and we have d%̃(a) = 1

λAd(g)(d%(a)). Thus, d%(a) is defined
up to scalar multiplication and up to conjugation with g ∈ NGL(V)(σ(S)). Now the
claimed correspondence follows easily. �
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8.3 The Classification for gln

In this section we apply the results on modules for semisimple groups to left-
symmetric algebras. As before, we consider a reductive algebra g = gl1 ⊕ s, and
we assume that there exists a left-symmetric product ∗ on g.

Proposition 8.13 The left-symmetric algebra (g, ∗) has a unique right-identity.

P: This follows immediately from remark 8.8 and proposition 7.12. �

Let (g, ∗) and (g, ?) be left-symmetric algebras with respective left-regular repre-
sentations L[∗] and L[?]. These representations give the vector space g the structure
of a module for the subalgebra s.

Definition 8.14 We say that (g, ∗) and (g, ?) belong to the same family, if the
representations L[∗] and L[?] for s are equivalent.

Proposition 8.15 There are only finitely many families of left-symmetric products
for g. Up to isomorphism each family has a unique product with 1.

S  : From propositions 7.8 and 7.11 it follows that (g, ∗) and (g, ?)
belong to the same family if and only if they induce the same special modules for
S.

From theorem 8.12 we see that there is a unique equivalence class of étale rep-
resentations such that d%(a) = idV for a fixed a ∈ gl1. For every linear étale
representation of g, the element r = ev−1

x (x) is the right-identity. This is a neutral
element 1 if and only if r is central, i.e. r = a ∈ gl1. �

The left-symmetric product with 1 is called the canonical representative of its
family.

Proposition 8.16 Let (g, ∗) be a left-symmetric algebra with 1 and Aut(g, ∗) its
group of automorphisms. The isomorphism classes of left-symmetric algebras in
the family of (g, ∗) correspond to the orbits of the group GL1 ·Aut(g, ∗) in the set

f(g, ∗) = {X ∈ nuc(g, ∗) | X < s}.

P: This follows from theorem 8.12, using the results from section 2.4 in Baues
[2] which were not presented here. �

From propositions 13.2 and 13.3, we immediately see that there are only two kinds
of special modules for GLn (resp. gln): The module Ks I, where GLn acts by matrix
(left-)multiplication on Matn, and for n = 2 the module SK I-4 where GL2 acts on
Sym3

C
2, the binary forms of degree 3.

So we arrive at the main result of Baues [2].

Theorem 8.17 The families I and II described below determine all left-symmetric
algebras for gln.
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8.3.1 Family I

The first family of left-symmetric products for gln arises from the special module
Ks I. Here, the left-symmetric product is the associative matrix multiplication,
in particular nuc(gln, ·) = gln. The neutral element is 1 = In. The left-regular
representation of s = sln is given by left multiplication on gln. The set f from
proposition 8.16 is

f(gln, ·) = {X ∈ gln | tr(X) , 0}.

It can be shown that the automorphism group of the associative product consists
of the conjugations with elements of GLn. Then it follows from proposition 8.16
that the isomorphism classes of left-symmetric algebras in this family correspond
to the conjugacy classes of elements X ∈ gln with tr(X) , 0.

In section 5.2 of Baues [2] it is shown that every left-symmetric product in this
family is obtained by a Helmstetter transform of the associative product.

8.3.2 Family II

The second family of left-symmetric products for gl2 arises from the special module
SK I-4. The left-symmetric product ∗ is induced by the étale representation of gl2
on Sym3

C
2, cf. proposition 7.9. Since the module Sym3

C
2 is irreducible, the

centraliser of the representation of gln on Sym3
C

2 is gl1. By a result from section
2.4 in Baues it follows that nuc(g, ∗) = gl1, hence f(g, ∗) = gl1. So there is only
one orbit under the action of GL1 · Aut(g, ∗), i.e. only one isomorphism class of
left-symmetric products by proposition 8.16.

All Helmstetter transforms of ∗ are trivial.
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Part III

Prehomogeneous Modules

9 Basic Properties and Castling Transformations

Naively spoken, a homogeneous space is a variety X that looks the same every-
where with respect to the action of some algebraic group. This means the group
acts transitively on each connected component of X. A vector space V cannot have
this property for a linear and non-trivial group action on V: at least the origin 0
must be an exceptional point, as it is fixed by every group element. But we can
get a next best thing to homogeneity when the group has an open orbit, i.e. V is
homogeneous “almost everywhere”.

Definition 9.1 Let V be a finite-dimensional vector space and % : G → GL(V) a
rational representation of a connected linear algebraic group G. Then the module
(G, %,V) is called prehomogeneous if there exists an element v ∈ V such that the
orbit %(G).v is a Zariski-dense subset of V (i.e. V is the closure of %(G).v). The
elements of %(G).v are called generic points, and the elements of the singular set
Vsing = V\(%(G).v) are called singular points.

Note that in this definition, we could equivalently require the existence of an open
orbit, as the dense orbit is always an open subset (see lemma 2.1 in Kimura [14]),
and any open subset is dense in the Zariski topology.

In the following chapters, we shall study some properties of prehomogeneous
modules and one of the most important tools for working with them: the castling
transformation. It provides us with a notion of equivalence for prehomogeneous
modules and is essential for their classification. Most of the proofs are taken from
§ 2 in Sato, Kimura [28] or from chapters 2 and 7 in Kimura [14].

To see some examples, the reader might take a peek at the classification in chapter
11, or at section 2.4 in Kimura’s book [14].

9.1 Dimension and Generic Isotropy Subgroups

Definition 9.2 For a prehomogeneous module (G, %,V), the isotropy subgroup at
a generic point v ∈ V is called the generic isotropy subgroup of G at v. For
g = Lie(G), the generic isotropy subalgebra of g at v is the isotropy subalgebra gv.

Remark 9.3 If v,w ∈ V are generic points, we have w = %(g).v for some g ∈ G. For
h ∈ G%(g).v we have %(g)−1%(h)%(g).v = v. So we have g−1hg ∈ Gv, which implies

G%(g).v = gGvg−1.
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The generic isotropy subgroups at different generic points are isomorphic to each
other, so it is justified to speak of “the” generic isotropy subgroup of (G, %,V).

If we think of the dimension of G as the number of the degrees of freedom to
manipulate a point v ∈ V, then the dimension of the generic isotropy subgroup
represents the redundant degrees of freedom. This is reflected by the following
proposition.

Proposition 9.4 The following conditions are equivalent:

1. (G, %,V) is a prehomogeneous module with generic point v.

2. dim(Gv) = dim(G) − dim(V).

3. dim(gv) = dim(g) − dim(V), where g = Lie(G).

4. {d%(A).v | A ∈ g} = V.

P: We can identify %(G).v with with the coset space G/Gv, where %(g).v corre-
sponds to the coset gGv. Hence we have

dim(%(G).v) = dim(G) − dim(Gv).

The condition clos(%(G).v) = V is equivalent to dim(%(G).v) = dim(V), so we have
the equivalence of the conditions 1 and 2. The equivalence of the conditions 2 and
3 follows from Lie(Gv) = gv. Then we have g/gv � d%(g).v ⊆ V as vector spaces.
Now dim(g) − dim(gv) = dim(g/gv) implies the equivalence of 3 and 4. �

Corollary 9.5 If dim(G) < dim(V), then (G, %,V) is not a prehomogeneous module
for any representation %.

Corollary 9.6 Let (G, %,V) be a prehomogeneous module. The set of singular
points Vsing ⊂ V is a closed algebraic subset of V and for w ∈ Vsing we have
dim(Gw) > dim(G) − dim(V).

Corollary 9.7 If % : G→ GL(V) is a linear rational étale representation for G, then
(G, %,V) is prehomogeneous.

From proposition 9.4 we also learn that prehomogeneity can be characterised by
Lie algebras. In fact, using Lie algebras often simplifies the analysis of prehomo-
geneous modules.

Example 9.8 Let % : G → GL(Vm) be a rational representation of an algebraic
group G and n ∈ Nwith dim(V) = m ≤ n. Then (G×GLn, %⊗ω1,V ⊗kn) is always
a prehomogeneous module. If we identify Vm

⊗ k
n with Matm,n, it is easily seen

that the action of {1} ×GLn alone is sufficient to move the generic point (Im 0) to all
matrices of rank m, which form an open subset of Matm,n. Such a module is called
a trivial prehomogeneous module.
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Next, we will prove a proposition telling us that a sufficiently well-behaved
equivariant morphism preserves prehomogeneity between irreducible varieties,
where we call any algebraic variety X with a Zariski-dense orbit G.x prehomoge-
neous.

Proposition 9.9 Let G be an algebraic group and let X,Y be irreducible algebraic
varieties on which G acts. Further, let ϕ : X → Y be a G-equivariant morphism
such that clos(ϕ(X)) = Y and each fiber ϕ−1(y) is irreducible. Then the following
conditions are equivalent:

1. G has a Zariski-dense orbit on X, i.e. clos(G.x) = X for some x ∈ X.

2. G has a Zariski-dense orbit on Y, i.e. clos(G.y) = Y for some y ∈ Y, and there
exists a point x ∈ ϕ−1(y) such that ϕ−1(y) = clos(Gy.x).

This figure illustrates the situation of the proposition, where the action of h ∈ Gy

is indicated by the dashed lines.

X

Y

ϕ

g.x

g.y

g

g

h

h

h.x

x

y

ϕ
−1(y)

ϕ
−1(g.y)

P: 1. ⇒ 2.: By the continuity and equivariance of ϕ we have

ϕ(X) = ϕ(clos(G.x)) ⊆ clos(ϕ(G.x)) = clos(G.ϕ(x)) ⊆ Y

and taking the Zariski closure yields

Y = clos(ϕ(X)) ⊆ clos(G.ϕ(x)) ⊆ Y.

Hence Y = clos(G.y) for y = ϕ(x) and in particular

dim(Y) = dim(G.y) = dim(G) − dim(Gy).
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But we also have

dim(X) = dim(G.x) = dim(G) − dim(Gx)

as X = clos(G.x). Obviously Gx ∩ Gy = Gx, and we obtain

dim(Gy.x) = dim(Gy) − dim(Gx) = dim(X) − dim(Y).

By proposition 3.45 there exists an open subset U ⊂ Y such that dim(ϕ−1(ỹ)) =
dim(X) − dim(Y) for any ỹ ∈ U. Since U ∩ G.y , ∅, there exists a g ∈ G such that
ϕ(g.x) = g.y ∈ U. As g.ϕ−1(y) = ϕ−1(g.y), we have

dim(ϕ−1(y)) = dim(ϕ−1(g.y)) = dim(X) − dim(Y) = dim(Gy.x).

As ϕ−1(y) is irreducible by assumption, we have ϕ−1(y) = clos(Gy.x).

2. ⇒ 1.: From clos(G.y) = Y it follows that

dim(Y) = dim(G.y) = dim(G) − dim(Gy).

Using the existence of x ∈ ϕ−1(y) with ϕ−1(y) = clos(Gy.x), we obtain

dim(X) − dim(Y) = dim(ϕ−1(y)) = dim(Gy.x) = dim(Gy) − dim(Gx),

or
dim(G) − dim(Gx) = dim(G.x).

As X is irreducible, we have X = clos(G.x). �

We can generalise this proposition even further.

Proposition 9.10 Let G be an algebraic group and let X,Y be algebraic varieties
on which G acts. Further, let ϕ : X → Y be a G-equivariant morphism such that
clos(ϕ(X)) = Y and if Xi is an irreducible component of X, then clos(ϕ(Xi)) is an
irreducible component of Y. Then the following conditions are equivalent:

1. G has a Zariski-dense orbit on X, i.e. clos(G.x) = X for some x ∈ X.

2. G has a Zariski-dense orbit on Y, i.e. clos(G.y) = Y for some y ∈ Y, and there
exists a point x ∈ ϕ−1(y) such that ϕ−1(y) = clos(Gy.x).

The proof of this proposition is rather tedious and we shall omit it here. It can be
found following lemma 7.6 in Kimura [14].

As noted before, the dimension of the generic isotropy subgroup H can be con-
sidered as the redundant degrees of freedom for the action of an algebraic group
G on a module V. Now it is tempting to try and harness these redundant degrees
of freedom by composing V with another module W with dim(W) ≤ dim(H) in
such a way that we can combine the action of G on V and the action of H in W
to obtain a prehomogeneous module structure on V ⊕W. The next proposition
gives a precise formulation of this idea.
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Proposition 9.11 The following conditions are equivalent:

1. (G, %1 ⊕ %2,V1 ⊕ V2) is a prehomogeneous module.

2. (G, %1,V1) is prehomogeneous and (H, %2|H,V2) is also a prehomogeneous
module, where H denotes the connected component of the generic isotropy
subgroup of (G, %1,V1).

P: If we set X = V1 ⊕ V2, Y = V1 and let ϕ be the projection from V1 ⊕ V2 to
V1 in proposition 9.9, we have our result. �

Most of the time this proposition will be used when we already know (G, %1,V1)
to be prehomogeneous, so it is sufficient to check (H, %2|H,V2) for prehomogeneity.

Considering dimensions, we get the following important corollary.

Corollary 9.12 The following conditions are equivalent:

1. (G, %1 ⊕ %2,V1 ⊕ V2) is a special module.

2. (G, %1,V1) is prehomogeneous and (H, %2|H,V2) is a special module, where
H denotes the connected component of the generic isotropy subgroup of
(G, %1,V1).

P: The representation %1 ⊕ %2 is étale if and only if it is prehomogeneous and
dim(G) = dim(V1) + dim(V2). By proposition 9.11, it follows that (G, %1,V1) and
(H, %2|H,V2) are prehomogeneous and because dim(G) − dim(H) = dim(V1) we
have

dim(H) = dim(V2),

so (H, %2|H,V2) is special.

Conversely, if we assume (G, %1,V1) to be prehomogeneous and (H, %2|H,V2) to be
special, then (G, %1 ⊕ %2,V1 ⊕ V2) is obviously prehomogenous and as

dim(G) − dim(V1) = dim(H) = dim(V2),

it is even special. �

Note that proposition 9.11 does not say that one can simply patch together (G, %,V)
with any prehomogeneous module (H, σ,W) for the isotropy subgroup H to obtain
a new prehomogeneous module for G. Rather, it is necessary that σ can be
extended to a representation σ̃ of G such that the restriction of σ̃ to H yields σ.

In the course of this thesis we will be mainly concerned with prehomogeneous
modules for a reductive group G, which we will simply call reductive preho-
mogeneous modules. Further, if G = GLk

1 × G1 × · · · × Gn with simple groups
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G1,. . . ,Gn, we will speak of a n-simple prehomogeneous module, or just of an
simple prehomogeneous module7) if n = 1.

Reductive groups have some nice properties which will provide us with a wealth
of useful results, see also section 10.2.

Proposition 9.13 Let % : G→ GL(V) be any finite-dimensional rational represen-
tation of a reductive algebraic group G. Then (G, %,V) is equivalent to its dual
module (G, %∗,V∗).

P: We identify V and V∗ with kn, where n = dim(V). By theorem 7.1 in
Mostow [26] we have %∗(G) = %(G) ⊂ GLn with respect to some basis of kn. So
we can choose g∗ ∈ G for each g ∈ G such that %(g) = %∗(g∗). Then % and %∗ are
equivalent via the isomorphism ϕ : %(G)→ %∗(G), %(g) 7→ %∗(g∗). �

This proposition implies that (G, %1⊕%2,V1⊕V2) is equivalent to (G, %∗1⊕%
∗

2,V
∗

1⊕V∗2)
for a reductive group. However, in general (G, %1⊕%2,V1⊕V2) and (G, %1⊕%∗2,V1⊕V∗2)
are not equivalent. Nevertheless, we get the following relation.

Corollary 9.14 Let (G, %1,V1) be a prehomogeneous module with a reductive
generic isotropy subgroup. Then a module (G, %1 ⊕ %2,V1 ⊕ V2) is prehomoge-
neous if and only if (G, %1 ⊕ %∗2,V1 ⊕ V∗2) is prehomogeneous, and their generic
isotropy subgroups are isomorphic. In particular, one module is special if and
only if the other one is.

P: This follows from propositions 9.11 and 9.13. �

9.2 The Castling Transformation

In this section we introduce one of our most potent tools in the study of pre-
homogeneous modules: the castling transformation. It provides us with the
means to construct new prehomogeneous modules from a given one, and the
question of prehomogeneity for a whole equivalence class of irreducible modules
can be reduced to that of certain module which is uniquely determined for that
class.

Definition 9.15 Let m > n ≥ 1 and % : G → GL(Vm) be a finite-dimensional
rational representation of an algebraic group G. Then we say the modules(

G ×GLn, % ⊗ ω1, Vm
⊗ k

n
)

and
(
G ×GLm−n, %

∗
⊗ ω1, Vm∗

⊗ k
m−n

)
are castling transforms of each other.

We shall also call two modules castling transforms of each other if both modules
are equivalent to modules which are castling transforms of each other.

7)This is not to be confused with a prehomogeneous module for a simple group.
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Theorem 9.16 (Sato) Let m > n ≥ 1 and % : G → GL(Vm) be a finite-dimensional
rational representation of an algebraic group G. Then(

G ×GLn, % ⊗ ω1, Vm
⊗ k

n
)

is a prehomogeneous module (with generic isotropy subgroup H(n)) if and only if
its castling transform (

G ×GLm−n, %
∗
⊗ ω1, Vm∗

⊗ k
m−n

)
is prehomogeneous (with generic isotropy subgroup H(m−n)). Furthermore, H(n)

and H(m−n) are isomorphic.

P: We write V = Vm and identify V ⊗ kn with Matm,n. Then the action of
(g, h) ∈ G ×GLn on A ∈Matm,n is given by (g, h).A = %(g)Ah>. Let

X = {(a1, . . . , an) ∈Matm,n | a1, . . . , an ∈ V are linearly independent}

be the set of full-rank matrices in Matm,n. This is a Zariski-open subset of Matm,n

and invariant under the action of G ×GLn.

Recall that the Grassmann variety Grn(V) is the variety of all n-dimensional sub-
spaces of V. The mapping

ϕ : X→ Grn(V), (a1, . . . , an) 7→ 〈a1, . . . , an〉

assigns to each matrix (a1, . . . , an) ∈ X the subspace spannend by its column vec-
tors. An element h ∈ GLn acts on A ∈ X via Ah>, so the columns of Ah> ∈ X consist
of linear combinations of the columns of A. This means that the columns of Ah>

span the same n-dimensional subspace as the columns of A, or ϕ(A) = ϕ(Ah>).
For a subspace ϕ(A) = 〈a1, . . . , an〉 ∈ Grn(V) we then have

ϕ(%(g)Ah>) = ϕ(%(g)A).

If we define an action of G on Grn(V) by

〈a1, . . . , an〉 7→ 〈%(g)a1, . . . , %(g)an〉,

then ϕ is an equivariant mapping. As ϕ is obviously surjective, the conditions for
proposition 9.9 (with Y = Grn(V)) are satisfied if the fibers of ϕ are irreducible.
This is the case, since the bases of any n-dimensional subspace U ∈ Grn(V) are
uniquely transformed to one another by the action of GLn, so the the fiber ϕ−1(U)
bijectively corresponds to GLn.

In particular, the last argument impliesϕ−1(U) = clos(GLn.A) for some A ∈ ϕ−1(U).

With these prerequisites, we get the equivalence of the following statements from
proposition 9.9:
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(a) (G ×GLn, % ⊗ ω1,V ⊗ kn) is a prehomogeneous module.

(b) X is a prehomogeneous variety for the action of G ×GLn.

(c) Y = Grn(Vm) is a prehomogeneous variety for the action of %(G).

A generic point A for (G×GLn, %⊗ω1,V⊗kn) is an element of X. Let H(n) = (G×GLn)A

be the isotropy subgroup at A and HU the isotropy subgroup at U = ϕ(A). We
define a projection

π : H(n)
→ HU, (g, h) 7→ g.

For each element g ∈ HU, we have ϕ(%(g)A) = %(g).ϕ(A) = %(g).U = U, or
%(g)A ∈ ϕ−1(U). As explained above, there is a unique element hg ∈ GLn such
that %(g)Ah>g = A. So we can define a mapping

s : HU → H(n), g 7→ (g, hg).

Since π and s are inverses of each other, we have

H(n) � HU.

For any subspace U ∈ Grn(V) we have its annihilator

U⊥ = {v∗ ∈ V | 〈u|v∗〉 = 0 for all u ∈ U},

which is an element of Grm−n(V∗). By the correspondence (U⊥)⊥ = U, we can
identify Grn(V) and Grm−n(V∗). Since

〈%(g)v|%∗(g)v∗〉 = 〈v|v∗〉

for any v ∈ V and v∗ ∈ V∗, we have

(%(g).U)⊥ = %∗(g).U⊥

for g ∈ G. This implies that statement (c) is equivalent to

(d) Grm−n(V∗) is a prehomogeneous variety for the action of %∗(G).

It also follows that g ∈ HU if and only if g ∈ HU⊥ (the generic isotropy subgroup
of G at U⊥).

Now, we might as well formulate (a) with %, GLn and V replaced by %∗, GLm−n and
V∗. Then, by the equivalenc of (c) and (d), we get our result, namely that (G ×
GLn, %⊗ω1,V⊗kn) is prehomogeneous if and only if (G×GLm−n, %∗⊗ω1,V∗⊗km−n)
is prehomogeneous, and H(n) � HU = HU⊥ � H(m−n). �

Corollary 9.17 A castling transform of a special module is also special.
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P: The generic isotropy subgroup of a special module is finite, and so is the
generic isotropy subgroup of its castling transform. �

Next, we have a corollary to the proof of theorem 9.16.

Corollary 9.18 In the situation of the proof of theorem 9.16, let A ∈ Matm,n be a
generic point for the action G×GLn with isotropy subgroup H(n) at A. Then there
is a generic point B ∈Matm,m−n for the action of G×GLm−n with isotropy subgroup
H(m−n) at B such that the projections on the G-components of H(n) resp. H(m−n) are
identical and isomorphic to H(n) (resp. H(m−n)).

P: For A ∈ Matn, we have U = ϕ(A), and the projection on the G-component
of H(n) is HU. Now choose B ∈ Matm,m−n so that B is mapped to U⊥ ∈ Grm−n(V∗).
Then the projection of H(m−n) on the G-component is HU⊥ . By the proof of theorem
9.16, H(n) � HU = HU⊥ � H(m−n). �

We will now show that GLn can be replaced by SLn in theorem 9.16 under some
mild assumptions.

Lemma 9.19 Let G be a connected algebraic group and % : G → GL(V) a ra-
tional representation. Assume that (GL1 × G, µ ⊗ %,V) is prehomogeneous with
generic isotropy subgroup H. Then (G, %,V) is prehomogeneous if and only if the
connected component of H is not contained in G.

P: First, note that there is a common generic point for (GL1 ×G, µ⊗ %,V) and
(G, %,V) if both are prehomogeneous, because the open dense orbits intersect in a
non-empty open subset. So we may assume that in this case G ∩H is the generic
isotropy subgroup of (G, %,V).

(G, %,V) is prehomogeneous if and only if

dim(G) − dim(G ∩H) = dim(V) = dim(GL1 × G) − dim(H),

i.e. dim(G ∩ H) = dim(H) − 1. But this is the case if and only if the connected
component of H is not contained in G. �

Theorem 9.20 Let m > n ≥ 1 and % : G → GL(Vm) be a faithful irreducible
representation of an algebraic group G. Then(

G × SLn, % ⊗ ω1, Vm
⊗ k

n
)

is a prehomogeneous module if and only if(
G × SLm−n, %

∗
⊗ ω1, Vm∗

⊗ k
m−n

)
is prehomogeneous. Further, their generic isotropy subgroups are isomorphic.
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P: We may assume G to be reductive by theorem 4.62 with at most one-
dimensional centre. When G has a one-dimensional centre, i.e. G = GL1 × G0 for
semisimple G0, the representation of G × SLn is equivalent to a representation of
G0 ×GLn and this is just the setting of theorem 9.16.

Now assume that G is semisimple. If (G×SLn, %⊗ω1,Vm
⊗k

n) is prehomogeneous
with generic isotropy subgroup H, then (G × GLn, % ⊗ ω1,Vm

⊗ k
n) is also pre-

homogeneous with generic isotropy subgroup isomorphic to GL1 × H by lemma
9.19. Then theorem 9.16 tells us that (G × GLm−n, % ⊗ ω1,Vm∗

⊗ k
m−n) is also pre-

homogeneous with generic isotropy subgroup H̃ isomorphic to GL1 × H. Since
H̃∩(G×SLm−n) � H, it follows again by lemma 9.19 that (G×SLm−n, %⊗ω1,Vm∗

⊗k
m−n)

is prehomogeneous. �

Remark 9.21 In theorem 9.20 we can drop the assumption that % is irreducible if
G is of the form G = GL1 × G0, with GL1 acting by scalar multiplication, for any
algebraic group G0, because in this case we have just the setting of theorem 9.16,
where irreducibility is not required.

Remark 9.22 If G is reductive, proposition 9.13 tells us that we can replace %∗⊗ω1

by % ⊗ ω1 in theorems 9.16 and 9.20.

Remark 9.23 Theorem 9.20 gives us a method to obtain infinitely many new
prehomogeneous modules out of a given one. To simplify the notation we assume
G is reductive. We can identify a prehomogeneous module (G, %,V) with m =
dim(V) ≥ 2 with (G × SL1, % ⊗ ω1,V) and obtain a new prehomogeneous module
(G × SLm−1, % ⊗ ω1,V ⊗ km−1). Repeating this procedure, we obtain (G × SLm−1 ×

SLm2−m−1, % ⊗ ω1 ⊗ ω1,V ⊗ km−1
⊗ k

m2
−m−1). Now there are two ways to obtain new

prehomogeneous modules, namely

(G × SLm2−m−1 × SLm3−m2−2m+1, % ⊗ ω1 ⊗ ω1,V ⊗ km2
−m−1

⊗ k
m3
−m2
−2m+1),

(G × SLm−1 × SLm2−m−1 × SLm4−2m3+m−1, % ⊗ ω1 ⊗ ω1 ⊗ ω1,V ⊗ km−1
⊗ k

m2
−m−1

⊗ k
m4
−2m3+m−1),

and so on.

We say that two modules are castling-equivalent if one can be obtained from
the other by a finite number of castling transformations. Again, we extend this
definition to equivalent modules. A module (G, %,V) is called reduced if there is
no castling transform (G̃, %̃, Ṽ) of (G, %,V) with dim(Ṽ) < dim(V).

Remark 9.24 For each class of castling-equivalent modules there is up to equiva-
lence exactly one reduced triplet, see proposition 12 on p. 39 in Sato, Kimura [28].
Now the classification of prehomogeneous modules is reduced to the classification
of the reduced modules.

Lemma 9.25 Assume m > n. The module(
G ×GLn, (σ ⊗ 1) ⊕ (% ⊗ ω1), Vk

⊕ (Vm
⊗ k

n)
)

(∗)
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is prehomogeneous if and only if(
G ×GLm−n, (σ ⊗ 1) ⊕ (%∗ ⊗ ω1), Vk

⊕ (Vm∗
⊗ k

m−n)
)

(∗∗)

is prehomogeneous, and the generic isotropy subgroups of these modules are
isomorphic. If G is reductive with the centre acting by scalar multiplication on
Vm
⊗ k

n, then we can replace GLn by SLn and (∗∗) by(
G × SLm−n, (σ∗ ⊗ 1) ⊕ (% ⊗ ω1), Vk∗

⊕ (Vm
⊗ k

m−n)
)
.

P: The modules (G×GLn, %⊗ω1,Vm
⊗k

n) and (G×GLm−n, %∗⊗ω1,Vm∗
⊗k

m−n)
are castling-equivalent and thus have isomorphic generic isotropy subgroups.
By corollary 9.18, we can find generic points such that the projection H on the
G-component of the respective isotropy subgroup is the same for both isotropy
subgroups. As GLn acts trivial via σ⊗1, the action of either of the generic isotropy
subgroups is given by the action of the projection H via σ. By proposition 9.11, (∗)
and (∗∗) are both prehomogeneous if and only if (H, σ|H,Vk) is prehomogeneous,
and in either case the generic isotropy subgroup is isomorphic to that of (H, σ|H,Vk).

If G is reductive with the centre acting by scalar multiplication, remark 9.21 allows
us to replace GLn by SLn. Further, any representation of G is equivalent to its dual
(proposition 9.13), so

(σ∗ ⊗ 1) ⊕ (%∗∗ ⊗ ω1) = (σ∗ ⊗ 1) ⊕ (% ⊗ ω1)

and we can replace (σ ⊗ 1) ⊕ (%∗ ⊗ ω1) by (σ∗ ⊗ 1) ⊕ (% ⊗ ω1) in (∗∗). �

In the setting of lemma 9.25, we will also call the modules castling-equivalent.

Now we present some further equivalence results for prehomogeneous modules.
Some of them will be used repeatedly throughout this thesis, others are included
because they are interesting enough in their own right.

Proposition 9.26 Let %1 : G → GL(Vm1) and %2 : G → GL(Vm2) be rational repre-
sentations of an algebraic group G with m1 ≥ m2. Assume that(

G ×GLn, (%1 ⊗ ω1) ⊕ (%2 ⊗ ω
∗

1), (Vm1 ⊗ k
n) ⊕ (Vm2 ⊗ k

n∗)
)

is a prehomogeneous module and n ≥ m2. Then (G, %1 ⊗ %2,Vm1 ⊗ Vm2) is also
prehomogeneous.

S  : Define

ϕ : Matm1,n ⊕Matm2,n →Matm1,m2 , (A,B) 7→ AB>.

We have ϕ((A 0), (Im2 0)) = A for any A ∈Matm1,m2 , so ϕ is surjective. Since

ϕ(%1(g)Ah>, %2(g)Bh−1) = %1(g)AB>%2(g)>

for all (g, h) ∈ G × GLn, the map ϕ is equivariant and we get our result by pro-
position 9.10.

See Theorem 1.14 in Kimura et al. [17] for a full proof. �
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Proposition 9.27 Let %1 : G → GL(Vm1) and %2 : G → GL(Vm2) be rational rep-
resentations of an algebraic group G with m1 ≥ m2. If (G, %1 ⊗ %2,Vm1 ⊗ Vm2) is a
prehomogeneous module, then(

G ×GLn, (%1 ⊗ ω1) ⊕ (%2 ⊗ ω
∗

1), (Vm1 ⊗ k
n) ⊕ (Vm2 ⊗ k

n∗)
)

is also prehomogeneous for any n ≥ m1.

S  : Let g = Lie(G). The isotropy Lie subalgebra of g ⊕ gln at the
generic point (Im1 0) for the action on Matm1,n is given by

h =
{(

A,
(
−d%1(A)> B

0 C

)) ∣∣∣∣ A ∈ g,B ∈Matm1,n−m1 ,C ∈Matn−m1

}
If Z is a generic point for the action of G on Matm1,m2 , we can find an element in h
that maps (Z> 0) to any element in Matm2,n−m1 , so ((Im2 0), (Z> 0)) is a generic point
for G ×GLn.

See Theorem 1.16 in Kimura et al. [17] for a full proof. �

Corollary 9.28 Assume n > m1 ≥ m2. Then(
G × SLn, (%1 ⊗ ω1) ⊕ (%2 ⊗ ω

∗

1), (Vm1 ⊗ k
n) ⊕ (Vm2 ⊗ k

n∗)
)

is a prehomogeneous module if and only if (G, %1 ⊗ %2,Vm1 ⊗ Vm2) is prehomoge-
neous.

P: Corollary of theorem 1.16 in Kimura et al. [17]. �

Proposition 9.29 Let 2n ≥ m. Then (Spn×G, ω1⊗%,V2n
⊗Vm) is a prehomogeneous

module if and only if (G, % ∧ %,
∧2 Vm) is prehomogeneous, where (% ∧ %)(g).X =

%(g)X%(g)> for X ∈
∧2 Vm.

P: Proposition 13 on p. 40 of Sato, Kimura [28]. �

Proposition 9.30 Let n ≥ m. Then (SOn ×G, ω1 ⊗ %,Vn
⊗Vm) is a prehomogeneous

module if and only if (G, % · %, Sym2Vm) is prehomogeneous, where (% · %)(g).X =
%(g)X%(g)> for X ∈ Sym2Vm.

P: Proposition 14 on p. 41 of Sato, Kimura [28]. �

10 Relative Invariants

In this chapter we introduce our second major tool in the study of prehomoge-
neous modules: the relative invariants. With their help, we can define a notion
of regularity for prehomogeneous modules that will prove particularly useful in
the quest for special modules. As some of the proofs of this chapter’s results are
rather long and tedious, they have only been sketched here. They can be found
in sections 2.2 and 2.3 of Kimura [14].
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10.1 Associated Characters and Basic Relative Invariants

Definition 10.1 Let % : G → GL(V) be a rational representation of an algebraic
group G. A rational function f : V → k, f , 0, is called a relative invariant if
there exists a rational character χ ∈ X(G) such that

f (%(g).v) = χ(g) f (v)

for all v ∈ V and g ∈ G. We say that χ is associated to f .

An invariant f in the sense of chapter 5 is a relative invariant with associated
character χ = 1, and we will call it an absolute invariant here.

We can use relative invariants to characterise prehomogeneous modules.

Proposition 10.2 Let % : G → GL(V) be a rational representation of an algebraic
group G. Then the following conditions are equivalent:

1. (G, %,V) is a prehomogeneous module.

2. Any absolute invariant is a constant.

3. If f1 and f2 are relative invariants with the same associated character χ, then
there exists a constant c with c f1 = f2.

P: 1. ⇒ 2.: Let f be an absolute invariant. As f is rational, we can write
f (x) = p(x)

q(x) for some polynomials p, q ∈ k[V]. Since f is constant on the dense orbit
%(G).v, it is constant on V = clos(%(G).v) by the continuity of rational functions.

2. ⇒ 1.: By theorem 5.10, there exists a Zariski-open G-invariant subset U of V
such that the coset space G/U is an algebraic variety and its function field coincides
with the field k(V)G of absolute invariants on V. As all absolute invariants are
constant, we have k(V)G = k. We obtain

dim(G/U) = trdeg
k
(k(G/U)) = trdeg

k
(k(V)G) = 0.

This implies the existence of an orbit of dimension dim(V), so this orbit is open
and (G, %,V) is a prehomogeneous module.

2. ⇒ 3.: Since f2
f1

has the associated character 1, it is an absolute invariant, hence
constant.

3. ⇒ 2.: Let f1 = 1, which is associated to the character 1. If f2 is an absolute
invariant, we have f2 = c f1 = c for some constant c. �

Corollary 10.3 If there exists a non-constant absolute invariant for the action of
%(G) on V, then (G, %,V) is not prehomogeneous.
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Corollary 10.4 Any relative invariant is a homogeneous function.

P: If f is a relative invariant with associated character χ, so is fλ defined by
fλ(v) = f (λv), with λ ∈ k×. By part 3 of proposition 10.2, we have fλ(v) = c f (v) for
some constant c, so f is homogeneous and c = λdeg( f ). �

Definition 10.5 If χ1, . . . , χk ∈ X(G) generate a free abelian subgroup of rank k of
X(G), then χ1, . . . , χk are called multiplicatively independent.

Lemma 10.6 Relative invariants corresponding to multiplicatively independent
characters are algebraically independent.

S  : Let χ1, . . . , χk multiplicatively independent and associated to
relative invariants f1, . . . , fk.

If we assume the f1, . . . , fk to be algebraically dependent, then certain monomials
u1, . . . ,um in the fi must be linearly dependent, and any m − 1 of them linearly
independent. The equation c1u1 + . . . + cmum = 0 determines a one-dimensional
solution space U in km.

As the ui are relative invariants as well, they correspond to certain characters
χ̃1, . . . , χ̃m, which are given as products of the χ1, . . . , χk. For (c1, . . . , cm) ∈ U, we
have (c1χ̃1(g), . . . , cmχ̃m(g)) ∈ U as well for any g ∈ G. As U is one-dimensional, we
have χ̃1 = . . . = χ̃m, which contradicts the fact that χ1, . . . , χk are multiplicatively
independent.

For a full proof see lemma 2.8 in Kimura [14]. �

Theorem 10.7 Let (G, %,V) be a prehomogeneous module and Vsing its singular
set. Let

Vi = {v ∈ V | fi(v) = 0}, i = 1, . . . , k,

be the irreducible components of Vsing of codimension 1 in V. Then the irreducible
polynomials f1, . . . , fk are relative invariants and algebraically independent. Any
relative invariant f is uniquely expressed in the form

f = c f m1
1 · · · f mk

k

for some constant c ∈ k× and m1, . . . ,mk ∈ Z.

S  : Since the action of g ∈ G on Vi can be considered as rational
morphism G×Vi → V, it follows by a result from algebraic geometry that %(G).Vi

is irreducible, and as Vi is also irreducible and contained in %(G).Vi, we have
Vi = %(G).Vi. From this and Hilbert’s Nullstellensatz it follows that fi(%(g).v) =
χi(g) f (v) for some χi, which can be shown to be a rational character. So the fi are
relative invariants.

To show that the fi are algebraically independent, assume χa1
1 · · ·χ

ak
k = 1 for some

a1, . . . , ak ∈ Z. Then f a1
1 · · · f ak

k is constant, hence an absolute invariant. A unique
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factorisation into irreducible factors shows a1 = . . . = ak = 0, so the χi are multi-
plicatively independent.

Each polynomial relative invariant f can be written as a product

f = h1 · · · hr

of irreducible polynomials h1, . . . , hr. Then hi(%(g).v) is also an irreducible polyno-
mial for each g ∈ G, and as the factorisation of f (%(g).v) = χ(g) f (v) into irreducible
factors is unique up to a constant, hi(%(g).v) must equal some h j. This means the
action of G on f permutes the irreducible factors of f , which gives us a homo-
morphism to the permutation group,ψ : G→ Sr, and the kernel ofψ is a subgroup
of finite index in G. But then the kernel must be G itself, i.e. ψ = 1 and hence
each hi is a relative invariant itself. But now the zero set of any hi is an irreducible
subset of codimension 1 and contained in Vsing, so hi must coincide with one of
the f j up to a constant factor.

For a full proof, see theorem 2.9 in Kimura [14]. �

The polynomials f1, . . . , fk in theorem 10.7 are called the basic relative invariants
of (G, %,V).

Corollary 10.8 Let (G, %,V) be a prehomogeneous module. Then there exists a
relative invariant if and only if Vsing has an irreducible component of codimension
1 in V.

We define a subgroup

Xrel(G) = {χ ∈ X(G) | χ is associated to some relative invariant of G}

of X(G).

Proposition 10.9 Let (G, %,V) be a prehomogeneous module with generic point v.
Then we have

Xrel(G) = {χ ∈ X(G) | χ|Gv = 1}.

S  : If χ is associated to some relative invariant f , we have

f (v) = f (%(g).v) = χ(g) f (v)

for g ∈ Gv. As f (v) ∈ k×, we have χ(g) = 1 for all g ∈ Gv.

Conversely, assume χ|Gv = 1. We can define a regular function h on the coset space
G/Gv by

h(gGv) = χ(g),

and a morphism ϕ of non-singular varieties by

ϕ : G/Gv → V\Vsing, gGv 7→ %(g).v.
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One can show that k(G/Gv) equals ϕ∗(k(V\Vsing)), where ϕ∗ is the comorphism of
ϕ. Hence ϕ is an isomorphism and there exists f ∈ k[V\Vsing] such that ϕ∗(h) = f .
In fact, f (x) = χ(g), where x = %(g).v. Further, f must be a rational function on V
and thus a relative invariant corresponding to χ.

For a full proof, see proposition 2.11 in Kimura [14]. �

Proposition 10.10 Let (G, %,V) be a prehomogeneous module and H the normal
subgroup of G generated by a generic isotropy subgroup of (G, %,V) and the
commutator subgroup [G,G] of G. Then H does not depend on the choice of a
generic point, and the character group X(G/H) of the quotient group G/H can be
identified with Xrel(G). This implies that the rank of X(G/H) equals the number
of basic relative invariants, i.e. the number of irreducible components of Vsing of
codimension 1 in V.

P: Since G%(g).v = gGvg−1, any element g0 ∈ G%(g).v can be written as g0 =
gag−1 = (gag−1a−1)a ∈ [G,G]Gv for some a ∈ Gv. So we have

G%(g).v ⊆ [G,G]Gv and [G,G]G%(g).v ⊆ [G,G]Gv

and by exchanging the roles of v and %(g).v, we see that the converse inclusion
holds. It follows that H = [G,G]Gv is independent of the choice of v, and it is a
normal subgroup as it contains the commutator subgroup [G,G].

For any χ ∈ X(G) we have

χ(aba−1b−1) = χ(a)χ(b)χ(a)−1χ(b)−1 = 1, or χ|[G,G] = 1.

By proposition 10.9, we haveXrel(G) = {χ ∈ X(G) | χ|H = 1}. As this is independent
of a generic point, we can identify Xrel(G) with X(G/H). As a consequence, the
number of basic relative invariants equals the rank of the free abelian group
X(G/H). �

10.2 Regular Prehomogeneous Modules

In this section, we introduce the notion of regularity for prehomogeneous mod-
ules. Essentially, this means we it is possible to use a relative invariant f to
construct a mapping ϕ : V → V∗ such that ϕ maps the dense orbit in V to a dense
orbit in V∗.

Now let (G, %,V) be a prehomogeneous modules with dim(V) = n. For conve-
nience, we identify V and V∗ with kn. Let f be a relative invariant. We define

ϕ f = grad log f : V\Vsing → V∗, x 7→
1

f (x)


∂ f
∂x1

(x)
...

∂ f
∂xn

(x)

 .
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See p. 30 in Kimura [14] for a proof that the definition of ϕ f does not depend on
the choice of a basis of V.

ϕ f provides us with an infinitesimal expression for the relative invariance of f .

Lemma 10.11 Let f be a relative invariant of the prehomogeneous module (G, %,V)
and χ its associated character. For all A ∈ Lie(G) and x ∈ V\Vsing, we have

〈d%(A).x|ϕ f (x)〉 = dχ(A).

P: Let (gi j) denote the matrix coordinates in GL(V), (ai j) the matrix coordinates
in gl(V) and x1, . . . , xn the coordinates in V. For any x ∈ V, the differential at 1G of
the mapping g 7→ %(g).x is given by A 7→ d%(A).x, or in coordinates

(d%(A).x)k =

n∑
i, j=1

ai j ·
∂(%(g).x)k

∂gi j

∣∣∣∣
%(g)=In

.

Now define a mapping

h : G→ k, g 7→ f (%(g).x) = χ(g) f (x).

The differential dh at 1G is given by dh(A) = dχ(A) f (x).

We have

dh(A) =
n∑

i, j=1

ai j ·
∂ f (%(g).x)
∂gi j

∣∣∣∣
%(g)=In

=

n∑
i, j=1

ai j

n∑
k=1

∂ f (%(g).x)
∂xk

·
∂(%(g).x)k

∂gi j

∣∣∣∣
%(g)=In

=

n∑
k=1

∂ f (x)
∂xk

· (d%(A).x)k

= 〈d%(A).x|grad f 〉,

from which
〈d%(A).x|ϕ f (x)〉 = 〈d%(A).x| f −1grad f 〉 = dχ(A)

follows. �

Proposition 10.12 Let (G, %,V) be a prehomogeneous module. We have

ϕ f (%(g).x) = %∗(g)ϕ f (x)

and for H(x) =
(
∂2 log( f )
∂xi∂x j

(x)
)

i, j
we have

H(%(g).x) = %∗(g)H(x)%∗(g)>

and in particular

det(H(%(g).x)) = det(%∗(g))2 det(H(x)) = det(%(g))−2 det(H(x)).
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S  : The proof is essentially done by direct computation: Differenti-
ating both sides of the equality f (%(g).x) = χ(g) f (x) with respect to xi and then di-
viding by the respective other side yields the first equality ϕ f (%(g).x) = %∗(g)ϕ f (x).

Differentiating again with respect to x j yields the second equation H(%(g).x) =
%∗(g)H(x)%∗(g)>.

For a full proof, see propostion 2.13 in Kimura [14]. �

The following corollary will lead us to the definition of regularity.

Corollary 10.13 Let (G, %,V) be a prehomogeneous module with generic point v.
Then ϕ f (V\Vsing) is an orbit for the module (G, %∗,V∗).

P: ϕ f (V\Vsing) = ϕ f (%(G).v) = %∗(G).ϕ f (v) by proposition 10.12. �

Definition 10.14 Let (G, %,V) be a prehomogeneous module with a relative invari-
ant f . If the image ϕ f (V\Vsing) is dense in V∗, then f is called non-degenerate. A
prehomogeneous module which has a non-degenerate invariant is called a regular
prehomogeneous module.

Remark 2.1 in Kimura [14] contains an example of a non-regular prehomogeneous
module with non-prehomogeneous dual module.

Theorem 10.15 If (G, %,V) is a regular prehomogeneous module, then (G, %∗,V∗)
is also prehomogeneous. Let X∗rel(G) denote the group of characters associated to
a relative invariant of (G, %∗,V∗). Then we have

Xrel(G) = X∗rel(G).

Further, V\Vsing and V∗\V∗sing are birationally equivalent.

S  : The prehomogeneity of (G, %∗,V∗) is immediate from the defini-
tion of regularity.

First, we note that for x ∈ V, y ∈ V∗ and A ∈ Lie(G),

〈d%(A).x|y〉 + 〈x|d%∗(A).y〉 = 0, (∗)

because it is the differential expression of 〈%(g).x|%∗(g).y〉 = 〈x|y〉. Using (∗) and
lemma 10.11, we get

〈v − w|d%∗(A).ϕ f (v)〉

for generic points v,w with ϕ f (v) = ϕ f (w). But as ϕ f (v) is a generic point for V∗,
we get d%∗(Lie(G)) = V∗, so v = w holds and ϕ f is injective.

As Gv ⊆ Gϕ f (v) and ϕ f is injective, we have Gv = Gϕ f (v). Now X∗rel(G) = Xrel(G) by
proposition 10.9.
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For a relative invariant f of (G, %,V) with associated character χ, there is a relative
invariant f ∗ of (G, %∗,V∗) with character χ−1. Using (∗) again, we obtain

〈ϕ f ∗(ϕ f (v)) − v|d%∗(A).ϕ f (v)〉 = 0

for a generic point v and any A ∈ Lie(G). It follows that ϕ f ∗(ϕ f (v)) = v ∈ V\Vsing,
i.e. V\Vsing and V∗\V∗sing are birationally equivalent.

For a full proof, see theorem 2.16 in Kimura [14]. �

Corollary 10.16 Let (G, %,V) be a regular prehomogeneous module. Then there
exists a relative invariant with associated character det(%(g))2.

P: Let f be a non-degenerate relative invariant. The differential of ϕ f at a
generic point x is bijective following theorem 10.15 and given by

dϕ f |x =

(
∂2 log( f )
∂xi∂x j

(x)
)

i, j

= H(x).

Hence we have det(H(x)) , 0 and det(H(x)) is a relative invariant with character
det(%(g))−2 by proposition 10.12. �

Proposition 10.17 Let (G, %,V) be a regular prehomogeneous module. Assume
Xrel(G) is of rank 1, i.e. there exists (up to a constant factor) only one irreducible
relative invariant f with associated character χ. Let n = dim(V) and d = deg( f ).
Then d divides 2n and det(%(g))2 = χ(g)2n/d.

P: By corollary 10.16, there exists a relative invariant h with associated char-
acter det(%(g))2. By theorem 10.7, h is of the form

h = c f m

for some constant c and m ∈ Z. Hence we haveχ(g)m = det(%(g))2. Note that the set
of relative invariants does not change if we consider GL1×G instead of G, so with
out loss of generality we may assume GL1 ⊂ G. Choose a g ∈ G such that %(g) = λIn

with λ ∈ k×\{1}. Then det(%(g))2 = λ2n and χ(g) f (x) = f (%(g).x) = f (λx) = λd f (x)
by the homogeneity of f . Hence λ2n = λdm, or

det(%(g))2 = χ(g)2n/d,

and m = 2n
d ∈ Z. �

Using this proposition, we can derive a degree formula for irreducible relative
invariants.

Proposition 10.18 Let (G, %,V) be a prehomogeneous module and assume the rank
ofXrel(G) is 1, i.e. there exists up to a constant factor only one irreducible f relative
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invariant. Moreover, assume that there exists an orbit %(G).x0 of codimension 1,
i.e. clos(%(G).x0) = {x ∈ V | f (x) = 0}. Let g = Lie(G). Then

deg( f ) =
tr(d%(A)) + tr(adgx0

(A)) − tr(adg(A))

tr(d%(A))
· dim(V),

for A ∈ gx0 and tr(d%(A)) , 0, where adgx0
A is the adjoint representation in the

isotropy subalgebra at x0. In particular, if G is reductive,

deg( f ) =
tr(d%(A)) + tr(adgx0

(A))

tr(d%(A))
· dim(V).

S  : Let n = dim(V) and d = deg( f ). By proposition 10.17, χ(g)2n/d =
det(%(g))2.

The differential at 1G of g 7→ χ(g)2n/d is given by A 7→ 2n
d dχ(A), and the differential

at 1G of g 7→ det(%(g)) is given by A 7→ tr(d%(A)). From this, we derive

deg( f ) =
dχ(A)

tr(d%(A))
· dim(V)

for A ∈ gwith tr(d%(A)) , 0.

The isotropy subgroup Gx0 acts trivially on d%(g).x0. Hence, Gx0 acts on the one-
dimensional quotient space V0 = V/(d%(g).x0).

Let S be the set of points in {x ∈ V | f (x) = 0} satisfying ∂ f
∂xi

(x) = 0 for i = 1, . . . ,n.
If x0 ∈ S, then S = {x ∈ V | f (x) = 0} would follow, which leads to a contradiction.
Hence, d f (x0) =

∑
i
∂ f
∂xi

(x0)dxi , 0. By some clever manipulations, using the Taylor
expansion of 〈x|d f (x0)〉 and the relative invariance of f , one arrives at

〈%(g).x|d f (x0)〉 = 〈χ(g)x|d f (x0)〉.

Assuming %(g).x − χ(g)x < d%(g).x0 for x ∈ V leads to a contradiction, so %(g).x =
χ(g)x+y with y ∈ d%(g).x0. This impliesχ(g) = detV0(g) for g ∈ Gx0 . The differential
of the mapping

Gx0 → k
×, g 7→ detV0(g)

is given by
gx0 → k, A 7→ trV0(A) = tr(d%(A)) − trd%(g).x0(A).

Restricting the mapping x 7→ d%(A).x wit A ∈ gx0 to d%(g).x0 leads to

d%(A).x = d%([A,B]).x0,

where x = d%(B).x0 for B ∈ g. If we identify d%(g).x0 with the quotient space g/gx0 ,
we can identify d%(A).x with ad(A)B + C for some C ∈ ad(A)gx0 . We obtain

trd%(g).x0(A) = tr(adg(A)) − tr(adgx0
(A)),
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or
dχ(A) = tr(d%(A)) + tr(adg(A)) − tr(adgx0

(A)),

and plugging this into the formula for deg( f ) yields the first equation. For the
second equation, use that tr(adg(A)) = 0 if g is reductive.

For a full proof, see proposition 2.19 in Kimura [14]. �

Remark 10.19 If (G, %,V) is an irreducible prehomogeneous module, then there is
up to a constant only one irreducible relative invariant, cf. proposition 12 on p.
64 in Sato, Kimura [28].

Proposition 10.20 Let (G, %,V) be a special module, i.e. prehomogeneous with
dim(G) = dim(V). Then there exists a polynomial relative invariant f with
deg( f ) = dim(V).

P: Identify V with kn, where n = dim(V), and let g = Lie(G). By the preho-
mogeneity there exists a generic point v ∈ V such that d%(g).v = V. For a basis
A1, . . . ,An of d%(g) we see that A1v, . . . ,Anv are linearly independent. Define f by

f (x) = det(A1x| . . . |Anx).

We have f , 0 as f (v) , 0.

For g ∈ %(G), let (ci j(g)) denote the coefficients of the matrix representation of
Ad(g) with respect to the basis A1, . . . ,An. Then we have

f (gx) = det((gg−1)A1gx| . . . |(gg−1)Angx)

= det(g) · det(Ad(g−1)A1x| . . . |Ad(g−1)Anx)

= det(g) · det(ci j(g−1)) · f (x),

so f is a relative invariant. Plugging in g = λIn with λ , 1 yields

f (gx) = λn f (x),

and by the homogeneity of relative invariants we have deg( f ) = n. �

Note that the relative invariant in proposition 10.20 is not necessarily irreducible.

Proposition 10.21 Let (G, %,V) be an irreducible prehomogeneous module, g =
Lie(G) and gx = Lie(Gx) a generic isotropy subalgebra. Then the following holds:

1. If d%(g) ⊆ sl(V), there exists no non-constant relative invariant and hence
(G, %,V) is not regular.

2. If d%(gx) 1 sl(V), there exists no no-constant relative invariant and hence
(G, %,V) is not regular.

3. If d%(g) 1 sl(V) and d%(gx) ⊆ sl(V), then there exists a non-constant relative
invariant of (G, %,V).
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P:

1. As d% is irreducible and d%(g) ⊆ sl(V), theorem 4.62 implies that d%(g) is
semisimple. If there exists a non-constant relative invariant with associated
character χ , 1, then dχ , 0 since G is connected. Hence the kernel of dχ is
ideal in d%(g) of codimension 1, which is a contradiction to the semisimplicity
of d%(g).

2. Assume there exists a relative invariant with associated character χ , 1. By
Cartan’s theorem we have dχ = λ · tr (the trace on d%(g)) with λ ∈ k. Hence,
dχ|gx , 0 and consequently χ|Gx , 1. This contradicts proposition 10.9.

3. In this case tr|d%(g) , 0 and det(%(Gx)) is a finite group. Hence some power
(det ◦%)k satisfies (det ◦%)k , 1 and (det ◦%)k

|Gx = 1. By proposition 10.9, there
exists a relative invariant corresponding to (det ◦%)k. �

At the end of this section, we present a result from Kimura et al. [17] which will
be used frequently in part IV.

Definition 10.22 For i = 1, . . . , k, let (Gi, %i,Vi) be modules.

1. We call (G, %,V) the direct composition of the (Gi, %i,Vi), written

(G, %,V) =
k⊕

i=1

(Gi, %i,Vi),

if G = G1 × · · · × Gk, % = (%1 ⊕ 1⊕k−1) ⊕ . . . ⊕ (1⊕k−1
⊕ %k) and V = V1 ⊕ . . . ⊕

Vk. A module is called indecomposable if it cannot be written as a direct
composition.

2. We call (G, %,V) a GLn-composition of the (Gi, %i,Vi) if

G = G1 × · · · × Gk ×GLn,

% = ((%1 ⊕ 1⊕k−1) ⊕ . . . ⊕ (1⊕k−1
⊕ %k) ⊗ 1) ⊕ (σ ⊗ ω1),

and V = V1 ⊕ . . . ⊕ Vk ⊕ (W ⊗ kn),

where σ : G1× · · · ×Gk → GL(W) is any finite-dimensional rational represen-
tation and n ≥ dim(W). 8)

Proposition 10.23 A GLn-composition (G, %,V) of (Gi, %i,Vi) with i = 1, . . . , k is
a regular prehomogeneous module if and only if each (Gi, %i,Vi) is a regular
prehomogeneous module and n = dim(W) (cf. definition 10.22).

P: Proposition 1.9 in Kimura et al. [17]. �

8)Kimura et al. [17] use the terms direct sum and generalised direct sum for direct compositions
and GLn-compositions, resp.
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10.3 Reductive Prehomogeneous Modules

Recall that we call a prehomogeneous module reductive when its group is a
reductive group.

From the degree formula in proposition 10.18 and from proposition 10.20 we get
the following result.

Corollary 10.24 Let (G, %,V) be a reductive special module, i.e. prehomogeneous
with dim(G) = dim(V), and assume there exists an orbit of codimension 1 and the
singular set Vsing is an irreducible hypersurface. Then we have

Vsing = {x ∈ V | f (x) = 0},

where f is the relative invariant of degree dim(V) from proposition 10.20, and f
is an irreducible polynomial.

P: As Vsing is an irreducible hypersurface, there exists exactly one irreducible
relative invariant h by proposition 10.10.

Let %(G).x0 be an orbit of codimension 1. By the second degree formula in propo-
sition 10.18,

deg(h) =
tr(d%(A)) + tr(adgx0

(A))

tr(d%(A))
· dim(V)

for A ∈ gx0 with tr(d%(A)) , 0. Since n − 1 = dim(%(G).x0) = dim(G) − dim(gx0) =
n−dim(gx0), we have dim(gx0) = 1. This implies that gx0 is abelian, hence adgx0

= 0
and tradgx0

(A) = 0. So we have deg(h) = dim(V). But the relative invariant f
from proposition 10.20 is also of degree dim(V), and for some constant c we have
f (x) = ch(x)m with m = 1, so f is irreducible. �

For the following results on reductive modules, we must assume k = C.

Proposition 10.25 Let (G, %,V) be a reductive prehomogeneous module with a
polynomial relative invariant f of degree d and associated character χ. Then
the dual module (G, %∗,V∗) is also a prehomogeneous module with a polynomial
relative invariant f ∗ of degree d with associated character χ−1.

P: For c ∈ C, let c denote the complex conjugate.

Let n = dim(V). As G is reductive, it is the Zariski closure of a maximal compact
subgroup K (cf. section 4.6). Every compact subgroup of GLn is conjugate to
subgroup of the unitary group

Un = {g ∈ GLn | g
>g = In},

so we may assume %(K) ⊆ Un. For g ∈ K, we have %∗(g) = %(g).
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If we identify V and V∗ with Cn by choosing a basis and its dual basis, we can
define f ∗ ∈ C[V∗] by

f ∗(y) = f (y).

For g ∈ K we then have

f ∗(%∗(g).y) = f ∗(%(g).y) = f (%(g).y) = χ(g) · f (y) = χ(g) · f ∗(y).

As K is compact, so is |χ(K)| ⊂ R×, i.e. |χ(K)| = 1 and hence χ(g) = χ−1(g). Thus
we have

K ⊆ {g ∈ G | f ∗(%∗(g).y) = χ−1(g) f ∗(y)} ⊆ G,

and as clos(K) = G and by continuity, f ∗ is a relative invariant.

To see that (G, %∗,V∗) is prehomogeneous, let v0 ∈ C
n be a generic point for V and

note that
%(G).v0 = %(clos(K).v0) ⊆ clos(%(K).v0) ⊆ V

and taking the closure in V yields clos(%(K).v0) = V. Hence, %(K).v0 is dense in
C

n � V, so the conjugat %(K).v0 = %∗(K).v0 is dense in Cn � V∗. Taking the closure
in G, we have that %∗(G).v0 is dense in V∗, so (G, %∗,V∗) is prehomogeneous. �

Proposition 10.26 Let (G, %,V) be a reductive prehomogeneous module. Assume
that the singular set Vsing is a hypersurface,

Vsing = {x ∈ V | f (x) = 0}.

Then f is a non-degenerate relative invariant, i.e. (G, %,V) is a regular prehomo-
geneous module.

S  : Identify V and V∗ withCn by choosing a basis and its dual basis.

Let χ be the character associated to f and f ∗ the relative invariant of (G, %∗,V∗)
corresponding to χ−1. Choose v0 ∈ C

n such that f ∗(v0) = f (v0) , 0. Then f (v0) , 0
and so v0 is a generic point for V. As shown in the proof of proposition 10.25, v0

is also a generic point for V∗, and the singular set

V∗sing = {v ∈ V∗ | f ∗(v) = 0}

for (G, %∗,V∗) is a hypersurface.

By proposition 2.22 in Kimura [14], there exists a constant b0 , 0 for f with

f ∗(ϕ f (x)) =
b0

f (x)

for x ∈ V\Vsing. This implies ϕ f (x) ∈ V∗\V∗sing, and by the equivariance of ϕ f we
obtain

ϕ f (V\Vsing) = ϕ f (%(G).x) = %∗(G).ϕ f (x) = V∗\V∗sing,

so that f is non-degenerate. �

Proposition 10.26 does not hold when G is not reductive, see remark 2.1 in Kimura
[14] for a counter-example.
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Proposition 10.27 Let (G, %,V) be a regular reductive prehomogeneous module
and f a non-degenerate polynomial relative invariant. Then the singular set is a
hypersurface given by

Vsing = {x ∈ V | det(H(x)) = 0},

where H(x) =
(
∂2 log( f )
∂xi∂x j

(x)
)

i, j
.

P: From proposition 10.12 it follows that

%(g)>H(%(g).x)%(g) = H(x).

In particular, this holds for g ∈ Gx, so we obtain a Gx-invariant symmetric form
given by Qx(u, v) = u>H(x)v. Since f is non-degenerate, we have det(H(x)) , 0
and Qx is non-degenerate.

The set
X = {x ∈ V | det(H(x)) , 0}

is an affine variety by proposition 3.42. Since det(H(x)) is a relative invariant by
proposition 10.12, we have X ⊃ V\Vsing. By theorem 4.68, X itself is an orbit, so
X = V\Vsing. Now

Vsing = {x ∈ V | det(H(x)) = 0}

follows. �

Even for reductive groups, proposition 10.27 is not always true when the module
is not regular, see remark 2.5 in Kimura [14].

Combining the results in this section, we arrive at the following theorem.

Theorem 10.28 Let (G, %,V) be a reductive prehomogeneous module. Then the
following conditions are equivalent:

1. (G, %,V) is a regular prehomogeneous module.

2. The singular set Vsing is a hypersurface.

3. The open orbit %(G).v = V\Vsing is an affine variety.

4. Each generic isotropy subgroup Gv is reductive.

5. Each generic isotropy subalgebra Lie(Gv) is reductive in Lie(G).

P: 1. ⇔ 2.: This follows from propositions 10.26 and 10.27.

2. ⇔ 3.: The condition that Vsing is a hypersurface is equivalent to the condition
that the Zariski dense orbit %(G).v (and by identification G/Gv) is an affine variety.

3. ⇔ 4.: This follows immediately from theorem 4.69.

4. ⇔ 5.: Follows from the definition of reductivity and proposition 4.60. �
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10.4 Relative Invariants and Castling Transformations

Now we investigate the relations between the regularity and relative invariants
of a prehomogeneous module and its castling transforms.

As the generic isotropy subgroups of castling equivalent modules are isomorphic,
we immediately get from theorem 10.28 that regularity of a reductive prehomoge-
neous module is invariant under castling transformations. But we have an even
stronger result.

Theorem 10.29 The regularity of a prehomogeneous module is invariant under
castling transformations.

P: See theorem 1.30 in Kimura et al. [17]. �

Proposition 10.30 Let m = dim(V) > n ≥ 1. Then the degree of each polynomial
relative invariant of (

G ×GLn, % ⊗ ω1, V ⊗ kn
)

is a multiple of n. For a relative invariant f with deg( f ) = kn, the castling transform(
G ×GLm−n, %

∗
⊗ ω1, V∗ ⊗ km−n

)
has a polynomial relative invariant f ∗ satisfying deg( f ∗) = k(m − n). The corres-
pondence f 7→ f ∗ is a bijection between the polynomial relative invariants of the
two modules.

P: We identify V ⊗ kn with V⊕n and V∗ ⊗ km−n with V∗⊕m−n.

Let f be a polynomial relative invariant of the G × GLn-module. Then f is an
absolute invariant under the action of SLn (by the semisimplicity of SLn). Define
a rational map ϕ (of degree n) by

ϕ : V⊕n
→

∧n
V, (v1, . . . , vn) 7→ v1 ∧ · · · ∧ vn.

For the action of G on
∧n V, there exists a polynomial relative invariant h :

∧n
→ k

by the first main theorem of invariant theory 5.19, and this invariant satisfies
f = h ◦ ϕ. Let k = deg(h). Then we have deg( f ) = kn, i.e. the degree of a
polynomial relative invariant is a multiple of n.

If we fix a basis b1, . . . , bm of V, we can identify
∧m−n V with (

∧n V)∗ by remark
2.26, and we identify

∧m−n V∗ with (
∧m−n V)∗ by remark 2.25. Thus, we can

identify
∧m−n V∗ with

∧n V, and the polynomial h can be regarded as a map
h :

∧m−n V∗ → k. Now, define a map ϕ∗ (of degree m − n) by

ϕ∗ : V⊕m−n
→

∧m−n
V∗ �

∧n
V, (v1, . . . , vm−n) 7→ v∗1 ∧ · · · ∧ v∗m−n.

Then f ∗ = h◦ϕ∗ is a relative invariant of degree k(m−n) of the G×GLm−n-module,
and f 7→ f ∗ is a bijection. �
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11 Classification

The classification of reductive prehomogeneous modules proves to be a hard task
and is far from complete. The first step was taken by Sato and Kimura [28] in 1975
by classifying the irreducible and reduced reductive prehomogeneous modules.
In later works, classifications for simple (Kimura [15]), 2-simple (Kimura et al.
[16], [17]) and 3-simple (Kimura et al. [19]) reductive prehomogeneous modules
were given.

In this chapter, we will present these classfications, which will be useful in finding
new examples of special modules of semisimple groups later on. For the reader’s
convenience, the lists in this chapter can be found in a separate document [9].
For the notation used in the classification, see section 4.4. We assume k to be an
algebraically closed field of characteristic 0 in this section, and for the modules
involving Spinn or an exceptional simple group, we must even assume k = C.

11.1 Irreducible Reduced Prehomogeneous Modules

The irreducible and reduced prehomogeneous modules were classified by Sato
and Kimura, thus we will label each class by SK n, where n is the number given to
the class in § 7 of the the original work by Sato and Kimura [28]. Along with each
module, we will state the connected component of the generic isotropy group,
denoted by G◦v, and in some cases the irreducible relative invariant, denoted by f .

Theorem 11.1 (Sato, Kimura) Let G be a reductive group and (G, %,V) an irre-
ducible and reduced prehomogeneous module. Then it is equivalent to one of the
following prehomogeneous modules:

SK I Regular irreducible reduced prehomogeneous modules.

1. (G ×GLm, % ⊗ ω1,Vm
⊗ k

m),
where % : G → GL(Vm) is an m-dimensional irreducible representation
of a connected semisimple algebraic group G (or G = {1} and m = 1).
We have G◦v � G and f (x) = det(x) for x ∈Matm � Vm

⊗ k
m, deg( f ) = m.

2. (GLn, 2ω1, Sym2
k

n) for n ≥ 2.
We have G◦v � SOn and f (x) = det(x) for x ∈ {A ∈ Matn | A> = A} �
Sym2

k
n, deg( f ) = n.

3. (GL2n, ω2,
∧2
k

2n) for n ≥ 3.
We have G◦v � Spn and f (x) = Pf(x) for x ∈ {A ∈ Mat2n | A> = −A} �∧2
k

2n, deg( f ) = n.
4. (GL2, 3ω1, Sym3

k
2).

We have G◦v � {1} and f (a) = a2
2a2

3 + 18a1a2a3a4 − 4a1a3
3 − 4a3

2a4 − 27a2
1a2

4 for
a = a1x3 + a2x2y + a3xy2 + a4y3

∈ Sym3
k

2 (so f is the discriminant of a
binary cubic form a(x, y)).
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5. (GL6, ω3,
∧3
k

6).
We have G◦v � SL3 × SL3 and f (x) = (x0y0 − tr(XY))2 + 4x0 det(Y) +
4y0 det(X)− 4

∑
i, j det(Xi j) det(Y ji) (see § 5, p. 83 in [28] for a definition),

deg( f ) = 4.

6. (GL7, ω3,
∧3
k

7).
We have G◦v � G2 and deg( f ) = 7.

7. (GL8, ω3,
∧3
k

2).
We have G◦v � SL3 and deg( f ) = 16.

8. (SL3 ×GL2, 2ω1 ⊗ ω1, Sym2
k

3
⊗ k

2).
We have G◦v � {1} and f (A,B) = dis(det(xA + yB)) for (A,B) ∈ {(X,Y) |
X,Y ∈Mat3,X> = X,Y> = Y} � Sym2

k
3
⊗ k

2, deg( f ) = 12.

9. (SL6 ×GL2, ω2 ⊗ ω1,
∧2
k

6
⊗ k

2).
We have G◦v � SL2×SL2×SL2 and f (A,B) = dis(Pf(xA+ yB)) for (A,B) ∈
{(X,Y) | X,Y ∈Mat6,X> = −X,Y> = −Y} �

∧2
k

6
⊗ k

2, deg( f ) = 12.

10. (SL5 ×GL3, ω2 ⊗ ω1,
∧2
k

5
⊗ k

3).
We have G◦v � SL2 and deg( f ) = 15.

11. (SL5 ×GL4, ω2 ⊗ ω1,
∧2
k

5
⊗ k

4).
We have G◦v � {1} and deg( f ) = 40.

12. (SL3 × SL3 ×GL2, ω1 ⊗ ω1 ⊗ ω1,k3
⊗ k

3
⊗ k

2).
We have G◦v � GL1 × GL1 and f (A,B) = dis(det(xA + yB)) for (A,B) ∈
Mat3 ⊕Mat3 � k3

⊗ k
3
⊗ k

2, deg( f ) = 12.

13. (Spn ×GL2m, ω1 ⊗ ω1,k2n
⊗ k

2m) for n ≥ 2m ≥ 2.
We have G◦v � Spm × Spn−m and f (X) = Pf(X>JX) for X ∈ Mat2n,2m,
deg( f ) = 2m.

14. (GL1 × Sp3, µ ⊗ ω3,k ⊗ V14).
We have G◦v � SL3 and deg( f ) = 4, where f is given by the restriction of
the relative invariant of SK I-5.

15. (SOn ×GLm, ω1 ⊗ ω1,kn
⊗ k

m) for n ≥ 3, 1
2n ≥ m ≥ 1.

We have G◦v � SOm × SOn−m and f (X) = det(X>QX) for X ∈ Matn,m �
k

n
⊗ k

m, deg( f ) = 2m, where Q = g>Qg for g ∈ SOn.

16. (GL1 × Spin7, µ ⊗ spinrep,k ⊗ V8).
We have G◦v � G2 and deg( f ) = 2, where f is the relative invariant of
SK I-15 for m = 1, n = 8.

17. (GL2 × Spin7, ω1 ⊗ spinrep,k2
⊗ V8).

We have G◦v � SO2×SL3 and deg( f ) = 4, where f is the relative invariant
of SK I-15 for m = 2, n = 8.

18. (GL3 × Spin7, ω1 ⊗ spinrep,k3
⊗ V8).

We have G◦v � SO3×SL2 and deg( f ) = 6, where f is the relative invariant
of SK I-15 for m = 3, n = 8.

19. (GL1 × Spin9, µ ⊗ spinrep,k ⊗ V16).
We have G◦v � Spin7 and deg( f ) = 2.
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20. (GL2 × Spin10, ω1 ⊗ halfspinrep,k2
⊗ V16).

We have G◦v � SL2 ×G2 and deg( f ) = 4.

21. (GL3 × Spin10, ω1 ⊗ halfspinrep,k2
⊗ V16).

We have G◦v � SO3 × SL2 and deg( f ) = 12.

22. (GL1 × Spin11, µ ⊗ spinrep,k ⊗ V32).
We have G◦v � SL5 and deg( f ) = 4.

23. (GL1 × Spin12, µ ⊗ halfspinrep,k ⊗ V32).
We have G◦v � SL6 and deg( f ) = 4.

24. (GL1 × Spin14, µ ⊗ halfspinrep,k ⊗ V64).
We have G◦v � G2 ×G2 and deg( f ) = 8.

25. (GL1 ×G2, µ ⊗ ω2,k ⊗ V7).
We have G◦v � SL3 and deg( f ) = 2, where f is the relative invariant of
SK I-15 for m = 1, n = 7.

26. (GL2 ×G2, ω1 ⊗ ω2,k2
⊗ V7).

We have G◦v � GL2 and deg( f ) = 4, where f is the relative invariant of
SK I-15 for m = 2, n = 7.

27. (GL1 × E6, µ ⊗ ω1,k ⊗ V27).
We have G◦v � F4 and deg( f ) = 4.

28. (GL2 × E6, ω1 ⊗ ω1,k2
⊗ V27).

We have G◦v � SO8 and deg( f ) = 12.

29. (GL1 × E7, µ ⊗ ω6,k ⊗ V56).
We have G◦v � E6 and deg( f ) = 4.

SK II Non-regular irreducible reduced prehomogeneous modules with non-constant
relative invariant.

1. (GL1 × Spn × SO3, µ ⊗ ω1 ⊗ ω1,k ⊗ k2n
⊗ k

3).
We have G◦v � (Spn−2 × SO2) · Un2n−3 and f (X) = tr(X>JXQ)2 for X ∈
Mat2n,3 � k ⊗ k2n

⊗ k
3.

SK III Non-regular irreducible reduced prehomogeneous modules without non-
constant relative invariants.

1. (G ×GLm, % ⊗ ω1,Vn
⊗ k

m),
where % : G→ GL(Vn) is an n-dimensional irreducible representation of
a semisimple algebraic group G(, SLn) with m > n ≥ 3. We have G◦v �
(G×GLm−n) ·G+n(m−n). The module (G× SLm, % ⊗ω1) is prehomogeneous
with G◦v � (G × SLm−n) ·G+n(m−n).

2. (SLn ×GLm, ω1 ⊗ ω1,kn
⊗ k

m) for 1
2m ≥ n ≥ 1.

We have G◦v � (SLn ×GLm−n) ·G+n(m−n). The module (SLn × SLm, ω1 ⊗ ω1)
is prehomogeneous with G◦v � (SLn × SLm−n) ·G+n(m−n).

3. (GL2n+1, ω2,
∧2
k

2n+1) for n ≥ 2.
We have G◦v � (Spn ×GL1) ·G+2n. The module (SL2n+1, ω2) is prehomoge-
neous with G◦v � Spn ·G

+
2n.
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4. (GL2 × SL2n+1, ω1 ⊗ ω2,k2
⊗

∧2
k

2n+1) for n ≥ 2.
We have G◦v � (GL1×SL2) ·G+2n (see lemma 1.4 in Kimura et al. [16]). The
module (SL2 × SL2n+1, ω1 ⊗ ω2) is prehomogeneous with G◦v � SL2 ·G+2n.

5. (Spn ×GL2m+1, ω1 ⊗ ω1,k2n
⊗ k

2m+1) for n > 2m + 1 ≥ 1.
We have G◦v � (GL1×Spm×Spn−m)·Un2n−1. The module (Spn×SL2m+1, ω1⊗

ω1) is prehomogeneous with G◦v � (Spm × Spn−m) ·Un2n−1.

6. (GL1 × Spin10, µ ⊗ halfspinrep,k ⊗ V16).
We have G◦v � (GL1 × Spin7) · G+8 . The module (Spin10,halfspinrep) is
prehomogeneous with G◦v � Spin7 ·G

+
8 .

Preceding the proof of this classification, Sato and Kimura determine the irre-
ducible representations of algebraic groups admitting dim(G) ≥ dim(V) (see § 3,
p. 41, of [28]) by some combinatorial considerations. The proof of the classifica-
tion itself is given in § 5, pp. 73-141, of Sato and Kimura [28], where in most of the
above cases the essential idea is to find a point v ∈ V and show that the generic
isotropy algebra gv is of dimension dim(g) − dim(V). This list can also be found
in the appendix of Kimura’s book [14], providing some additional properties of
these modules.

11.2 Non-Irreducible Simple Prehomogeneous Modules

The simple prehomogeneous, including the non-irreducible ones, were classified
by Kimura, thus we will label them by Ks n, where n is the number of the module
in § 3 of Kimura’s article [15].

In this section, it is understood that each representation %i of the simple group is
composed with a scalar multiplication µ of GLk

1. We shall simply write %i instead
of µ⊗ %i. In some cases, a module V1⊕ . . .⊕Vk will be prehomogeneous even with
fewer than k scalar multiplications, in which case we will state this fact explicitely.
We shall also state the connected component G◦v of the generic isotropy subgroup
and the relative invariants f1, . . . , fl where they exist.

Theorem 11.2 (Kimura) Let G = GLk
1 × Gs be a reductive group, where Gs is a

simple algebraic group, let (%1,V1), . . . , (%k,Vk) be irreducible Gs-modules and
V = V1 ⊕ . . . ⊕ Vk a Gs-module with representation % = %1 ⊕ . . . ⊕ %k. Then (G, %,V)
is equivalent to one of the following:

Ks I Regular non-irreducible simple prehomogeneous modules.

1. (GL2
1 × SLn, ω1 ⊕ ω∗1,k

n
⊕ k

n∗) for n ≥ 3.
We have G◦v � GL1 × SLn−1 and f1(x, y) = 〈x|y〉, where (x, y) ∈ kn

⊕ k
n∗

and 〈· | ·〉 is the dual pairing. The module (GL1 × SLn, (µ ⊗ ω1) ⊕ ω∗1) is
prehomogeneous with G◦v = SLn−1.
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2. (GLn
1 × SLn, ω⊕n

1 , (k
n)⊕n) for n ≥ 2.

We have G◦v � GLn−1
1 and f1(X) = det(X) for X ∈ Matn � (kn)⊕n. The

module (GL1 × SLn, µ ⊗ ω⊕n
1 ) is prehomogeneous with G◦v = {1}.

3. (GLn+1
1 × SLn, ω⊕n+1

1 , (kn)⊕n+1) for n ≥ 2.
We have G◦v � {1}and fi(X) = det(x1, . . . ,��xi, . . . , xn+1) for X = (x1, . . . , xn+1) ∈
Matn,n+1 � (kn)⊕n+1.

4. (GLn+1
1 × SLn, ω⊕n

1 ⊕ ω
∗

1, (k
n)⊕n
⊕ k

n∗) for n ≥ 3.
We have G◦v � {1} and f1(X) = 〈x1|y〉, . . . , fn(X) = 〈xn|y〉, fn+1(X) =
det(x1, . . . , xn) for X = (x1, . . . , xn, y) ∈ (kn)⊕n

⊕ k
n∗.

5. (GL3
1 × SL2n, ω2 ⊕ ω1 ⊕ ω1,

∧2
k

2n
⊕ k

2n
⊕ k

2n) for n ≥ 2.
We have G◦v � GL1 × Spn−1 and f1(X, y, z) = Pf(X), f2(X, y, z) = y>X#z,
where (X, y, z) ∈

∧2
k

2n
⊕ k

2n
⊕ k

2n and X# is the cofactor matrix of X.
The module (GL2

1 × SL2n, (µ ⊗ω2) ⊕ (µ ⊗ (ω1 ⊕ω1))) is prehomogeneous
with G◦v � Spn−1.

6. (GL3
1 × SL2n, ω2 ⊕ ω1 ⊕ ω∗1,

∧2
k

2n
⊕ k

2n
⊕ k

2n∗) for n ≥ 2.
We have G◦v � GL1 × Spn−1 and f1(X, y, z) = Pf(X), f2(X, y, z) = 〈y|z〉,
where (X, y, z) ∈

∧2
k

2n
⊕ k

2n
⊕ k

2n∗. The module (GL2
1 × SL2n, (µ⊗ω2)⊕

(µ ⊗ (ω1 ⊕ ω∗1)) is prehomogeneous with G◦v � Spn−1.

7. (GL3
1 × SL2n, ω2 ⊕ ω∗1 ⊕ ω

∗

1,
∧2
k

2n
⊕ k

2n∗
⊕ k

2n∗) for n ≥ 3.
We have G◦v � GL1 × Spn−1 and f1(X, y, z) = Pf(X), f2(X, y, z) = y>Xz,
where (X, y, z) ∈

∧2
k

2n
⊕k

2n∗
⊕k

2n∗. The module (GL2
1 × SL2n, (µ⊗ω2)⊕

(µ ⊗ (ω∗1 ⊕ ω
∗

1)) is prehomogeneous with G◦v � Spn−1.

8. (GL2
1 × SL2n+1, ω2 ⊕ ω1,

∧2
k

2n+1
⊕ k

2n+1) for n ≥ 2.
We have G◦v � GL1 × Spn. The module (GL1 × Sp2n+1, µ ⊗ (ω2 ⊕ ω1))
is prehomogeneous with G◦v � Spn, see p. 94 in [15] for the relative
invariant.

9. (GL4
1×SL2n+1, ω2⊕ω1⊕ω1⊕ω1,

∧2
k

2n+1
⊕k

2n+1
⊕k

2n+1
⊕k

2n+1) for n ≥ 2.
We have G◦v � Spn−1, see p. 94 in [15] for the relative invariants.

10. (GL4
1 × SL2n+1, ω2 ⊕ ω1 ⊕ ω∗1 ⊕ ω

∗

1,
∧2
k

2n+1
⊕ k

2n+1
⊕ k

2n+1∗
⊕ k

2n+1∗) for
n ≥ 2.

We have G◦v � Spn−1 and f1(X) = Pf
(

A x
x> 0

)
, f2(X) = 〈x|y〉, f3(X) = 〈x|z〉,

f4 = y>Az for X = (A, x, y, z) ∈
∧2
k

2n+1
⊕ k

2n+1
⊕ k

2n+1∗
⊕ k

2n+1∗.

11. (GL2
1 × SLn, 2ω1 ⊕ ω1, Sym2

k
n
⊕ k

n) for n ≥ 2.
We have G◦v � SOn−1 and f1(X) = det(A), f2(X) = x>A#x for X = (A, x) ∈
Sym2

k
n
⊕ k

n.

12. (GL2
1 × SLn, 2ω1 ⊕ ω∗1, Sym2

k
n
⊕ k

n∗) for n ≥ 3.
We have G◦v � SOn−1 and f1(X) = det(A), f2(X) = x>Ax for X = (A, x) ∈
Sym2

k
n
⊕ k

n.

13. (GL2
1 × SL7, ω3 ⊕ ω1,

∧3
k

7
⊕ k

7).
We have G◦v � SL3, see p. 96 in [15] for the relative invariants.
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14. (GL2
1 × SL7, ω3 ⊕ ω∗1,

∧3
k

7
⊕ k

7∗).
We have G◦v � SL3, see p. 96 in [15] for the relative invariants.

15. (GL2
1 × Spin8, spinrep ⊕ halfspinrep,V8

⊕ V8).
We have G◦v � G2 and two quadratic invariants f1(x, y) = q1(x), f2(x, y) =
q2(y) for (x, y) ∈ V8

⊕ V8.
16. (GL2

1 × Spin7,vecrep ⊕ spinrep,V7
⊕ V8).

We have G◦v � SL3 and two quadratic invariants f1(x, y) = q1(x), f2(x, y) =
q2(y) for (x, y) ∈ V7

⊕ V8.
17. (GL2

1 × Spin10,halfspinrepeven ⊕ halfspinrepeven,V
16
⊕ V16).

We have G◦v � GL1 ×G2, see p. 96 in [15] for the relative invariants. The
module (GL1 × Spin10, µ ⊗ (halfspinrepeven ⊕ halfspinrepeven)) is preho-
mogeneous with G◦v � G2.

18. (GL2
1 × Spin10,vecrep ⊕ halfspinrep,V10

⊕ V16).
We have G◦v � Spin7, see p. 97 in [15] for the relative invariants.

19. (GL2
1 × Spin12,vecrep ⊕ halfspinrep,V12

⊕ V32).
We have G◦v � SL5, see p. 97 in [15] for the relative invariants.

20. (GL2
1 × Spn, ω1 ⊕ ω1,k2n

⊕ k
2n) for n ≥ 2.

We have G◦v � GL1×Spn−1, see p. 97 in [15] for the relative invariant. The
module (GL1 × Spn, µ ⊗ (ω1 ⊕ω1)) is prehomogeneous with G◦v � Spn−1.

21. (GL2
1 × Sp3, ω3 ⊕ ω1,V14

⊕ k
6).

We have G◦v � SL2, see p. 97 in [15] for the relative invariants.

Ks II Non-regular non-irreducible simple prehomogeneous modules.

1. (GLk
1 × SLn, ω⊕k

1 , (k
n)⊕k) for 2 ≤ k ≤ n − 1.

We have G◦v � (GLk
1 × SLn−k) ·G+k(n−k). The module (SLn, ω⊕k

1 ) is prehomo-
geneous with G◦v � SLn−k ·G+k(n−k).

2. (GLk
1 × SLn, ω⊕k−1

1 ⊕ ω∗1, (k
n)⊕k−1

⊕ k
n∗) for 3 ≤ k ≤ n.

We have G◦v � (GL1 × SLn−k+1) · G+(n−k+1)(k−2) and f1(X) = 〈x1|y〉, . . . ,
fk−1(X) = 〈xk−1|y〉 for X = (x1, . . . , xk−1, y) ∈ (kn)⊕k−1

⊕ k
n∗. The module

(GLk−1
1 × SLn, (µ ⊗ ω⊕k−1

1 ) ⊕ ω∗1) is prehomogeneous with G◦v � SLn−k+1 ·

G+(n−k+1)(k−2).

3. (GL2
1 × SL2n+1, ω2 ⊕ ω2,

∧2
k

2n+1
⊕

∧2
k

2n+1) for n ≥ 2.
We have G◦v � GL2

1·G
+
2n. The module (SL2n+1, ω2⊕ω2) is prehomogeneous

with G◦v � G+2n.

4. (GL2
1 × SL2n, ω2 ⊕ ω1,

∧2
k

2n
⊕ k

2n) for n ≥ 2.
We have G◦v � (GL1×Spn−1) ·Unn−1 and f1(X) = Pf(X) where X ∈

∧2
k

2n.
The module (GL1 × SL2n, µ ⊗ (ω2 ⊕ ω1)) is prehomogeneous with G◦v �
Spn−1 ·Unn−1.

5. (GL2
1 × SL2n, ω2 ⊕ ω∗1,

∧2
k

2n
⊕ k

2n∗) for n ≥ 3.
We have G◦v � (GL1×Spn−1) ·Unn−1 and f1(X) = Pf(X) where X ∈

∧2
k

2n.
The module (GL1 × SL2n, µ ⊗ (ω2 ⊕ ω∗1)) is prehomogeneous with G◦v �
Spn−1 ·Unn−1.
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6. (GL4
1 × SL2n, ω2 ⊕ ω1 ⊕ ω1 ⊕ ω1,

∧2
k

2n
⊕ k

2n
⊕ k

2n
⊕ k

2n) for n ≥ 2.
We have G◦v � Spn−2 · Un2n−3 and f1(X) = Pf(A), f2(X) = x>A#y, f3(X) =
y>A#z, f4(X) = z>Ax for X = (A, x, y, z) ∈

∧2
k

2n
⊕ k

2n
⊕ k

2n
⊕ k

2n.

7. (GL4
1 × SL2n, ω2 ⊕ ω1 ⊕ ω1 ⊕ ω∗1,

∧2
k

2n
⊕ k

2n
⊕ k

2n
⊕ k

2n∗) for n ≥ 2.
We have G◦v � Spn−2 · Un2n−3 and f1(X) = Pf(A), f2(X) = x>A#y, f3(X) =
〈x|z〉, f4(X) = 〈y|z〉 for X = (A, x, y, z) ∈

∧2
k

2n
⊕ k

2n
⊕ k

2n
⊕ k

2n∗.

8. (GL4
1 × SL2n, ω2 ⊕ ω1 ⊕ ω∗1 ⊕ ω

∗

1,
∧2
k

2n
⊕ k

2n
⊕ k

2n∗
⊕ k

2n∗) for n ≥ 3.
We have G◦v � Spn−2 · Un2n−3 and f1(X) = Pf(A), f2(X) = 〈x|y〉, f3(X) =
〈x|z〉, f4(X) = y>Az for X = (A, x, y, z) ∈

∧2
k

2n
⊕ k

2n
⊕ k

2n∗
⊕ k

2n∗.

9. (GL4
1 × SL2n, ω2 ⊕ ω∗1 ⊕ ω

∗

1 ⊕ ω
∗

1,
∧2
k

2n
⊕ k

2n∗
⊕ k

2n∗
⊕ k

2n∗) for n ≥ 3.
We have G◦v � Spn−2 · Un2n−3 and f1(X) = Pf(A), f2(X) = x>Ay, f3(X) =
y>Az, f4(X) = z>Ax for X = (A, x, y, z) ∈

∧2
k

2n
⊕ k

2n∗
⊕ k

2n∗
⊕ k

2n∗.

10. (GL2
1 × SL2n+1, ω2 ⊕ ω∗1,

∧2
k

2n+1
⊕ k

2n+1∗) for n ≥ 2.
We have G◦v � (GL2

1 × Spn−1) · Un4n−2. The module (SL2n+1, ω2 ⊕ ω∗1) is
prehomogeneous with G◦v � Spn−1 ·Un4n−2.

11. (GL3
1 × SL2n+1, ω2 ⊕ ω1 ⊕ ω1,

∧2
k

2n+1
⊕ k

2n+1
⊕ k

2n+1) for n ≥ 2.
We have G◦v � (GL1 × Spn−1) · Un2n−1, see p. 99 in [15] for the relative
invariants. The module (GL2

1 × SL2n+1, (µ ⊗ (ω2 ⊕ ω1)) ⊕ (µ ⊗ ω1)) is
prehomogeneous with G◦v � Spn−1 ·Un2n−1.

12. (GL3
1 × SL2n+1, ω2 ⊕ ω1 ⊕ ω∗1,

∧2
k

2n+1
⊕ k

2n+1
⊕ k

2n+1∗) for n ≥ 2.
We have G◦v � (GL1 × Spn−1) · Un2n−1, see p. 99 in [15] for the relative
invariants. The module (GL2

1 × SL2n+1, (µ ⊗ (ω2 ⊕ ω1)) ⊕ (µ ⊗ ω∗1)) is
prehomogeneous with G◦v � Spn−1 ·Un2n−1.

13. (GL3
1 × SL2n+1, ω2 ⊕ ω∗1 ⊕ ω

∗

1,
∧2
k

2n+1
⊕ k

2n+1∗
⊕ k

2n+1∗) for n ≥ 2.
We have G◦v � (GL1×Spn−1) ·Un2n−1 and f1(X) = x>Ay for X = (A, x, y) ∈∧2
k

2n+1
⊕k

2n+1∗
⊕k

2n+1∗. The module (GL1 × SL2n+1, ω2 ⊕ (µ⊗ (ω∗1 ⊕ω
∗

1))
is prehomogeneous with G◦v � Spn−1 ·Un2n−2.

14. (GL4
1×SL2n+1, ω2⊕ω∗1⊕ω

∗

1⊕ω
∗

1,
∧2
k

2n+1
⊕k

2n+1
⊕k

2n+1
⊕k

2n+1) for n ≥ 2.
We have G◦v � (GL1 × Spn−2) · Un4n−6 and f1(X) = x>Ay, f2(X) = y>Az,
f3(X) = z>Ax. The module (GL3

1×SL2n+1, ω2⊕(µ⊗ω∗1)⊕(µ⊗ω∗1)⊕(µ⊗ω∗1))
is prehomogeneous with G◦v � Spn−2 ·Un4n−6.

15. (GL2
1 × SL6, ω3 ⊕ ω1,

∧3
k

6
⊕ k

6).
We have G◦v � (GL1 × SL2 × SL2) · G+4 , see p. 100 in [15] for the relative
invariant. The module (GL1 × SL6, µ ⊗ (ω3 ⊕ ω1)) is prehomogeneous
with G◦v � (SL2 × SL2) ·G+4 .

16. (GL3
1 × SL6, ω3 ⊕ ω1 ⊕ ω1,

∧3
k

6
⊕ k

6
⊕ k

6).
We have G◦v � GL2

1 ·G
+
4 , see p. 100 in [15] for the relative invariant. The

module (GL1×SL6, µ⊗(ω3⊕ω1⊕ω1)) is prehomogeneous with G◦v � G+4 .

17. (GL3
1 × Spn, ω1 ⊕ ω1 ⊕ ω1,k2n

⊕ k
2n
⊕ k

2n) for n ≥ 2.
We have G◦v � Spn−2 ·Un2n−3, see p. 100 in [15] for the relative invariants.
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18. (GL2
1 × Sp2, ω2 ⊕ ω1,V5

⊕ k
4).

We have G◦v � GL1 ·Un2, see p. 100 in [15] for the relative invariant. The
module (GL1 × Sp2, (µ ⊗ ω2) ⊕ ω1) is prehomogeneous with G◦v � Un2.

19. (GL3
1 × SL5, ω2 ⊕ ω2 ⊕ ω∗1,

∧2
k

5
⊕

∧2
k

5
⊕ k

5).
See proposition 1.1 in [16].

11.3 2-Simple Prehomogeneous Modules of Type I

In this and the following chapter we shall give a classification of the non-irreducible
2-simple prehomogeneous modules, i.e. modules of the form(

GLl
1 × G1 × G2,

(%1 ⊗ %̃1) ⊕ . . . ⊕ (%k ⊗ %̃k) ⊕ (σ1 ⊗ 1) ⊕ . . . ⊕ (σs ⊗ 1) ⊕ (1 ⊗ τ1) ⊕ . . . ⊕ (1 ⊗ τt),

V1 ⊕ . . . ⊕ Vl

)
,

where G1 and G2 are simple algebraic groups, l = k + s + t, and the %i, σ j (resp. %̃i,
τ j) are irreducible representations of G1 (resp. G2). As in the previous chapter,
it is understood that each of these representations is composed with a scalar
multiplication of GLk

1. First, we give the classification of the type I-modules, i.e.
at least one of the modules (GL1×G1×G2, %i⊗ %̃i) is a non-trivial prehomogeneous
module (see example 9.8). These were classified by Kimura et al. [16], thus we
shall refer to them as KI n, where n is the number of the module in § 3 of [16].
We shall state the non-irreducible modules only, as the irreducible ones already
appear in theorem 11.1 or as castling transformas of those (see also theorem 1.5
in [16]). In the next chapter, we shall classify the remaining 2-simple modules of
type II.

Theorem 11.3 (Kimura, Kasai, Inuzuka, Yasukura) Let (G, %,V) be a 2-simple pre-
homogeneous module of type I. Then it is equivalent to one of the following:

KI I Regular 2-simple prehomogeneous modules of type I.

1. (GL2
1 × SL4 × SL2, (ω2 ⊗ ω1) ⊕ (ω1 ⊗ ω1)).

We have G◦v � {1}.

2. (GL3
1 × SL4 × SL2, (ω2 ⊗ ω1) ⊕ (ω1 ⊗ 1) ⊕ (ω1 ⊗ 1)).

We have G◦v � GL1. The module (GL2
1 × SL4 × SL2, (ω2 ⊗ω1)⊕ (ω1 ⊗ 1)⊕

(ω1 ⊗ 1)) is prehomogeneous with G◦v � {1}.

3. (GL2
1 × SL4 × SL3, (ω2 ⊗ ω1) ⊕ (ω1 ⊗ 1)).

We have G◦v � SO3.

4. (GL3
1 × SL4 × SL3, (ω2 ⊗ ω1) ⊕ (ω1 ⊗ 1) ⊕ (1 ⊗ ω(∗)

1 )).
We have G◦v � SO2.

5. (GL3
1 × SL4 × SL4, (ω2 ⊗ ω1) ⊕ (ω1 ⊗ 1) ⊕ (1 ⊗ ω∗1)).

We have G◦v � SO2.
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6. (GL3
1 × SL5 × SL2, (ω2 ⊗ ω1) ⊕ (ω∗1 ⊗ 1) ⊕ (ω(∗)

1 ⊗ 1)).
We have G◦v � {1}.

7. (GL2
1 × SL5 × SL3, (ω2 ⊗ ω1) ⊕ (1 ⊗ ω(∗)

1 )).
We have G◦v � SO2.

8. (GL2
1 × SL5 × SL8, (ω2 ⊗ ω1) ⊕ (1 ⊗ ω∗1)).

We have G◦v � SO2.

9. (GL2
1 × SL5 × SL9, (ω2 ⊗ ω1) ⊕ (1 ⊗ ω∗1)).

We have G◦v � GL1×SL2×SL2. The module (GL1×SL5×SL9, (ω2⊗ω1)⊕
(1 ⊗ ω∗1)) is prehomogeneous with G◦v � SL2 × SL2.

10. (GL3
1 × Spn × SL2m, (ω1 ⊗ ω1) ⊕ (1 ⊗ ω(∗)

1 ) ⊕ (1 ⊗ ω(∗)
1 )).

We have G◦v � GL1×Spn−m×Spm−1. The module (GL2
1×Spn×Sp2m, (ω1⊗

ω1)⊕ (1⊗ω(∗)
1 )⊕ (1⊗ω(∗)

1 )) is prehomogeneous with G◦v � Spn−m × Spm−1.

11. (GL2
1 × Spn × SL2, (ω1 ⊗ ω1) ⊕ (1 ⊗ 2ω1)).

We have G◦v � Spn−1 × SO2.

12. (GL2
1 × Spn × SL3, (ω1 ⊗ ω1) ⊕ (1 ⊗ 3ω1)).

We have G◦v � Spn−1.

13. (GL3
1 × Spn × SL2, (ω1 ⊗ ω1) ⊕ (1 ⊗ 2ω2) ⊕ (1 ⊗ ω1)). We have G◦v � Spn−1.

14. (GL2
1 × Spn × SL2m+1, (ω1 ⊗ ω1) ⊕ (ω1 ⊗ 1)).

We have G◦v � GL1×Spm×Spn−m−1. The module (GL1×Spn×SL2m+1, (ω1⊗

ω1) ⊕ (ω1 ⊗ 1)) is prehomogeneous with G◦v � Spm × Spn−m−1.

15. (GL4
1 × Spn × SL2m+1, (ω1 ⊗ ω1) ⊕ (ω1 ⊗ 1) ⊕ (1 ⊗ (ω1 ⊕ ω1)(∗))).

We have G◦v � Spm−1 × Spn−m−1.

16. (GL3
1 × Sp2 × SL3, (ω1 ⊗ ω1) ⊕ (ω2 ⊗ 1) ⊕ (1 ⊗ ω∗1)).

We have G◦v � GL1. The module (GL2
1 × Sp2 × SL3, (ω1 ⊗ω1)⊕ (ω2 ⊗ 1)⊕

(1 ⊗ ω∗1)) is prehomogeneous with G◦v � {1}.

17. (GL2
1 × Sp2 × SL2, (ω2 ⊗ ω1) ⊕ (ω1 ⊗ 1)).

We have G◦v � SO2.

18. (GL3
1 × Sp2 × SL2, (ω2 ⊗ ω1) ⊕ (ω1 ⊗ 1) ⊕ (1 ⊗ ω1)).

We have G◦v � {1}.

19. (GL3
1 × Sp2 × SL4, (ω2 ⊗ ω1) ⊕ (ω1 ⊗ 1) ⊕ (1 ⊗ ω∗1)).

We have G◦v � {1}.

20. (GL2
1 × SOn × SLm, (ω1 ⊗ ω1) ⊕ (1 ⊗ ω(∗)

1 )).
We have G◦v � SOm−1 × SOn−m.

21. (GL2
1 × Spin7 × SL2, (spinrep ⊗ ω1) ⊕ (1 ⊗ ω1)).

We have G◦v � SL3.

22. (GL2
1 × Spin7 × SL3, (spinrep ⊗ ω1) ⊕ (1 ⊗ ω(∗)

1 )).
We have G◦v � SL2 × SO2.

23. (GL2
1 × Spin7 × SL6, (spinrep ⊗ ω1) ⊕ (1 ⊗ ω∗1)).

We have G◦v � SL2 × SO2.
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24. (GL2
1 × Spin7 × SL7, (spinrep ⊗ ω1) ⊕ (1 ⊗ ω∗1)).

We have G◦v � SL3.

25. (GL2
1 × Spin7 × SL2, (vecrep ⊗ ω1) ⊕ (spinrep ⊗ 1)).

We have G◦v � GL2.

26. (GL3
1 × Spin7 × SL2, (vecrep ⊗ ω1) ⊕ (spinrep ⊗ 1) ⊕ (1 ⊗ ω1)).

We have G◦v � SL2.

27. (GL3
1 × Spin7 × SL6, (vecrep ⊗ ω1) ⊕ (spinrep ⊗ 1) ⊕ (1 ⊗ ω∗1)).

We have G◦v � SL2.

28. (GL2
1 × Spin8 × SL2, (vecrep ⊗ ω1) ⊕ (halfspinrep ⊗ 1)).

We have G◦v � SL3 × SO2.

29. (GL2
1 × Spin8 × SL3, (vecrep ⊗ ω1) ⊕ (halfspinrep ⊗ 1)).

We have G◦v � SL2 × SO3.

30. (GL3
1 × Spin8 × SL2, (vecrep ⊗ ω1) ⊕ (halfspinrep ⊗ 1) ⊕ (1 ⊗ ω1)).

We have G◦v � SL3.

31. (GL3
1 × Spin8 × SL3, (vecrep ⊗ ω1) ⊕ (halfspinrep ⊗ 1) ⊕ (1 ⊗ ω(∗)

1 )).
We have G◦v � SL2 × SO2.

32. (GL3
1 × Spin8 × SL6, (vecrep ⊗ ω1) ⊕ (halfspinrep ⊗ 1) ⊕ (1 ⊗ ω∗1)).

We have G◦v � SL2 × SO2.

33. (GL3
1 × Spin8 × SL7, (vecrep ⊗ ω1) ⊕ (halfspinrep ⊗ 1) ⊕ (1 ⊗ ω∗1)).

We have G◦v � SL3.

34. (GL2
1 × Spin10 × SL2, (halfspinrep ⊗ ω1) ⊕ (1 ⊗ 2ω1)).

We have G◦v � G2 × SO3.

35. (GL2
1 × Spin10 × SL2, (halfspinrep ⊗ ω1) ⊕ (1 ⊗ 3ω1)).

We have G◦v � G2.

36. (GL3
1 × Spin10 × SL2, (halfspinrep ⊗ ω1) ⊕ (1 ⊗ ω1) ⊕ (1 ⊗ ω1)).

We have G◦v � GL1×G2. The module (GL2
1×Spin10×SL2, (halfspinrep⊗

ω1) ⊕ (1 ⊗ ω1) ⊕ (1 ⊗ ω1)) is prehomogeneous with G◦v � G2.

37. (GL3
1 × Spin10 × SL2, (halfspinrep ⊗ ω1) ⊕ (1 ⊗ 2ω1) ⊕ (1 ⊗ ω1)).

We have G◦v � G2.

38. (GL4
1 × Spin10 × SL2, (halfspinrep ⊗ ω1) ⊕ (1 ⊗ ω1) ⊕ (1 ⊗ ω1) ⊕ (1 ⊗ ω1)).

We have G◦v � G2.

39. (GL2
1 × Spin10 × SL3, (halfspinrep ⊗ ω1) ⊕ (1 ⊗ ω(∗)

1 )).
We have G◦v � SL2 × SO2.

40. (GL2
1 × Spin10 × SL14, (halfspinrep ⊗ ω1) ⊕ (1 ⊗ ω∗1)).

We have G◦v � SL2 × SO2.

41. (GL2
1 × Spin10 × SL15, (halfspinrep ⊗ ω1) ⊕ (1 ⊗ ω∗1)).

We have G◦v � GL1×SL4. The module (GL1×Spin10×SL15, (halfspinrep⊗
ω1) ⊕ (1 ⊗ ω(∗)

1 )) is prehomogeneous with G◦v � SL4.

42. (GL2
1 × Spin10 × SL2, (vecrep ⊗ ω1) ⊕ (halfspinrep ⊗ 1)).

We have G◦v � G2.
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43. (GL2
1 × Spin10 × SL3, (halfspinrep ⊗ ω1) ⊕ (vecrep ⊗ 1)).

We have G◦v � SL3 × SO2.

44. (GL2
1 × Spin10 × SL4, (halfspinrep ⊗ ω1) ⊕ (vecrep ⊗ 1)).

We have G◦v � SL2 × SL2.

45. (GL2
1 ×G2 × SL2, (ω2 ⊗ ω1) ⊕ (1 ⊗ ω1)).

We have G◦v � SL2.

46. (GL2
1 ×G2 × SL6, (ω2 ⊗ ω1) ⊕ (1 ⊗ ω∗1)).

We have G◦v � SL2.

KI II Non-regular 2-simple prehomogeneous modules of type I.

1. (a) (GL2
1 × SL2n+1 × SL2, (ω2 ⊗ ω1) ⊕ (1 ⊗ ω1)) for n ≥ 2.

We have G◦v � GL2
1 ·G

+
1 .

(b) (GL2
1 × SL2n+1 × SL2, (ω2 ⊗ ω1) ⊕ (1 ⊗ 2ω1)) for n ≥ 2.

We have G◦v � (GL1 × SO2) ·G+2n.

(c) (GL2
1 × SL2n+1 × SL2, (ω2 ⊗ ω1) ⊕ (1 ⊗ 3ω1)) for n ≥ 2.

We have G◦v � GL1 ·G+n .

2. (a) (GL3
1 × SL2n+1 × SL2, (ω2 ⊗ ω1) ⊕ (1 ⊗ ω1) ⊕ (1 ⊗ ω1)) for n ≥ 2.

We have G◦v � GL2
1 ·G

+
2n.

(b) (GL3
1 × SL2n+1 × SL2, (ω2 ⊗ ω1) ⊕ (1 ⊗ ω1) ⊕ (1 ⊗ 2ω1)) for n ≥ 2.

We have G◦v � GL1 ·G+2n.

3. (GL4
1 × SL2n+1 × SL2, (ω2 ⊗ ω1) ⊕ (1 ⊗ ω1) ⊕ (1 ⊗ ω1) ⊕ (1 ⊗ ω1)) for n ≥ 2.

We have G◦v � GL1 ·G+2n.

4. (GL2
1 × SL4 × SL2, (ω2 ⊗ ω1) ⊕ (ω1 ⊗ 1)).

We have G◦v � (GL1 × SO2) ·Un2.

5. (GL3
1 × SL4 × SL2, (ω2 ⊗ ω1) ⊕ (ω1 ⊗ 1) ⊕ (1 ⊗ ω1)).

We have G◦v � GL1 ·Un2.

6. (GL3
1 × SL4 × SL2, (ω2 ⊗ ω1) ⊕ (ω1 ⊗ 1) ⊕ (1 ⊗ ω∗1)).

We have G◦v � GL1 ·Un2.

7. (a) (GL2
1 × SL5 × SL2, (ω2 ⊗ ω1) ⊕ (ω1 ⊗ 1)).

We have G◦v � (GL1 × SO2) ·Un2.
(b) (GL2

1 × SL5 × SL2, (ω2 ⊗ ω1) ⊕ (ω∗1 ⊗ 1)).
We have G◦v � GL2

1 ·Un2.

8. (a) (GL3
1 × SL5 × SL2, (ω2 ⊗ ω1) ⊕ (ω1 ⊗ 1) ⊕ (1 ⊗ ω1)).

We have G◦v � GL1 ·Un2.
(b) (GL3

1 × SL5 × SL2, (ω2 ⊗ ω1) ⊕ (ω∗1 ⊗ 1) ⊕ (1 ⊗ ω1)).
We have G◦v � GL2

1 ·Un2.

9. (GL3
1 × SL5 × SL9, (ω2 ⊗ ω1) ⊕ (ω(∗)

1 ⊗ 1) ⊕ (1 ⊗ ω∗1)).
We have G◦v � GL1 ·Un2.

10. (GL3
1 × SL5 × SL2, (ω2 ⊗ ω1) ⊕ (ω∗1 ⊗ 1) ⊕ (1 ⊗ 2ω1)).

We have G◦v � GL1 ·Un2.
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11. (GL4
1 × SL5 × SL2, (ω2 ⊗ ω1) ⊕ (ω∗1 ⊗ 1) ⊕ (1 ⊗ ω1) ⊕ (1 ⊗ ω1)).

We have G◦v � GL1 ·Un2.

12. (GL2
1 × SL6 × SL2, (ω2 ⊗ ω1) ⊕ (ω(∗)

1 ⊗ 1)).
We have G◦v � GL1 ·Un3.

13. (a) (GL2
1 × SL7 × SL2, (ω2 ⊗ ω1) ⊕ (ω1 ⊗ 1)).

We have G◦v � GL1 ·Un3.
(b) (GL2

1 × SL7 × SL2, (ω2 ⊗ ω1) ⊕ (ω∗1 ⊗ 1)).
We have G◦v � (GL1 × SO2) ·Un2.

14. (GL3
1 × SL7 × SL2, (ω2 ⊗ ω1) ⊕ (ω∗1 ⊗ 1) ⊕ (1 ⊗ ω1).

We have G◦v � GL1 ·Un2.

15. (GL2
1 × SL9 × SL2, (ω2 ⊗ ω1) ⊕ (ω∗1 ⊗ 1)).

We have G◦v � GL1 ·Un3.

16. (a) (GL2
1 × Spn × SL2m, (ω1 ⊗ ω1) ⊕ (ω1 ⊗ 1)) for n > m ≥ 1.

We have G◦v � (GL1 × Spm−1 × Spn−m−1) ·Un2n−2.

(b) (GL2
1 × Spn × SL2m, (ω1 ⊗ ω1) ⊕ (1 ⊗ ω(∗)

1 )) for n > m ≥ 1.
We have G◦v � (GL1 × Spm−1 × Spn−m−1) ·Un2n−2.

17. (GL3
1 × Spn × SL2m, (ω1 ⊗ ω1) ⊕ (ω1 ⊗ 1) ⊕ (1 ⊗ ω(∗)

1 )) for n > m ≥ 1.
We have G◦v � (GL1 × Spm−1 × Spn−m−1) ·Un2n−2m−2.

18. (a) (GL4
1 × Spn × SL2m, (ω1 ⊗ ω1) ⊕ (ω1 ⊗ 1) ⊕ (1 ⊗ ω(∗)

1 ) ⊕ (1 ⊗ ω(∗)
1 )) for

n > m ≥ 2.
We have G◦v � (Spm−2 × Spn−m−1) ·Un2n−4.

(b) (GL4
1 × Spn × SL2, (ω1 ⊗ω1)⊕ (ω1 ⊗ 1)⊕ (1⊗ω1)⊕ (1⊗ω1)) for n ≥ 2.

We have G◦v � Spn−2 ·Un2n−3.

(c) (GL4
1 × Spn × SL2m, (ω1 ⊗ ω1) ⊕ (1 ⊗ ω(∗)

1 ) ⊕ (1 ⊗ ω(∗)
1 ) ⊕ (1 ⊗ ω(∗)

1 )) for
n > m ≥ 2.
We have G◦v � (Spm−2 × Spn−m−1) ·Un2n−4.

19. (GL3
1 × Spn × SL2, (ω1 ⊗ ω1) ⊕ (ω1 ⊗ 1) ⊕ (1 ⊗ 2ω1)) for n ≥ 2.

We have G◦v � Spn−2 ·Un2n−3.

20. (a) (GL2
1 × Spn × SL2m+1, (ω1 ⊗ ω1) ⊕ (1 ⊗ ω1)) for n > m ≥ 1.

We have G◦v � (GL1 × Spm × Spn−m−1) ·Un2n−2m−1.
(b) (GL2

1 × Spn × SL2m+1, (ω1 ⊗ ω1) ⊕ (1 ⊗ ω∗1)) for n > m ≥ 1.
We have G◦v � (GL2

1 × Spm × Spn−m−1) ·Un2n−2m−3.
(c) (GL2

1 × Spm+1 × SL2m+1, (ω1 ⊗ ω1) ⊕ (1 ⊗ ω1)) for m ≥ 1.
We have G◦v � (GL2

1 × Spm−1) ·Un4m−1.
(d) (GL2

1 × Spn × SL2m+1, (ω1 ⊗ ω1) ⊕ (1 ⊗ ω2)) for n > m + 1 ≥ 2.
We have G◦v � (GL1 × SOm

2 × Spn−m−1) ·Un2n−2m−1.

21. (a) (GL3
1 × Spn × SL2m+1, (ω1 ⊗ ω1) ⊕ (ω1 ⊗ 1) ⊕ (ω1 ⊗ 1)) for n > m + 1.

We have G◦v � (Spm−1 × Spn−m−2) ·Un2n−4.

(b) (GL3
1 × Spn × SL2m+1, (ω1 ⊗ ω1) ⊕ (ω1 ⊗ 1) ⊕ (1 ⊗ ω(∗)

1 )) for n > m + 1.
We have G◦v � (Spm−1 × Spn−m−2) ·Un2n−4.
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(c) (GL3
1 × Spn × SL2m+1, (ω1 ⊗ ω1) ⊕ (1 ⊗ ω(∗)

1 ) ⊕ (1 ⊗ ω(∗)
1 )) for n > m + 1.

We have G◦v � (Spm−1 × Spn−m−2) ·Un2n−4.

22. (a) (GL4
1×Spn×SL2m+1, (ω1⊗ω1)⊕(1⊗ω1)⊕(1⊗(ω1⊕ω1)(∗))) for n > m ≥ 1.

We have G◦v � (Spm−1 × Spn−m−1) ·Un2n−2m−1.
(b) (GL4

1 × Spn × SL2m+1, (ω1 ⊗ ω1) ⊕ (1 ⊗ ω∗1) ⊕ (1 ⊗ ω∗1) ⊕ (1 ⊗ ω∗1)) for
n > m ≥ 1.
We have G◦v � (Spm−2 × Spn−m−1) ·Un2n+2m−7.

(c) (GL4
1 × Spn × SL3, (ω1 ⊗ω1)⊕ (1⊗ω∗1)⊕ (1⊗ω∗1)⊕ (1⊗ω∗1)) for n ≥ 2.

We have G◦v � Spn−2 ·Un2n−3.

23. (GL2
1 × Spn × SL3, (ω1 ⊗ ω1) ⊕ (1 ⊗ 2ω1)) for n ≥ 2.

We have G◦v � (SO2 × Spn−2) ·Un2n−3.

24. (GL3
1 × Spn × SL5, (ω1 ⊗ ω1) ⊕ (1 ⊗ ω2) ⊕ (1 ⊗ ω∗1)) for n ≥ 3.

We have G◦v � (GL1 × Spn−3) ·Un2n−4.

25. (GL2
1 × Spn × SL2, (ω1 ⊗ 2ω1) ⊕ (1 ⊗ ω1)) for n ≥ 2.

We have G◦v � Spn−2 ·Un2n−3.

26. (GL2
1 × Spin10 × SL2, (halfspinrep ⊗ ω1) ⊕ (1 ⊗ ω1)).

We have G◦v � (GL1 ×G2) ·G+1 .

11.4 2-Simple Prehomogeneous Modules of Type II

In this chapter we give a classification of the 2-simple prehomogeneous modules
of type II, i.e. modules of the form(

GLl
1 × G1 × G2,

(%1 ⊗ %̃1) ⊕ . . . ⊕ (%k ⊗ %̃k) ⊕ (σ1 ⊗ 1) ⊕ . . . ⊕ (σs ⊗ 1) ⊕ (1 ⊗ τ1) ⊕ . . . ⊕ (1 ⊗ τt),

V1 ⊕ . . . ⊕ Vl

)
,

where all of the modules (GL1×G1×G2, %i⊗%̃i) are trivial prehomogeneous modules
(see example 9.8).9) Note that we consider non-irreducible modules only. These
were classified by Kimura et al. [17], thus we shall refer to them as KII n, where n
is the number of the module in § 5 of [17]. Unfortunately, it is not always obvious
from the classification in which cases a module would be prehomogeneous even
with fewer than l scalar multiplications.

Theorem 11.4 (Kimura, Kasai, Taguchi, Inuzuka) Any indecomposable 2-simple
prehomogeneous module of type II is equivalent to one of the following:

KII I 2-simple prehomogeneous modules of type II obtained directly from any
given simple module (GLl

1 × G, %1 ⊕ . . . ⊕ %l) (cf. theorem 11.2).

9)Ironically, the classification of modules containing only trivial modules proves to be much
harder than the case in which non-trival ones appear.
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1. For any representation σ1 ⊕ . . . ⊕ σs of G and n ≥
∑s

i=1 dim(σi):(
GLl+s

1 × G × SLn,

(σ1 ⊗ ω1) ⊕ . . . ⊕ (σs ⊗ ω1) ⊕ (%1 ⊗ 1) ⊕ . . . ⊕ (%l ⊗ 1)
)
.

2. For t ≥ 0, 1 ≤ k ≤ l and n = t − 1 +
∑k

i=1 dim(%i):(
GLl+t

1 × G × SLn,

(%1 ⊗ ω1) ⊕ . . . ⊕ (%k ⊗ ω1) ⊕ (%∗k+1 ⊗ 1) ⊕ . . . ⊕ (%∗l ⊗ 1) ⊕ (1 ⊗ ω⊕t
1 )

)
.

3. For t ≥ 1, 1 ≤ k ≤ l and n ≥ t − 1 +
∑k

i=1 dim(%i):(
GLl+t

1 × G × SLn,

(%1 ⊗ ω1) ⊕ . . . ⊕ (%k ⊗ ω1) ⊕ (%k+1 ⊗ 1) ⊕ . . . ⊕ (%l ⊗ 1) ⊕ (1 ⊗ ω⊕t−1
1 ) ⊕ (1 ⊗ ω∗1)

)
.

KII II 2-simple prehomogeneous modules of type II of the form(
GLk+s+t

1 × G × SLn,

(%1 ⊗ ω1) ⊕ . . . ⊕ (%k ⊗ ω1) ⊕ (σ1 ⊗ 1) ⊕ . . . ⊕ (σs ⊗ 1) ⊕ (1 ⊗ τ1) ⊕ . . . ⊕ (1 ⊗ τt)
)
,

with 2 ≤ dim(%i) ≤ n for all i and at least one τ j , ω
(∗)
1 .

4. G = SLm with 2 ≤ m < n.

4-i (a) (ω1 ⊗ ω1) ⊕ (1 ⊗ 2ω(∗)
1 ).

(b) (ω1 ⊗ ω1) ⊕ (1 ⊗ 2ω(∗)
1 ) ⊕ (ω(∗)

1 ⊗ 1).

(c) (ω1 ⊗ ω1) ⊕ (1 ⊗ ω(∗)
2 ).

(d) (ω1 ⊗ ω1) ⊕ (1 ⊗ ω(∗)
2 ) ⊕ (ω(∗)

1 ⊗ 1).

(e) (ω1 ⊗ ω1) ⊕ (1 ⊗ ω(∗)
2 ) ⊕ (ω(∗)

1 ⊗ 1) ⊕ (ω(∗)
1 ⊗ 1).

(f) (ω1 ⊗ ω1) ⊕ (1 ⊗ ω(∗)
2 ) ⊕ (1 ⊗ ω(∗)

1 ).

(g) (ω1 ⊗ ω1) ⊕ (1 ⊗ ω(∗)
2 ) ⊕ (ω(∗)

1 ⊗ 1) ⊕ (1 ⊗ ω(∗)
1 ).

4-ii n even.
(a) (ω1 ⊗ ω1) ⊕ (1 ⊗ ω(∗)

2 ) ⊕ ((ω1 ⊕ ω1)(∗)
⊗ 1) ⊕ (1 ⊗ ω(∗)

1 ).

(b) (ω1 ⊗ ω1) ⊕ (1 ⊗ ω(∗)
2 ) ⊕ (ω1 ⊗ 1) ⊕ (ω∗1 ⊗ 1) ⊕ (ω∗1 ⊗ 1).

(c) (ω1 ⊗ ω1) ⊕ (1 ⊗ ω(∗)
2 ) ⊕ ((ω1 ⊕ ω1 ⊕ ω1)(∗)

⊗ 1).

(d) (ω1 ⊗ ω1) ⊕ (1 ⊗ ω(∗)
2 ) ⊕ (ω1 ⊗ 1) ⊕ (ω1 ⊗ 1) ⊕ (ω∗1 ⊗ 1), m even.

(e) (ω1 ⊗ ω1) ⊕ (1 ⊗ ω(∗)
2 ) ⊕ (ω1 ⊗ 1) ⊕ (ω∗1 ⊗ 1) ⊕ (1 ⊗ ω(∗)

1 ), m even.

(f) (ω1 ⊗ ω1) ⊕ (1 ⊗ ω(∗)
2 ) ⊕ (ω2 ⊗ 1), m odd.

(g) (ω1 ⊗ ω1) ⊕ (1 ⊗ ω(∗)
2 ) ⊕ (1 ⊗ ω(∗)

1 ) ⊕ (1 ⊗ ω(∗)
1 ), m odd.

4-iii n odd.
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(a) (ω1 ⊗ ω1) ⊕ (1 ⊗ ω2) ⊕ (ω1 ⊗ 1) ⊕ (ω1 ⊗ 1) ⊕ (1 ⊗ ω∗1), m ≥ 3.
(b) (ω1 ⊗ ω1) ⊕ (1 ⊗ ω2) ⊕ (ω∗2 ⊗ 1).
(c) (ω1 ⊗ ω1) ⊕ (1 ⊗ ω2) ⊕ ((ω1 ⊕ ω1 ⊕ ω1)(∗)

⊗ 1), m ≥ 3.
(d) (ω1 ⊗ ω1) ⊕ (1 ⊗ ω2) ⊕ ((ω1 ⊕ ω1)(∗)

⊗ 1) ⊕ (1 ⊗ ω1).
(e) (ω1 ⊗ ω1) ⊕ (1 ⊗ ω2) ⊕ (ω2 ⊗ 1), m even.
(f) (ω1 ⊗ ω1) ⊕ (1 ⊗ ω2) ⊕ (ω1 ⊗ 1) ⊕ (ω∗1 ⊗ 1) ⊕ (1 ⊗ ω1), m even.
(g) (ω1 ⊗ ω1) ⊕ (1 ⊗ ω2) ⊕ (1 ⊗ ω1) ⊕ (1 ⊗ ω∗1), m even.
(h) (ω1 ⊗ ω1) ⊕ (1 ⊗ ω2) ⊕ (1 ⊗ ω∗1) ⊕ (1 ⊗ ω∗1), m even.
(i) (ω1 ⊗ ω1) ⊕ (1 ⊗ ω2) ⊕ (ω1 ⊗ 1) ⊕ (ω1 ⊗ 1) ⊕ (ω∗1 ⊗ 1), m odd.
(j) (ω1 ⊗ ω1) ⊕ (1 ⊗ ω2) ⊕ (1 ⊗ ω1) ⊕ (1 ⊗ ω1), m odd.

(k) (ω1 ⊗ ω1) ⊕ (1 ⊗ ω2) ⊕ (ω1 ⊗ 1) ⊕ (ω∗1 ⊗ 1) ⊕ (1 ⊗ ω∗1), m odd.
(l) (ω1 ⊗ ω1) ⊕ (1 ⊗ ω∗2) ⊕ (ω1 ⊗ 1) ⊕ (ω∗1 ⊗ 1) ⊕ (ω∗1 ⊗ 1).

(m) (ω1 ⊗ ω1) ⊕ (1 ⊗ ω∗2) ⊕ ((ω1 ⊕ ω1 ⊕ ω1)(∗)
⊗ 1).

(n) (ω1 ⊗ ω1) ⊕ (1 ⊗ ω∗2) ⊕ ((ω1 ⊕ ω1)(∗)
⊗ 1) ⊕ (1 ⊗ ω(∗)

1 ).
(o) (ω1 ⊗ ω1) ⊕ (1 ⊗ ω∗2) ⊕ (ω1 ⊗ 1) ⊕ (ω1 ⊗ 1) ⊕ (ω∗1 ⊗ 1), m even.
(p) (ω1 ⊗ ω1) ⊕ (1 ⊗ ω∗2) ⊕ (1 ⊗ ω∗1) ⊕ (1 ⊗ ω∗1), m even.

(q) (ω1 ⊗ ω1) ⊕ (1 ⊗ ω∗2) ⊕ (ω1 ⊗ 1) ⊕ (ω∗1 ⊗ 1) ⊕ (1 ⊗ ω(∗)
1 ), m even.

(r) (ω1 ⊗ ω1) ⊕ (1 ⊗ ω∗2) ⊕ (ω2 ⊗ 1), m odd.
(s) (ω1 ⊗ ω1) ⊕ (1 ⊗ ω∗2) ⊕ (1 ⊗ ω1) ⊕ (1 ⊗ ω1), m odd.
(t) (ω1 ⊗ ω1) ⊕ (1 ⊗ ω∗2) ⊕ (1 ⊗ ω1) ⊕ (1 ⊗ ω∗1), m odd.

5. G = SL2, n > 2.

5-i (a) (2ω1 ⊗ ω1) ⊕ (1 ⊗ ω(∗)
2 ).

(b) (2ω1 ⊗ ω1) ⊕ (1 ⊗ ω(∗)
2 ) ⊕ (ω1 ⊗ 1).

5-ii (a) (ω1 ⊗ ω1) ⊕ (1 ⊗ ω2) ⊕ (2ω1 ⊗ 1).
(b) (ω1 ⊗ ω1) ⊕ (1 ⊗ ω2) ⊕ (2ω1 ⊗ 1) ⊕ (1 ⊗ ω1).
(c) (ω1 ⊗ ω1) ⊕ (1 ⊗ ω2) ⊕ (3ω1 ⊗ 1), n even.
(d) (ω1 ⊗ ω1) ⊕ (1 ⊗ ω2) ⊕ (2ω1 ⊗ 1) ⊕ (ω1 ⊗ 1), n even.
(e) (ω1 ⊗ ω1) ⊕ (1 ⊗ ω2) ⊕ (2ω1 ⊗ 1) ⊕ (1 ⊗ ω∗1), n even.

5-iii (a) (ω1 ⊗ ω1) ⊕ (1 ⊗ ω∗2).
(b) (ω1 ⊗ ω1) ⊕ (1 ⊗ ω∗2) ⊕ (2ω1 ⊗ 1).
(c) (ω1 ⊗ ω1) ⊕ (1 ⊗ ω∗2) ⊕ (3ω1 ⊗ 1).
(d) (ω1 ⊗ ω1) ⊕ (1 ⊗ ω∗2) ⊕ (2ω1 ⊗ 1) ⊕ (ω1 ⊗ 1).

(e) (ω1 ⊗ ω1) ⊕ (1 ⊗ ω∗2) ⊕ (2ω1 ⊗ 1) ⊕ (1 ⊗ ω(∗)
1 ).

5-iv n = 5.
(a) (ω1 ⊗ ω1) ⊕ (1 ⊗ ω∗2) ⊕ (1 ⊗ ω∗2).

5-v n = 6.
(a) (ω1 ⊗ ω1) ⊕ (1 ⊗ ω3).
(b) (ω1 ⊗ ω1) ⊕ (1 ⊗ ω3) ⊕ (1 ⊗ ω∗1).
(c) (ω1 ⊗ ω1) ⊕ (1 ⊗ ω3) ⊕ (ω1 ⊗ 1).
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(d) (ω1 ⊗ ω1) ⊕ (1 ⊗ ω3) ⊕ (2ω1 ⊗ 1).
(e) (ω1 ⊗ ω1) ⊕ (1 ⊗ ω3) ⊕ (3ω1 ⊗ 1).
(f) (ω1 ⊗ ω1) ⊕ (1 ⊗ ω3) ⊕ (ω1 ⊗ 1) ⊕ (ω1 ⊗ 1).
(g) (ω1 ⊗ ω1) ⊕ (1 ⊗ ω3) ⊕ (2ω1 ⊗ 1) ⊕ (ω1 ⊗ 1).
(h) (ω1 ⊗ ω1) ⊕ (1 ⊗ ω3) ⊕ (ω1 ⊗ 1) ⊕ (ω1 ⊗ 1) ⊕ (ω1 ⊗ 1).

5-vi n = 7.
(a) (ω1 ⊗ ω1) ⊕ (1 ⊗ ω(∗)

3 ).

(b) (ω1 ⊗ ω1) ⊕ (1 ⊗ ω(∗)
3 ) ⊕ (ω1 ⊗ 1).

6. G = SL3, n > 3.

(a) (ω1 ⊗ ω1) ⊕ (1 ⊗ ω(∗)
2 ) ⊕ (2ω(∗)

1 ⊗ 1).
(b) (ω1 ⊗ ω1) ⊕ (1 ⊗ ω2) ⊕ (1 ⊗ ω2), n = 5.

7. G = SL4, n > 4.

7-i n odd.
(a) (ω1 ⊗ ω1) ⊕ (1 ⊗ ω2) ⊕ (2ω1 ⊗ 1).
(b) (ω1 ⊗ ω1) ⊕ (1 ⊗ ω2) ⊕ (ω2 ⊗ 1) ⊕ (ω(∗)

1 ⊗ 1).
(c) (ω1 ⊗ ω1) ⊕ (1 ⊗ ω2) ⊕ (ω2 ⊗ 1) ⊕ (1 ⊗ ω∗1).

7-ii n = 5.
(a) (ω1 ⊗ ω1) ⊕ (1 ⊗ ω2) ⊕ (1 ⊗ ω2).

7-iii n = 6.
(a) (ω1 ⊗ ω1) ⊕ (1 ⊗ ω3).
(b) (ω1 ⊗ ω1) ⊕ (1 ⊗ ω3) ⊕ (ω∗1 ⊗ 1).

(c) (ω1 ⊗ ω1) ⊕ (1 ⊗ ω3) ⊕ (ω(∗)
2 ⊗ 1).

(d) (ω1 ⊗ ω1) ⊕ (1 ⊗ ω3) ⊕ (ω∗1 ⊗ 1) ⊕ (ω∗1 ⊗ 1).
(e) (ω1 ⊗ ω1) ⊕ (1 ⊗ ω3) ⊕ (1 ⊗ ω1).

8. G = SL5, n > 5.

8-i n even.
(a) (ω1 ⊗ ω1) ⊕ (1 ⊗ ω(∗)

2 ) ⊕ (ω2 ⊗ 1) ⊕ (ω∗1 ⊗ 1).
8-ii n odd.

(a) (ω1 ⊗ ω1) ⊕ (1 ⊗ ω∗2) ⊕ (ω2 ⊗ 1) ⊕ (ω∗1 ⊗ 1).
(b) (ω1 ⊗ ω1) ⊕ (1 ⊗ ω∗2) ⊕ (1 ⊗ ω2) ⊕ (ω∗2 ⊗ 1) ⊕ (ω1 ⊗ 1).
(c) (ω1 ⊗ ω1) ⊕ (1 ⊗ ω∗2) ⊕ (1 ⊗ ω2) ⊕ (ω∗2 ⊗ 1) ⊕ (1 ⊗ ω∗1).

8-iii n = 6.
(a) (ω1 ⊗ ω1) ⊕ (1 ⊗ ω3).
(b) (ω1 ⊗ ω1) ⊕ (1 ⊗ ω3) ⊕ (ω(∗)

1 ⊗ 1).
(c) (ω1 ⊗ ω1) ⊕ (1 ⊗ ω3) ⊕ (ω∗2 ⊗ 1).

(d) (ω1 ⊗ ω1) ⊕ (1 ⊗ ω3) ⊕ (ω∗1 ⊗ 1) ⊕ (ω(∗)
1 ⊗ 1).

(e) (ω1 ⊗ ω1) ⊕ (1 ⊗ ω3) ⊕ (1 ⊗ ω∗1).
8-iv n = 7.

(a) (ω1 ⊗ ω1) ⊕ (1 ⊗ ω(∗)
3 ).
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9. G = SL2 j, n = 2 j + 1.

(a) (ω1 ⊗ ω1) ⊕ (1 ⊗ ω∗2) ⊕ (1 ⊗ ω1) ⊕ (1 ⊗ ω1).

(b) (ω1 ⊗ ω1) ⊕ (1 ⊗ ω(∗)
3 ) ⊕ (ω(∗)

1 ⊗ 1), j = 3 (i.e. n = 7).

10. G = SLn.

(ω1 ⊗ ω1) ⊕ (%1 ⊗ 1) ⊕ . . . ⊕ (%k ⊗ 1) ⊕ (1 ⊗ %∗k+1) ⊕ . . . ⊕ (1 ⊗ %∗r),

where (GLr
1 × SLn, %1 ⊕ . . . ⊕ %r) is a simple prehomogeneous module.

11. G = Spm, 2m < n.

11-i n odd.
(a) (ω1 ⊗ ω1) ⊕ (1 ⊗ ω2).
(b) (ω1 ⊗ ω1) ⊕ (1 ⊗ ω2) ⊕ (ω1 ⊗ 1), m = 2.
(c) (ω1 ⊗ ω1) ⊕ (1 ⊗ ω2) ⊕ (ω2 ⊗ 1), m = 2.
(d) (ω1 ⊗ ω1) ⊕ (1 ⊗ ω2) ⊕ (1 ⊗ ω∗1), m = 2.

11-ii n = 6, m = 2.
(a) (ω1 ⊗ ω1) ⊕ (1 ⊗ ω3).

KII III 2-simple prehomogeneous modules of type II of the form(
GLk+s+t

1 × G × SLn,

(%1 ⊗ ω1) ⊕ . . . ⊕ (%k ⊗ ω1) ⊕ (σ1 ⊗ 1) ⊕ . . . ⊕ (σs ⊗ 1) ⊕ (1 ⊗ ω⊕t
1 )

)
,

with 2 ≤ dim(%i) ≤ n for all i and

(G, %1, . . . , %k, σ1, . . . , σs) , (SLm, ω1, . . . , ω1, ω
(∗)
1 , . . . , ω

(∗)
1 ).

12. (GL2
1 × SL4 × SL8, (ω2 ⊗ ω1) ⊕ (ω1 ⊗ ω1)).

13. G = SLm.

13-i m < n.
(a) (ω1 ⊗ ω1) ⊕ (1 ⊗ ω∗1) ⊕ (1 ⊗ ω∗1) ⊕ (ω(∗)

2 ⊗ 1).

(b) (ω1 ⊗ ω1) ⊕ (1 ⊗ ω∗1) ⊕ (1 ⊗ ω∗1) ⊕ (ω(∗)
2 ⊗ 1) ⊕ (ω1 ⊗ 1).

(c) (ω1 ⊗ ω1) ⊕ (1 ⊗ ω∗1) ⊕ (1 ⊗ ω∗1) ⊕ (ω∗2 ⊗ 1) ⊕ (ω∗1 ⊗ 1).

(d) (ω1 ⊗ ω1) ⊕ (1 ⊗ ω∗1) ⊕ (1 ⊗ ω∗1) ⊕ (ω(∗)
2 ⊗ 1) ⊕ (1 ⊗ ω∗1).

(e) (ω1 ⊗ ω1) ⊕ (1 ⊗ ω∗1) ⊕ (1 ⊗ ω∗1) ⊕ (ω∗2 ⊗ 1) ⊕ (1 ⊗ ω1).
(f) (ω1 ⊗ ω1) ⊕ (1 ⊗ ω∗1) ⊕ (1 ⊗ ω∗1) ⊕ (ω2 ⊗ 1) ⊕ (ω∗1 ⊗ 1), m even.
(g) (ω1 ⊗ ω1) ⊕ (1 ⊗ ω∗1) ⊕ (1 ⊗ ω∗1) ⊕ (ω2 ⊗ 1) ⊕ (1 ⊗ ω1), m even.
(h) (ω1 ⊗ ω1) ⊕ (1 ⊗ ω∗1) ⊕ (1 ⊗ ω∗1) ⊕ (ω3 ⊗ 1), m = 6.
(i) (ω1 ⊗ ω1) ⊕ (1 ⊗ ω∗1) ⊕ (1 ⊗ ω∗1) ⊕ (ω3 ⊗ 1) ⊕ (1 ⊗ ω1), m = 6.

13-ii n = m + 1.
(a) (ω1 ⊗ ω1) ⊕ (1 ⊗ ω1) ⊕ (1 ⊗ ω1) ⊕ (1 ⊗ ω1) ⊕ (ω2 ⊗ 1).
(b) (ω1 ⊗ ω1) ⊕ (1 ⊗ ω1) ⊕ (1 ⊗ ω1) ⊕ (1 ⊗ ω1) ⊕ (ω∗2 ⊗ 1), m even.
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(c) (ω1 ⊗ ω1) ⊕ (1 ⊗ ω1) ⊕ (1 ⊗ ω1) ⊕ (1 ⊗ ω1) ⊕ (ω3 ⊗ 1), m = 6.
13-iii n ≥ 1

2m(m − 1).
(a) (ω2 ⊗ ω1) ⊕ (1 ⊗ ω∗1) ⊕ (1 ⊗ ω∗1), m odd.
(b) (ω2 ⊗ ω1) ⊕ (1 ⊗ ω1) ⊕ (1 ⊗ ω∗1) ⊕ (1 ⊗ ω∗1), m odd, n > 1

2m(m − 1).
(c) (ω2 ⊗ ω1) ⊕ (ω∗1 ⊗ 1) ⊕ (1 ⊗ ω∗1) ⊕ (1 ⊗ ω∗1), m = 5.
(d) (ω2⊗ω1)⊕ (1⊗ω1)⊕ (1⊗ω1)⊕ (1⊗ω1), m = 2 j+1, n = 2 j2+ j+1.
(e) (ω2 ⊗ ω1) ⊕ (1 ⊗ ω1) ⊕ (1 ⊗ ω1), m = 2 j, n = 2 j2 + j.
(f) (ω2 ⊗ ω1) ⊕ (ω1 ⊗ 1) ⊕ (1 ⊗ ω1) ⊕ (1 ⊗ ω1), m = 5, n = 10.

14. G = Spm, n ≥ 2m.

(a) (ω1 ⊗ ω1) ⊕ (1 ⊗ ω∗1) ⊕ (1 ⊗ ω∗1).
(b) (ω1 ⊗ ω1) ⊕ (1 ⊗ ω∗1) ⊕ (1 ⊗ ω∗1) ⊕ (ω1 ⊗ 1).
(c) (ω1 ⊗ ω1) ⊕ (1 ⊗ ω∗1) ⊕ (1 ⊗ ω∗1) ⊕ (1 ⊗ ω∗1).
(d) (ω1 ⊗ ω1) ⊕ (1 ⊗ ω∗1) ⊕ (1 ⊗ ω∗1) ⊕ (1 ⊗ ω1), n > 2m.
(e) (ω1 ⊗ ω1) ⊕ (1 ⊗ ω1) ⊕ (1 ⊗ ω∗1) ⊕ (ω1 ⊗ 1), n = 2m.

(f) (ω1 ⊗ ω1) ⊕ (1 ⊗ ω1) ⊕ (1 ⊗ ω∗1) ⊕ (1 ⊗ ω(∗)
1 ), n = 2m.

15. G = Spin10, n ≥ 16.

(a) (halfspinrep ⊗ ω1) ⊕ (1 ⊗ ω∗1) ⊕ (1 ⊗ ω∗1).
(b) (halfspinrep ⊗ ω1) ⊕ (1 ⊗ ω1) ⊕ (1 ⊗ ω∗1) ⊕ (1 ⊗ ω∗1), n ≥ 17.
(c) (halfspinrep ⊗ ω1) ⊕ (1 ⊗ ω1) ⊕ (1 ⊗ ω1) ⊕ (1 ⊗ ω1), n = 17.
(d) (halfspinrep ⊗ ω1) ⊕ (1 ⊗ ω1) ⊕ (1 ⊗ ω1), n = 16.

KII IV 2-simple prehomogeneous modules of type II of the form(
GLk+s1+s2+t1+t2

1 × SLm × SLn,

(ω1 ⊗ 1)⊕s1 ⊕ (ω∗1 ⊗ 1)⊕s2 ⊕ (ω1 ⊗ ω1)⊕k
⊕ (1 ⊗ ω1)⊕t1 ⊕ (1 ⊗ ω∗1)⊕t2

)
,

where n ≥ m ≥ 2 and k ≥ 1.

16. n ≥ km.

16-i n = m. Then k = 1 and 1 ≤ (s1 + t2) + (s2 + t1) ≤ n + 1, where one of
s1 + t2 or s2 + t1 is 0 or 1.

16-ii n = km, k ≥ 2.
(a) t1 = 0, 2 ≤ t2 ≤ n, s2 = 0, s1 + kt2 ≤ m.
(b) t2 = 0, 2 ≤ t1 ≤ n, s1 = 0, s2 + kt1 ≤ m.

16-iii n = km + 1. Then t1 ≥ 3, t2 = s1 = 0, s2 + k(t1 − 1) ≤ m.
16-iv n ≥ km + t1, n > km.

(a) k = 1, t1 = 0, 2 ≤ t2 ≤ n and 1 ≤ (s1 + t2) + s2 ≤ m + 1, where s2 is
0 or 1.

(b) k ≥ 2, t1 = 0, 2 ≤ t2 ≤ n, s2 = 0, s1 + kt2 ≤ m.
(c) k ≥ 1, t1 = 1, 2 ≤ t2 ≤ n, s2 = 0, s1 + kt2 ≤ m.
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17. km > n. These are the cases (17)-(25) in § 5.4 of [17], but to keep
things simple we subsume them under the case KII IV-17 here. See the
following definition 11.5 for the definition of T, ν(k,m,n) and (ai). Also,
we write bi =

ai
ai+1

.

17-i (a) t2 ≥ 1, s2 = t1 = 0, s1 + kt2 ≤ m − b j(n − t2), where (k,m,n) ∈ T
and j = ν(k,m,n).

(b) s2 = t2 = 0 and let p = km+t1−n(< m), q = kp−m(< n), (k, p,m) ∈
T (resp. (k, q, p) ∈ T) and j = ν(k, p,m) (resp. j = (k, q, p)).
i. m ≥ kp, s1 = 0 and t1 ≤ p + 1.

ii. m ≥ kp, s1 = 1 and k + t1 ≤ p + 1.
iii. m ≥ kp, 2 ≤ s1 ≤ m and t1 + ks1 ≤ p.
iv. kp > m, s1 ≥ 1 and t1 + ks1 ≤ p − b j(m − s1).
v. kp > m, p ≥ kq, s1 = 0, t1 = 1 and k ≤ q + 1.

vi. kp > m, p ≥ kq, s1 = 0, 2 ≤ t1 ≤ p and kt1 ≤ q.
vii. kp > m, kq > p, s1 = 0, t1 ≥ 1 and kt1 ≤ q − b j(p − t1).

(c) t2 = 0, s2 ≥ 1, s1 = 0 and let p = km+ t1−n(< m), q = kp+s2−m(<
p), r = kq− p(< q), (k, q, p) ∈ T (resp. (k, q, p) ∈ T, (k, r, q) ∈ T) and
j = ν(k, q, p) (resp. j = ν(k, r, q)).
i. m ≥ kp + s2 and t1 ≤ p + 1.

ii. m = kp + s2 − 1, t1 = 0, 1 and k + t1 ≤ p + 1.
iii. m = kp + 1, m ≥ s2 ≥ 3, t1 = 0 and k(s2 − 1) ≤ p.
iv. m = kp, m ≥ s2 ≥ 2 and ks2 ≤ p.
v. kp > m, p ≥ kq, t1 = 0 and s2 ≤ q + 1.

vi. kp > m, p ≥ kq, t1 = 1 and s2 + kt1 ≤ q + 1.
vii. kp > m, p ≥ kq, p ≥ t1 ≥ 2 and s2 + kt1 ≤ q.

viii. kp > m, kq > p, t1 ≥ 1 and s2 + kt1 ≤ q − b j(p − t1).
ix. kp > m, kq > p, q ≥ kr, t1 = 0, s2 = 1 and k ≤ r + 1.
x. kp > m, kq > p, q ≥ kr, t1 = 0, q ≥ s2 ≥ 2 and ks2 ≤ r.

xi. kp > m, kq > p, kr > q, t1 = 0, s2 ≥ 1 and ks2 ≤ r − b j(q − s2).
17-ii (a) t2 = 1, s2 = 0, t1 ≥ 1 and let p = km + t1 − n − 1, (k, p,m) ∈ T and

j = ν(k, p,m).
i. m ≥ kp and (t1 − 1) + k(k + s1) ≤ p.

ii. kp > m and (t1 − 1) + k(k + s1) ≤ p − b j(m − k − s1).
(b) t2 = 0, s2 ≥ 1, s1 = 1 and let p = km + t1 − n, q = kp + s2 −m − 1,

(k, q, p) ∈ T and j = ν(k, q, p).
i. kp > m, p ≥ kq, (s2 − 1) + k(k + t1) ≤ q.

ii. kp > m, kq > n, (s2 − 1) + k(k + t1) ≤ q − b j(p − k − t1).
17-iii (a) t2 ≥ 0, s2 = 0, t1 = 1, (s1 + k) + k(t2 − 1) ≤ m − b j(n − t2) where

(k,m,n − 1) ∈ T and j = ν(k,m,n − 1).
(b) t2 = 0, s2 = 1, s1 ≥ 2 and let p = km+ t1 − n(< m), (k, p,m− 1) ∈ T

and j = ν(k, p,m − 1).
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i. m ≥ kp and t1 + ks1 ≤ p.
ii. kp > m and t1 + ks1 ≤ p − b j(m − s1).

17-iv (a) t2 = s2 = 1 and let p = km + t1 − n, (k, p,m − 1) ∈ T and j =
ν(k, p,m − 1).
i. m − 1 ≥ kp and (k + t1 − 2) + k(k + s1 − 2) ≤ p.

ii. kp > m and (k + t1 − 2) + k(k + s1 − 2) ≤ p − b j(n − k − s1).

Definition 11.5 Let T be the set of triplets (k,m,n) ∈ N3 satisfying k ≥ 2, n > m ≥ 2
and k + m2 + n2

− 2 > kmn. For (k,m,n) ∈ T there exists a j ∈ N such that
(GLk

1 × SLm × SLn, (ω1 ⊗ω1)⊕k) is transformed to a trivial prehomogeneous module
by j castling transformations. This number j is uniquely determined if we use
only castling transformations decreasing the module’s dimension. This unique
j will be denoted by ν(k,m,n). Thus we obtain a map ν : T → N. For example,
ν(k,m,n) = 0 if and only if mk ≤ n. We define (ai) to be the sequence

a−1 = −1, a0 = 0, ai = kai−1 − ai−2 for i > 0.

Remark 11.6 There are some cases of the form KII IV belonging neither to KII-16
nor KII-17, but to KII I instead. These are the cases (4.1-i), (4.1-ii), (4.7) and (4.8)
from section 4.2 in Kimura et al. [17]. We will list them here for the sake of
completeness.

1. (GL1+s+t
1 × SLm × SLn, (ω1 ⊗ 1)(∗)⊕s

⊕ (ω1 ⊗ ω1) ⊕ (1 ⊗ (ω∗1 ⊕ ω
⊕t−1
1 )))

with k = 1, t ≥ 1, n ≥ m + t − 1 and s ≤ m. This is the case KII I-3.

2. (GLk+s+t
1 × SLm × SLn, ((ω⊕s−1

1 ⊕ ω(∗)
1 ) ⊗ 1) ⊕ (ω1 ⊗ ω1)⊕k

⊕ (1 ⊗ (ω∗1 ⊕ ω
⊕t−1
1 )))

with k ≥ 2, t ≥ 1, n ≥ km + t − 1 and s + k ≤ m + 1. This is the case KII I-3.

3. (GLk+s+t
1 × SLm × SLn, (ω

(∗)
1 ⊗ 1)⊕s

⊕ (ω1 ⊗ ω1)⊕k
⊕ (1 ⊗ ω1)⊕t)

with n ≥ km+ t, and (GLs
1×SLm, ω

(∗)⊕s
1 ) is a simple prehomogeneous module.

This is the case KII I-1.

4. (GLk+s+t
1 × SLm × SLn, (ω

(∗)
1 ⊗ 1)⊕s

⊕ (ω1 ⊗ ω1)⊕k
⊕ (1 ⊗ ω1)⊕t)

with t ≥ 3, n = km + t − 1, and (GLk+s
1 × SLm, ω∗⊕k

1 ⊕ ω(∗)⊕s
1 ) is a simple pre-

homogeneous module. This is the case KII I-2.
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Part IV

Étale Representations of Algebraic
Groups

Special modules were introduced in chapter 8. In the terminology of prehomo-
geneous modules, a module (G, %,V) is special if it is prehomogeneous and if
dim(G) = dim(V), or equivalently, if % : G→ GL(V) is a rational étale representa-
tion.

Certain classification results for special modules are immediately obtained from
the classification of prehomogeneous modules. For example, all irreducible spe-
cial modules must appear in theorem 11.1, see also proposition 13.2. Further,
all 1-simple special modules must appear in theorem 11.1 (if irreducible) or in
theorem 11.2 (if non-irreducible), see also propositions 13.2 and 13.3.

In the following chapters we will use our knowledge on reductive prehomoge-
neous modules to derive some general results on étale representations and present
some examples of special modules. We assume k to be algebraically closed.

12 Some Conditions for (Non-)Speciality

We will begin our investigation of special modules by stating some results on
which modules cannot be special modules and by analysing the structure of
special modules with one-dimensional centre.

12.1 Non-Regular Prehomogeneous Modules

First, we note that non-regular prehomogeneous modules are not special modules.

Lemma 12.1 If (GLk
1 × G, %,V) is a reductive special module, then it is a regular

prehomogeneous module.

P: The generic isotropy subgroup of a special module is finite, hence reduc-
tive. By theorem 10.28 the module is regular. �

This lemma does not imply that any irreducible component of a special module
must be regular. In fact, it will follow from theorem 12.14 that for groups with one-
dimensional centre, a special module containing a regular irreducible component
must be irreducible itself.
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12.2 Groups with Trivial Character Group

Oliver Baues suggested the following proposition:

Proposition 12.2 Let G be an algebraic group with X(G) = {1}. Then G does not
admit a rational étale representation.

P: Assume that % : G → V is an étale representation. Let n = dim(G) =
dim(V) > 0. By proposition 10.20, the prehomogeneous module (G, %,V) has a
relative invariant f of degree n, so f is not constant. As X(G) = {1}, the associated
character χ of f must be χ = 1, which means that f is an absolute invariant. But
this is a contradiction to the fact that prehomogeneous modules do not admit
non-constant absolute invariants by proposition 10.2. �

We conclude that semisimple groups do not admit étale representations.

Corollary 12.3 There is no rational étale representation for a semisimple algebraic
group G.

P: We show that X(G) = {1} and use proposition 12.2. If G is not connected,
replace it by its connected component G◦, which is also semisimple.

Assume that χ ∈ X(G) is a non-trivial character. Let g = Lie(G). As G is connected,
the infinitesimal character dχ : g → k is also non-trivial, so the kernel of dχ is
an ideal of codimension 1. This is a contradiction, as any non-trivial ideal of g is
a direct sum of some of the simple ideals of g, so its dimension must differ from
dim(g) by at least dim(sl2) = 3. �

A different proof can be found in corollary 3.5 in Baues [2]. Is uses the fact that
the open orbit must be closed so that G acts transitively on V, which contradicts
the fact that 0 is a fixed point.

Corollary 12.4 There is no rational étale representation for a unipotent algebraic
group U.

P: Any morphism of algebraic groups maps unipotent elements to unipotent
elements (see remark 10.5 in Milne [25]). The only unipotent element in k× is 1.
So for any χ ∈ X(U) we have χ(U) = {1}, hence X(U) = {1}. By proposition 12.2,
there is no étale representation for U. �

12.3 Reductive Groups with Centre of Dimension 1

In this section we investigate special modules for algebraic groups GL1×G, where
G is semisimple.
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Consider (GL1 ×G, %1 ⊕ . . .⊕ %k,V1 ⊕ . . .⊕Vk), where the (%i,Vi) are the irreducible
components of the module. By corollary 9.12, this module is special if and only if
(GL1 ×G, %1,V1) is an irreducible prehomogeneous module with generic isotropy
subgroup H, and if (H, %2|H⊕. . .⊕%k|H,V2⊕. . .⊕Vk) is a special module. Then (GL1×

G, %1,V1) must appear in theorem 11.1, and we also get all possible candidates for
H from this theorem.

By looking at theorem 11.1, we immediately see that several regular irreducible
modules cannot appear as irreducible components of a special module, because
their generic isotropy subgroups are semisimple and thus do not admit any special
modules by corollary 12.3.

Remark 12.5 The regular irreducible modules with non-semisimple isotropy sub-
group H , {1} are

• SK I-2 for n = 2 with H � SO2.

• SK I-12 with H � GL1 ×GL1.

• SK I-15 for n = 3 and m = 1 with H � SO2.

• SK I-15 for n = 4 and m = 2 with H � SO2 × SO2.

• SK I-17 with H � SO2 × SL3.

• SK I-26 with H � GL2.

Even for these modules we can show that they cannot appear as components
of a special module with centre GL1. Note that SO2 � GL1, so it does not seem
plausible to distinguish between GL1 and SO2 in this list unless GL1 was the centre
of the reductive group (which it is not in these cases). But we adopt the notation
from Sato, Kimura [28] in order to avoid confusion when using this reference.

The next lemma will be used frequently. It is based on lemma 8 on p. 38 of Sato,
Kimura [28].

Lemma 12.6 Let G be an algebraic group and (GL1 × G, µ ⊗ %,V) a prehomoge-
neous module, such that (G, %,V) is not prehomogeneous. Then the connected
component H of the generic isotropy subgroup of GL1 × G is contained in G.

P: See lemma 9.19. �

Corollary 12.7 Let G be a semisimple group with irreducible representations
%1, . . . , %k, and let (GLk

1 × G, (µ ⊗ %1) ⊕ . . . ⊕ (µ ⊗ %k),V1 ⊕ . . . ⊕ Vk) be a preho-
mogeneous module, such that (GLk−1

1 ×G, (µ⊗%1)⊕ . . .⊕ (µ⊗%k−1),V1⊕ . . .⊕Vk−1) is
also prehomogeneous, but (GLk−1

1 ×G, (µ⊗ %1)⊕ . . .⊕ (µ⊗ %k−1)⊕ %k,V1 ⊕ . . .⊕Vk) is
not. Then the connected component H of the generic isotropy subgroup of GLk

1×G
is contained in G.
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P: This follows from lemma 12.6, using the fact the fact that only one scalar
multiplication acts on each irreducible component (%i,Vi). �

Corollary 12.8 Let G be a semisimple algebraic group and (GL1 × G, µ ⊗ %,V)
a regular prehomogeneous module. Then the connected component H of the
generic isotropy subgroup is contained in G.

P: Assume (G, %|G,V) is prehomogeneous. As there are only trivial characters
for G, any relative invariant is absolute and thus constant. So there are no non-
constant relative invariants for the action GL1×G, which contradicts the regularity
of (GL1 × G, %,V).

So (G, %|G,V) is not prehomogeneous and lemma 12.6 concludes the proof. �

Lemma 12.9 Let g be a semisimple Lie algebra and dσ : g → gl(V) a finite-
dimensional representation of g. Then dσ(g) ⊆ sl(V).

P: As g is semisimple, so is its image dσ(g). This implies that any X ∈ dσ(g)
can be written as X = [Y,Z] for some Y,Z ∈ dσ(g). So we have tr(X) = tr([Y,Z]) = 0,
or X ∈ sl(V). �

Proposition 12.10 Let G be a semisimple algebraic group and let (GL1×G, %,V) be
a regular irreducible prehomogeneous module whose connected component H of
the generic isotropy subgroup is abelian. Then any module (GL1×G, %⊕σ,V⊕W)
with dim(W) > 0 is not a prehomogeneous module (hence not special).

P: In order to obtain a special module, the module (H, σ|H,W) must be special
by corollary 9.12. We use Lie algebras to show that this is not the case.

Let g = Lie(G) and h = Lie(H). From corollary 12.8 we have h ⊆ g. By lemma 12.9 it
follows that dσ(h) ⊆ dσ(g) is contained in sl(W). As dσ(h) is abelian, it must already
be contained in a Cartan subalgebra of sl(W), which is of dimension dim(W) − 1
(see definition 4.39 and theorem 4.43). In particular, dim(dσ(h)) < dim(W), so the
module (H, σ|H,W) is not prehomogeneous (hence not special). �

With the help of this proposition, we can exclude the regular irreducible prehomo-
geneous modules with abelian isotropy subgroups from appearing as components
of a special module with one-dimensional centre:

Corollary 12.11 The modules SK I-2, SK I-12 and SK I-15 do not appear as irre-
ducible components of a special module with centre GL1.

As for SK I-12 the subgroup H is isomorphic to GL1 ×GL1, one might be tempted
to think that one of the two factors is the centre GL1 of the reductive group. But
by the proof of proposition 12.10 (or by looking at the explicit form of Lie(H) on
p. 99 of Sato, Kimura [28]), we see that this is not the case.

It remains to be shown that SK I-17 and SK I-26 do not appear as irreducible
components of a special module with one-dimensional centre.
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Lemma 12.12 Let G be a semisimple algebraic group and let (GL1 × G, %,V) be
a regular irreducible prehomogeneous module, and H the connected component
of its generic isotropy subgroup. If (GL1 × G, % ⊕ σ,V ⊕W) with dim(W) > 0 is
prehomogeneous, then (G, σ|G,W) is a non-regular prehomogeneous module.

P: As (GL1×G, %,V) is regular, the module (G, %|G,V) is not prehomogeneous.
Now corollary 12.8 tells us that H ⊆ G, and by proposition 9.11, (H, σ|H,W) is
prehomogeneous, and so is (G, σ|G,W). As G is semisimple, the latter module is
not regular. �

Proposition 12.13 The modules SK I-17 (GL1 × SL2 × Spin7, ω1 ⊗ spinrep,k2
⊗V8)

and SK I-26 (GL1 × SL2 × G2, ω1 ⊗ ω2,k2
⊗ V7) cannot appear as an irreducible

component of a special module with centre GL1.

P: Let G stand for either SL2 × Spin7 or SL2 ×G2.

Both modules SK I-17 and SK I-26 are not special modules themselves, so any
special module would have to be non-irreducible, say (% ⊕ σ,V ⊕W) with regular
irreducible (%,V). By lemma 12.12, (σ|G,W) is a non-regular prehomogeneous
module for G and must be (equivalent to) one of the modules in theorem 11.1 or
theorem 11.3. But in these theorems there are no non-regular modules for G. �

From corollary 12.11, proposition 12.13 and the fact that any regular irreducible
prehomogeneous module other than those in remark 12.5 has a semisimple generic
isotropy subgroup, we derive the following theorem:

Theorem 12.14 Let k ≥ 2 and let (GL1 × G, %1 ⊕ . . . ⊕ %k,V1 ⊕ . . . ⊕ Vk) be a special
module for a semisimple algebraic group G, where the (%i,Vi) are the irreducible
components. Then any module (GL1 ×G, %i,Vi) is a non-regular prehomogeneous
module (in particular, (G, %i|G,Vi) is prehomogeneous).

We give a second proof of this theorem using the proof of lemma 3.7 in Baues [2].

S : Denote the special module by (GL1 × G, %,V) and let W be a non-
trivial G-submodule and U its complement in V.

Assume dim(W) = dim(G). Then dim(U) = 1, so the action of G on U is trivial
by the semisimplicity of G. It follows that G has an open orbit on W, which
contradicts the fact that semisimple groups do not admit special modules. So
dim(W) < dim(G) must hold. By proposition 8.4, the submodule W must be
contained in the zero fiber of the quotient map. Consider h ∈ k[W]G. Then h is
also an element of k[V]G and by proposition 8.2 we have h = f0 + c with c ∈ k
and f0 ∈ 〈 f 〉, where f is the generator of k[V]G. As any w ∈ W is contained in
the zero fiber, we have h(w) = f0(w) + c = c, i.e. h = c and thus k[W]G = k. Now
proposition 5.9 implies

dim(W) = max{dim(%(G).w) | w ∈W},
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so W is a prehomogeneous module for G.

As G is semisimple, any non-constant relative invariant of GL1×G on W is an abso-
lute invariant for G on W. Then k[W]G = k implies that there are no non-constant
relative invariants for GL1 × G on W, so W is a non-regular prehomogeneous
module. �

Remark 12.15 Note that the second proof of theorem 12.14 implies that not only
the irreducible components, but every proper submodule of a special module is
non-regular for the action of G.

13 Examples of Special Modules

A special module is prehomogeneous, so in order to find new examples of special
modules, we shall take a look at the classification of prehomogeneous modules
in chapter 11 and try to find modules with dim(G) − dim(V) = 0 or equivalently,
modules whose generic isotropy subgroup is finite.

By lemma 12.1 we can restrict our search to the regular prehomogeneous modules.

Remark 13.1 In the papers by Kimura et al. [15], [16], [17], the prehomoge-
neous modules are always stated with one scalar multiplication acting on each
irreducible component, i.e. (GLk

1 × G, %1 ⊕ . . . ⊕ %k), and in this case we do not
explicitely state the scalar multiplications, as it is understood that each %i stands
for µ⊗ %i. But in some cases, we do not need an independent scalar multiplication
on each component to obtain a prehomogeneous module. Consider for example
the prehomogeneous module Ks I-2 from theorem 11.2, (GLn

1 × SLn, ω⊕n
1 ). For ω⊕n

1
we need only the operation of SLn and one scalar multiplication GL1 acting on all
components to obtain a prehomogeneous module, i.e. (GL1 × SLn, µ ⊗ ω⊕n

1 ). It is
in this sense that we say we “replace” GLk

1 × SLn by GL1 × SLn, or that we say we
“discard” n − 1 scalar multiplications. We will denote the module by the same
identifier as the original module. For this particular example, we can even write
GLn instead of GL1 × SLn. Even though these groups are not the same (they differ
by a finite subgroup), their linear representations coincide when GL1 acts by scalar
multiplication on the whole module. Of course, we do not write µ ⊗ ω1 for GLn,
as for this group the scalar multiplication is already contained in the standard
representation ω1. In the following, whenever we obtain a special module by re-
placing a group GLk

1×G by a group GL j
1×G with fewer scalar multiplications, we

shall explicitely state on which irreducible component a scalar multiplication acts.
However, we shall not state the scalar multiplications explicitely when proving
that a module is not special for dimension reasons, or when we are considering
some unspecified module (GL j

1 × G, %).
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13.1 Special Modules from SK, Ks and KI

Finding the special modules in theorem 11.1 (SK), theorem 11.2 (Ks) and theorem
11.3 (KI) is rather easy, as the generic isotropy subgroup is known in each case.
Thus we can just pick out the modules with G◦v � {1} from these theorems.

Proposition 13.2 The following irreducible reduced prehomogeneous modules
are special modules:

• SK I-4: (GL2, 3ω1, Sym3
k

2).

• SK I-8: (SL3 ×GL2, 2ω1 ⊗ ω1, Sym2
k

3
⊗ k

2).

• SK I-11: (SL5 ×GL4, ω2 ⊗ ω1,
∧2
k

5
⊗ k

4).

Proposition 13.3 The following non-irreducible simple prehomogeneous mod-
ules are special modules:

• Ks I-1 for n = 2: This is equivalent to Ks I-4 for n = 2.

• Ks I-2: (GL1 × SLn, µ ⊗ ω⊕n
1 , (k

n)⊕n).

• Ks I-3: (GLn+1
1 × SLn, ω⊕n+1

1 , (kn)⊕n+1).

• Ks I-4: (GLn+1
1 × SLn, ω⊕n

1 ⊕ ω
∗

1, (k
n)⊕n
⊕ k

n∗).

• Ks I-11 for n = 2: (GL2
1 × SL2, 2ω1 ⊕ ω1, Sym2

k
2
⊗ k

2).

• Ks I-12 for n = 2: This is equivalent to Ks I-11 for n = 2.

• Ks I-20 for n = 1: This is equivalent to Ks I-2 for n = 2.

Corollary 13.4 If (GLk
1×G, %,V) for k ≥ 1 and a simple group G is a special module,

then G = SLn for some n.

Proposition 13.5 The following 2-simple prehomogeneous modules of type I are
special modules:

• KI I-1: (GL2
1 × SL4 × SL2, (ω2 ⊗ ω1) ⊕ (ω1 ⊗ ω1), (

∧2
k

4
⊗ k

2) ⊕ (k4
⊗ k

2)).

• KI I-2: (GL2
1 × SL4 × SL2, (ω2 ⊗ω1)⊕ (ω1 ⊗ 1)⊕ (1⊗ω1), (

∧2
k

4
⊗k

2)⊕k4
⊕k

2).

• KI I-6: (GL3
1×SL5×SL2, (ω2⊗ω1)⊕ (ω∗1⊗1)⊕ (ω(∗)

1 ⊗1), (
∧2
k

5
⊗k

2)⊕k5∗
⊕k

5(∗)).

• KI I-16: (GL2
1 × Sp2 × SL3, (ω1 ⊗ω1) ⊕ (ω2 ⊗ 1) ⊕ (1 ⊗ω∗1), (k4

⊗ k
3) ⊕V5

⊕ k
3).

• KI I-18: (GL3
1 × Sp2 × SL2, (ω1 ⊗ ω1) ⊕ (ω1 ⊗ 1) ⊕ (1 ⊗ ω1), (k4

⊗ k
2) ⊕ k4

⊕ k
2).

• KI I-19: (GL3
1 × Sp2 × SL4, (ω1 ⊗ ω1) ⊕ (ω1 ⊗ 1) ⊕ (1 ⊗ ω∗1), (k4

⊗ k
4) ⊕ k4

⊕ k
4).
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13.2 Special Modules for KII

Finding special modules for the case KII is not as easy as in the previous cases,
as neither the isotropy subgroup nor the regularity is given explicitely in the
classification by Kimura et al. [17].

Before proceeding, we prove a lemma which will come in handy a few times.

Lemma 13.6 Let n ≥ 2.

1. The generic isotropy subgroup of (GL2
1 × SLn, ω1 ⊕ ω∗1) is

{ (
det(A),det(A)−1,

(
det(A)−1 0

0 A

)) ∣∣∣ A ∈ GLn−1

}
� GLn−1.

2. Consider the module(
GLt

1 × G × SLn,

(%1 ⊗ ω1) ⊕ . . . ⊕ (%r ⊗ ω1)
⊕ (σ1 ⊗ 1) ⊕ . . . ⊕ (σs ⊗ 1)

⊕ (µ ⊗ 1 ⊗ ω⊕t−1
1 ) ⊕ (µ ⊗ 1 ⊗ ω∗1)

)
where the %i and σ j are any representations of G and t ≥ 2. This module is
prehomogeneous (resp. special) if and only if(

G ×GLn−1,

(%1 ⊗ ω1) ⊕ . . . ⊕ (%r ⊗ ω1)
⊕ (%1 ⊗ 1) ⊕ . . . ⊕ (%r ⊗ 1) ⊕ (σ1 ⊗ 1) ⊕ . . . ⊕ (σs ⊗ 1)

⊕ (1 ⊗ ω⊕t−2
1 )

)
is prehomogeneous (resp. special).

P:

1. See theorem 11.2, Ks I-1. Identify kn
⊕ k

n∗ with k2n and consider the action
on the generic point (u1,u1), where u1 is the first unit vector in kn. For a
group element g = (λ1, λ2,B) to fix (u1,u1), we must have

B =
(
det(A)−1 0

0 A

)
, λ1 = det(A), λ2 = det(A)−1.

2. Let M denote the module. We write ω[n]
1 and ω[n−1]

1 to distinguish between
the standard representations of GL1 × SLn on kn and that of GLn−1 on kn−1.
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First, we decompose the representation by extracting a summandω[n]
1 ⊕ω

[n]∗
1 :

1 ⊗ (ω[n]
1 ⊕ ω

[n]∗
1 )

⊕

(
(%1 ⊗ ω

[n]
1 ) ⊕ . . . ⊕ (%r ⊗ ω

[n]
1 ) ⊕ (σ1 ⊗ 1) ⊕ . . . ⊕ (σs ⊗ 1) ⊕ (1 ⊗ ω[n]

1 )⊕t−2︸                                                                                     ︷︷                                                                                     ︸
=:ϕ0

)
.

From part 1 we get that the generic isotropy subgroup on the 1⊗ (ω[n]
1 ⊕ω

[n]∗
1 )-

part is H0 = GLt−2
1 × G × GLn−1. So by proposition 9.11, the module M is

prehomogeneous if and only if (H0, ϕ0|H0) is a prehomogeneous module.
Under the action of GL1 ×GLn−1 ⊂ H0, each module (ω[n]

1 ,k
n) decomposes to

(µ ⊕ ω[n−1]
1 , k ⊕ kn−1),

and each %i ⊗ ω
[n]
1 decomposes to

%i ⊗ (1 ⊕ ω[n−1]
1 ) = (%i ⊗ 1) ⊕ (%i ⊗ ω

[n−1]
1 ),

and ϕ0 decomposes to ϕ ⊕ (1 ⊗ µ)⊕t−2 with

ϕ = (%1 ⊗ ω
[n−1]
1 ) ⊕ . . . ⊕ (%r ⊗ ω

[n−1]
1 )

⊕ (%1 ⊗ 1) ⊕ . . . ⊕ (%r ⊗ 1) ⊕ (σ1 ⊗ 1) ⊕ . . . ⊕ (σs ⊗ 1)

⊕ (1 ⊗ ω[n−1]
1 )⊕t−2.

The generic isotropy subgroup on the (1⊗µ)⊕t−2-part is H = G×GLn−1, so by
proposition 9.11, (H, ϕ|H) is prehomogeneous if and only if (H0, ϕ0|H0) is pre-
homogeneous, which again is the case if and only if M is prehomogeneous.
Returning to our usual notation (i.e. writing ω1 instead of ω[n−1]

1 ), we have
our result.

By corollary 9.12, we can replace “prehomogeneous” by “special” through-
out the proof. �

13.2.1 The case KII I

We assume dim(%i) ≥ 2 for all representations %i of the algebraic group G.

For each of the prehomogeneous modules KII I-1, KII I-2 and KII I-3 we have
a component % ⊗ 1, on which G acts, and a component σ ⊗ ω1, on which both
G and SLn act. Additionally, we have a scalar multiplication GL1 acting on each
irreducible component. We will investigate whether special modules can be found
from these modules, if necessary after discarding some of the GL1. First, we prove
a lemma that will simplify the investigation of KII I-1 and KII I-3.

Lemma 13.7 Let n ≥ 2 and let (GL j
1 ×G, %,W) be a prehomogeneous module for a

simple algebraic group G, such that (GL j−1
1 × G, %,W) is not prehomogeneous (i.e.

j is “minimal”). If(
GL j

1 × G × SLn, (σ ⊗ ω1) ⊕ (% ⊗ 1), (V ⊗ kn) ⊕W
)
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is a module with dim(V) = n and GL j
1 acting by scalar multiplications on W and

trivially on V ⊗ kn, then it is not a prehomogeneous module.

P: Let H be the connected component of the generic isotropy subgroup of
(GL j

1 × G, %,W). By lemma 12.6, we have H ⊆ G. We then have

dσ(Lie(H)) ⊆ dσ(Lie(G)) ⊆ sl(V)

by lemma 12.9, i.e. σ(H) ⊆ SL(V) � SLn.

If we identify V ⊗ kn with Matn, the action of (h, g) ∈ H × SLn is given by σ(h)Xg>

for X ∈Matn. As σ(h) ∈ SLn,

det(σ(h)Xg>) = det(σ(h)) det(X) det(g>) = det(X)

is a non-constant absolute invariant, so the module(
H × SLn, σ|H ⊗ ω1, V ⊗ kn

)
is not prehomogeneous. By proposition 9.11, the proof is complete. �

Lemma 13.7 tells us that we cannot “abuse” the isotropy subgroup H of a simple
group to play the role of GL1 in the action on Matn.

Proposition 13.8 Consider KII I-1 from theorem 11.4, i.e.(
GLs+l

1 × G × SLn,

(σ1 ⊗ ω1) ⊕ . . . ⊕ (σs ⊗ ω1) ⊕ (%1 ⊗ 1) ⊕ . . . ⊕ (%l ⊗ 1)
)
,

for any representation σ1 ⊕ . . . ⊕ σs of a simple group G and n ≥
∑s

i=1 dim(σi).
This is not a special module for s , 1. But when we replace GLs+l

1 × G × SLn by
GL j

1 × G ×GLn for some 0 ≤ j ≤ l, the module(
GL j

1 × G ×GLn,

(σ1 ⊗ ω1) ⊕ . . . ⊕ (σs ⊗ ω1) ⊕ (%1 ⊗ 1) ⊕ . . . ⊕ (%l ⊗ 1)
)
,

is special if and only if
∑s

i=1 dim(σi) = n and (GL j
1 × G, %1 ⊕ . . . ⊕ %l) is a special

module (of the form Ks, cf. theorem 11.2). Note that this includes the original
module for s = 1. These are the only special modules obtained from KII I-1.

P: We proceed in several steps.

• Assume the module to be special. Then by lemma 12.1, the module must be
regular, and by proposition 10.23, this is the case if and only if n =

∑
dim(σi)

and (GLl
1×G, %1⊕. . .⊕%l) is a regular prehomogeneous module. Furthermore,
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(GLl
1 × G, %1 ⊕ . . . ⊕ %l) must be special, so we have l + dim(G) =

∑
dim(%i)

and hence

dim(GLl+s
1 ) + dim(G) + dim(SLn) = l + s + dim(G) + (n2

− 1)

= n ·
(∑

dim(σi)
)
+

∑
dim(%i)

= n2 +
∑

dim(%i)

= n2 + dim(G) + l,

which is equivalent to s = 1.

• If we consider GLl
1 × G × GLn instead of GLs+l

1 × G × SLn, then by the same
reasoning we have that(

GL1+l
1 × G × SLn, (σ1 ⊗ ω1) ⊕ . . . ⊕ (σs ⊗ ω1) ⊕ (%1 ⊗ 1) ⊕ . . . ⊕ (%l ⊗ 1)

)
is special if and only if n =

∑
dim(σi) and (GLl

1 × G, %1 ⊕ . . . ⊕ %l) is special.

• It remains to be shown that we cannot replace the group by GLl
1 × G × SLn,

with GLl
1 acting only on the %1 ⊕ . . . ⊕ %l-part (we assume that all l factors

GL1 are necessary for prehomogeneity, otherwise see the remark at the end
of the proof). For n = 1 this follows from the fact that semisimple groups
have trivial characters only. For n ≥ 2, this will follow immediately from
lemma 13.7 once we have shown that we do not obtain special modules for∑

dim(σi) < n in this case. So assume n ≥ 2, p :=
∑

dim(σi) < n and let h be
the dimension of the generic isotropy subgroup of (GLl

1 ×G, %1 ⊕ . . .⊕ %l). By
corollary 9.12,

h + (n2
− 1) − np = 0

should hold, which is equivalent to

0 = h − 1 + n(n − p︸︷︷︸
≥1

) ≥ n − 1 > 0,

an obvious contradiction.

If (GL j
1 × G, %1 ⊕ . . . ⊕ %l) is a special module for 1 ≤ j < l, we can replace GLl

1 by
GL j

1 in the above arguments. �

Proposition 13.9 Consider KII I-2 from theorem 11.4, i.e.(
GLl+t

1 × G × SLn,

(%1 ⊗ ω1) ⊕ . . . ⊕ (%k ⊗ ω1) ⊕ (%∗k+1 ⊗ 1) ⊕ . . . ⊕ (%∗l ⊗ 1) ⊕ (1 ⊗ ω⊕t
1 )

)
with t ≥ 0, 1 ≤ k ≤ l and n = t− 1+

∑k
i=1 dim(%i). This module is special if and only

if (
GLl

1 × G, %1 ⊕ . . . ⊕ %k ⊕ %k+1 ⊕ . . . ⊕ %l

)



114 13 Examples of Special Modules

is a special module (of the form Ks, cf. theorem 11.2) for the simple group G. If
(GL j

1 × G, %1 ⊕ . . . ⊕ %l) is special for 1 ≤ j < l, replace GLl
1 by GL j

1 in the former
statement if at least one scalar multiplication acts on the whole module.

P: Set σ = %∗k+1 ⊕ . . . ⊕ %
∗

l , % = %1 ⊕ . . . ⊕ %k ⊕ 1⊕t and m = t +
∑k

i=1 dim(%i). As
GLl+t

1 ×G is reductive, the proposition follows immediately from the isomorphism
of the generic isotropy subgroups in lemma 9.25. �

Proposition 13.10 Consider KII I-3 from theorem 11.4, i.e.(
GLl+t

1 × G × SLn,

(%1 ⊗ ω1) ⊕ . . . ⊕ (%k ⊗ ω1) ⊕ (%k+1 ⊗ 1) ⊕ . . . ⊕ (%l ⊗ 1) ⊕ (1 ⊗ ω⊕t−1
1 ) ⊕ (1 ⊗ ω∗1)

)
with t ≥ 1, 1 ≤ k ≤ l and n ≥ t− 1+

∑k
i=1 dim(%i). This module is special if and only

if (
GLl

1 × G, %1 ⊕ . . . ⊕ %k ⊕ %k+1 ⊕ . . . ⊕ %l

)
is a special module (of the form Ks, cf. theorem 11.2) and n = t − 1 +

∑k
i=1 dim(%i).

If (GL j
1 × G, %1 ⊕ . . . ⊕ %l) is special for 1 ≤ j < l, replace GLl

1 by GL j
1 in the former

statement.

P: Set p =
∑k

i=1 dim(%i) and q =
∑l

i=k+1 dim(%i). First, we show that n = t−1+p
must hold for any special module obtained from KII I-3, even if we assumed fewer
than t scalar multiplications acting on the 1⊗ω(∗)

1 -parts. Assume t− 1+ p < n. We
have l + dim(G) − q ≥ p ≥ 2 because of prehomogeneity and because dim(%i) ≥ 2.
Hence,

l + dim(G) + dim(SLn) − np − q − n = l + dim(G) + n2
− 1 − np − q − n

= (l + dim(G) − q︸            ︷︷            ︸
≥2

) − 1 + n(n − (t − 1 + p)︸           ︷︷           ︸
>0

) − n

≥ 1 − 0 > 0.

So, for any special module, n = t − 1 + p must hold.

We treat the cases t = 1 and t > 1 separately.

• Let t = 1. As p = n, it follows by dimension reasons that the module is
special if and only if (GLl

1 × G, %1 ⊕ . . . ⊕ %l) is special.

• For t > 1, consider the operation of GL2
1 × SLn via ω1 ⊕ ω∗1. Then by lemma

13.6, the module is special if and only if(
GLl

1 × G ×GLn−1,

(%1 ⊗ ω1) ⊕ . . . ⊕ (%k ⊗ ω1) ⊕ (%1 ⊗ 1) ⊕ . . . ⊕ (%l ⊗ 1) ⊕ (1 ⊗ ω⊕t−2
1 )

)
(∗)
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is a special module. In particular, the latter must be regular. By proposition
10.23, it is regular if and only if n − 1 = t − 2 + p and (GLl

1 × G, %1 ⊕ . . . ⊕ %l)
is regular. Then, for dimension reasons, the module is special if and only if
(GLl

1 × G, %1 ⊕ . . . ⊕ %l) is special.

Note that by lemma 13.7, we cannot replace GLn−1 by SLn−1 in (∗) (or equi-
valently GLt

1 by GLt−1
1 in the original module), because the action of GLl

1 is
already determined by the action on the (%1 ⊕ . . . ⊕ %l) ⊗ 1-part (where we
assume that all l factors GL1 are necessary for prehomogeneity, otherwise
see the remark below).

If (GL j
1 × G, %1 ⊕ . . . ⊕ %l) is a special module for 1 ≤ j < l, we can replace GLl

1 by
GL j

1 in the above arguments. �

Remark 13.11 Note that proposition 13.10 leaves open the case for t = 1 if there
is no factor GL1 acting on the 1 ⊗ ω∗1-part.

13.2.2 The cases KII II and KII III

The following lemma tells us that we do not have to consider each module from
KII II (resp. KII III), as some modules cannot be special modules, because then
a module of strictly greater dimension would be prehomogeneous, which is im-
possible. For example, the module KII II-4-i (a) cannot be special, as it is a proper
submodule of KII II-4-i (b).

Lemma 13.12 Let (GL1×G, %V ⊕ %W,V⊕W) be a prehomogeneous module, where
(%W,W) is an irreducible submodule of dimension ≥ 2.

1. (G, %V,V) is not a special module.

2. If (%U,U) is an irreducible GL1 × G-module with dim(U) < dim(W), then
(GL1 × G, %V ⊕ %U,V ⊕U) is not a special module.

P:

1. We have 1 + dim(G) ≥ dim(V) + dim(W) and hence

dim(G) ≥ dim(V) + (dim(W) − 1) ≥ dim(V) + 1 > dim(V).

2. We have 1 + dim(G) ≥ dim(V) + dim(W) > dim(V) + dim(U). �

In the cases KII II and KII III of theorem 11.4, the groups depend on integer
parameters m and n, with n > m in each case. We shall now investigate if the cases
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4. to 15. of theorem 11.4 admit special modules for certain values of m and n. To
this end, we introduce the function

δ(m,n) = dim(G) − dim(V),

where dim(G) and dim(V) depend on the parameters m and n. In each case, δwill
be a quadratic polynomial function in m and n. When δ(m,n) = 0, the module is
special. As n > m ≥ 2 in each case, we only have to consider (m,n)-pairs (indicated
by the black dots) lying in the shaded area:

n

m

2

1 2

m = n

3

If we fix m and pretend that n is a real variable, then δ(m,n) is a parabola in n,
which we denote by δ(n). As the modules are assumed to be prehomogeneous,
δ(n) will take only non-negative values for all n ∈ N with n > m. Because a
parabola can have at most two zeros, it must be positive for almost all n ∈ Nwith
n > m and thus strictly increasing for n→∞. In order to determine whether there
exist integer values n > m with δ(m,n) = 0, we define

δ′(n) =
∂
∂n
δ(m,n)

and proceed as follows:

1. For fixed m, compute the minimum point n0 ∈ R of the parabola δ(n), i.e. n0

with δ′(n0) = 0.

2. If n0 ∈ N and n0 ≤ m, check if δ(m + 1) = 0, because in this case we have
0 ≤ δ(m+ 1) < δ(m+ k) for all k ∈ N, so n = m+ 1 is the only possible integer
solution for δ(n) = 0, if one exists.

3. If n0 ∈ N and n0 > m, check if δ(n0) = 0, because in this case we have 0 ≤ δ(n0)
and δ(n0 − k) > δ(n0) < δ(n0 + k) for all k ∈ N, so n = n0 is the only possible
integer solution for δ(n) = 0, if one exists.
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4. If n0 < N and bn0c > m, check if δ(bn0c) = 0 and if δ(dn0e) = 0.

5. If n0 < N and dn0e ≤ m + 1, check if δ(m + 1) = 0.

6. In some cases, we have to take into account additional constraints on m or
n, e.g. that that m or n are required to be even (resp. odd). In these cases, a
solution for δ(n) = 0 is only valid if the additional constraints are met.

We now apply these tests to the modules of the form KII II and KII III, but exclude
some cases a priori by lemma 13.12. We do not check if some modules are special
with fewer scalar multiplications than the number of irreducible components.

4. 4-i (a) Not special by lemma 13.12.
(b) δ′(n) = n −m − 1

2 and δ(m,n) = 0 for m = 2, n = 3.
(c) Not special by lemma 13.12.
(d) Not special by lemma 13.12.
(e) Not special by lemma 13.12.
(f) Not special by lemma 13.12.
(g) δ′(n) = n −m − 1

2 and δ(m,n) = 0 for m = 2, n = 3.

4-ii (a) δ′(n) = 2n − 2m − 1 and δ(m,n) = 0 for m = 3, n = 4.
(b) Not special by lemma 13.12.
(c) Not special by lemma 13.12.
(d) Not special by lemma 13.12.
(e) Not special by lemma 13.12.
(f) δ′(n) = 2n − 2m + 1 and no integer solution for δ(m,n) = 0.
(g) δ′(n) = 2n − 2m + 4 and no integer solution for δ(m,n) = 0.

4-iii (a) δ′(n) = 2n−2m−1 and no integer solution with m ≥ 3 for δ(m,n) = 0.
(b) δ′(n) = 2n − 2m + 1 and no integer solution for δ(m,n) = 0.
(c) Not special by lemma 13.12.
(d) δ′(n) = 2n − 2m − 1 and δ(m,n) = 0 for m = 2, n = 3.
(e) Not special by lemma 13.12.
(f) δ′(n) = 2n − 2m − 1 and δ(m,n) = 0 for m = 2, n = 3.
(g) δ′(n) = 2n − 2m − 3 and δ(m,n) = 0 for m = 2, n = 3.
(h) δ′(n) = 2n − 2m − 3 and δ(m,n) = 0 for m = 2, n = 3.
(i) Not special by lemma 13.12.
(j) δ′(n) = 2n−2m−3 and no integer solution with odd m for δ(m,n) = 0.

(k) δ′(n) = 2n−2m−1 and no integer solution with odd m for δ(m,n) = 0.
(l) Not special by lemma 13.12.

(m) Not special by lemma 13.12.
(n) δ′(n) = 2n − 2m − 1 and δ(m,n) = 0 for m = 2, n = 3.
(o) Not special by lemma 13.12.
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(p) δ′(n) = 2n − 2m − 3 and δ(m,n) = 0 for m = 2, n = 3.
(q) δ′(n) = 2n − 2m − 1 and δ(m,n) = 0 for m = 2, n = 3.
(r) Not special by lemma 13.12.
(s) δ′(n) = 2n−2m−3 and no integer solution with odd m for δ(m,n) = 0.
(t) δ′(n) = 2n−2m−3 and no integer solution with odd m for δ(m,n) = 0.

5. 5-i (a) Not special by lemma 13.12.
(b) δ(2,n) = 0 for n = 3.

5-ii (a) Not special by lemma 13.12.
(b) δ(2,n) = 0 for n = 3.
(c) No integer solution with n > m for δ(2,n) = 0.
(d) Not special by lemma 13.12.
(e) No integer solution with even n for δ(2,n) = 0.

5-iii (a) Not special by lemma 13.12.
(b) Not special by lemma 13.12.
(c) No integer solution with n > m for δ(2,n) = 0.
(d) Not special by lemma 13.12.
(e) δ(2,n) = 0 for n = 3.

5-iv (a) δ(2, 5) = 0 by direct computation.

5-v In all cases, we have δ(2, 6) , 0 by direct computation.

5-vi In all cases, we have δ(2, 7) , 0 by direct computation.

6. (a) No integer solution with n > m for δ(3,n) = 0.

(b) δ(3, 5) = 0 by direct computation.

7. 7-i (a) No integer solution for δ(4,n).
(b) Not special by lemma 13.12.
(c) No integer solution for δ(4,n).

7-ii (a) δ(4, 5) , 0 by direct computation.

7-iii In all cases, we have δ(4, 6) , 0 by direct computation.

8. 8-i (a) Not special by lemma 13.12.

8-ii (a) Not special by lemma 13.12.
(b) Not special by lemma 13.12.
(c) No integer solution for δ(5,n) = 0.

8-iii In all cases, we have δ(5, 6) , 0 by direct computation.

8-iv In all cases, we have δ(5, 7) , 0 by direct computation.

9. (a) δ′(n) = n −m − 3
2 and δ(m,n) = 0 for m = 2, n = 3.

(b) δ(6, 7) , 0 by direct computation.
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10. For dimension reasons, this module is special if and only if (GLr
1 × SLn, %1 ⊕

. . . ⊕ %r) is special.

11. 11-i (a) Not special by lemma 13.12.
(b) Not special by lemma 13.12.
(c) No integer solution for δ(2,n) = 0.
(d) No integer solution for δ(2,n) = 0.

11-ii (a) δ(2, 6) , 0 by direct computation.

12. δ(4, 8) = 0 by direct computation.

13. 13-i (a) Not special by lemma 13.12.
(b) Not special by lemma 13.12.
(c) Not special by lemma 13.12.
(d) δ′(n) = 2n −m − 3 and δ(m,n) = 0 for m = 2, n = 3.
(e) δ′(n) = 2n −m − 3 and δ(m,n) = 0 for m = 2, n = 3.
(f) Not special by lemma 13.12.
(g) δ′(n) = 2n −m − 3 and δ(m,n) = 0 for m = 2, n = 3.
(h) Not special by lemma 13.12.
(i) No integer solution for δ(6,n) = 0.

13-ii (a) δ(m,n) = 0 for m = 2, n = 3.
(b) δ(m,n) = 0 for m = 2, n = 3.
(c) No integer solution for δ(n − 1,n).

13-iii (a) δ′(n) = 2n − m(m−1)
2 − 2 and no integer solution for δ(m,n) = 0.

(b) δ′(n) = 2n − m(m−1)
2 − 3 and no integer solution for δ(m,n) = 0.

(c) No integer solution for δ(5,n).

(d) δ′(n) = 2n − m(m−1)
2 − 3 and no integer solution for δ(m,n) = 0.

(e) δ′(n) = 2n − m(m−1)
2 − 2 and no integer solution for δ(m,n) = 0.

(f) δ(5, 10) , 0 by direct computation.

14. (a) Not special by lemma 13.12.

(b) Not special by lemma 13.12.

(c) δ′(n) = 2n −m − 3 and no integer solution for δ(m,n) = 0.

(d) δ′(n) = 2n −m − 3 and no integer solution for δ(m,n) = 0.

(e) Not special by lemma 13.12.

(f) No integer solution for δ(n
2 ,n) = 0.

15. (a) No integer solution for δ(10,n) = 0.

(b) No integer solution for δ(10,n) = 0.

(c) δ(10, 17) , 0 by direct computation.

(d) δ(10, 16) , 0 by direct computation.
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The following proposition summarises the special modules.

Proposition 13.13 The following 2-simple modules of the form KII II and KII III
are special:

• KII II-4-i (b): (GL3
1 × SL2 × SL3, (ω1 ⊗ ω1) ⊕ (1 ⊗ 2ω(∗)

1 ) ⊕ (ω(∗)
1 ⊗ 1)).

• KII II-4-ii (a): (GL5
1×SL3×SL4, (ω1⊗ω1)⊕(1⊗ω(∗)

2 )⊕((ω1⊕ω1)(∗)
⊗1)⊕(1⊗ω(∗)

1 )).

• KII II-4-iii (d): (GL5
1×SL2×SL3, (ω1⊗ω1)⊕(1⊗ω2)⊕((ω1⊕ω1)(∗)

⊗1)⊕(1⊗ω1)).

• KII II-4-iii (f): (GL5
1×SL2×SL3, (ω1⊗ω1)⊕(1⊗ω2)⊕(ω1⊗1)⊕(ω∗1⊗1)⊕(1⊗ω1)).

• KII II-4-iii (g): (GL4
1 × SL2 × SL3, (ω1 ⊗ ω1) ⊕ (1 ⊗ ω2) ⊕ (1 ⊗ ω1) ⊕ (1 ⊗ ω∗1)).

• KII II-4-iii (h): (GL4
1 × SL2 × SL3, (ω1 ⊗ ω1) ⊕ (1 ⊗ ω2) ⊕ (1 ⊗ ω∗1) ⊕ (1 ⊗ ω∗1)).

• KII II-4-iii (n): (GL5
1×SL2×SL3, (ω1⊗ω1)⊕(1⊗ω∗2)⊕((ω1⊕ω1)(∗)

⊗1)⊕(1⊗ω(∗)
1 )).

• KII II-4-iii (p): (GL4
1 × SL2 × SL3, (ω1 ⊗ ω1) ⊕ (1 ⊗ ω∗2) ⊕ (1 ⊗ ω∗1) ⊕ (1 ⊗ ω∗1)).

• KII II-4-iii (q): (GL5
1×SL2×SL3, (ω1⊗ω1)⊕(1⊗ω∗2)⊕(ω1⊗1)⊕(ω∗1⊗1)⊕(1⊗ω(∗)

1 )).

• KII II-5-i (b): (GL3
1 × SL2 × SL3, (2ω1 ⊗ ω1) ⊕ (1 ⊗ ω(∗)

2 ) ⊕ (ω1 ⊗ 1)).

• KII II-5-ii (b): (GL4
1 × SL2 × SL3, (ω1 ⊗ ω1) ⊕ (1 ⊗ ω2) ⊕ (2ω1 ⊗ 1) ⊕ (1 ⊗ ω1)).

• KII II-5-iii (e): (GL4
1 × SL2 × SL3, (ω1 ⊗ ω1) ⊕ (1 ⊗ ω∗2) ⊕ (2ω1 ⊗ 1) ⊕ (1 ⊗ ω(∗)

1 )).

• KII II-5-iv (a): (GL3
1 × SL2 × SL3, (ω1 ⊗ ω1) ⊕ (1 ⊗ ω∗2) ⊕ (1 ⊗ ω∗2)).

• KII II-6 (b): (GL3
1 × SL3 × SL5, (ω1 ⊗ ω1) ⊕ (1 ⊗ ω2) ⊕ (1 ⊗ ω2)).

• KII II-9 (a): (GL4
1 × SL6 × SL7, (ω1 ⊗ ω1) ⊕ (1 ⊗ ω∗2) ⊕ (1 ⊗ ω1) ⊕ (1 ⊗ ω1)).

• KII II-10: (GLr+1
1 × SLn × SLn, (ω1 ⊗ ω1) ⊕ (%1 ⊗ 1) ⊕ . . . ⊕ (%k ⊗ 1) ⊕ (1 ⊗ %∗k+1) ⊕

. . . ⊕ (1 ⊗ %∗r)), where (GLr
1 × SLn, %1 ⊕ . . . ⊕ %r) is a special module.

• KII III-12: (GL2
1 × SL4 × SL8, (ω2 ⊗ ω1) ⊕ (ω1 ⊗ ω1)).

• KII III-13-i (d): (GL5
1×SL2×SL3, (ω1⊗ω1)⊕(1⊗ω∗1)⊕(1⊗ω∗1)⊕(ω(∗)

2 ⊗1)⊕(1⊗ω∗1)).

• KII III-13-i (e): (GL5
1×SL2×SL3, (ω1⊗ω1)⊕(1⊗ω∗1)⊕(1⊗ω∗1)⊕(ω∗2⊗1)⊕(1⊗ω1)).

• KII III-13-i (g): (GL5
1×SL2×SL3, (ω1⊗ω1)⊕(1⊗ω∗1)⊕(1⊗ω∗1)⊕(ω2⊗1)⊕(1⊗ω1)).

• KII III-13-ii (a): (GL5
1×SL2×SL3, (ω1⊗ω1)⊕(1⊗ω1)⊕(1⊗ω1)⊕(1⊗ω1)⊕(ω2⊗1)).

• KII III-13-ii (b): (GL5
1×SL2×SL3, (ω1⊗ω1)⊕(1⊗ω1)⊕(1⊗ω1)⊕(1⊗ω1)⊕(ω∗2⊗1)).
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13.2.3 The case KII IV for km ≤ n

As a consequence of theorem 4.15 in Kimura et al. [17], we can always assume
n > m.

First, we consider the module(
GLk+s1+s2+t1+t2

1 × SLm × SLn,

(ω1 ⊗ 1)⊕s1 ⊕ (ω∗1 ⊗ 1)⊕s2 ⊕ (ω1 ⊗ ω1)⊕k
⊕ (1 ⊗ ω1)⊕t1 ⊕ (1 ⊗ ω∗1)⊕t2

)
,

with n ≥ m ≥ 2, k ≥ 1 and n ≥ km, i.e. the case KII IV-16.

Again, the question arises if some special modules could be found by considering
less than k+ s+ t scalar multiplications, where k+ s+ t is the number of irreducible
components. The following lemmata 13.14 and 13.15 tackle this question.

We investigate a case where some scalar multiplications can be discarded.

Lemma 13.14 Let km ≤ n, k ≥ 1, t ≥ 1 and s + kt ≤ m. The module(
GLk+s+t

1 × SLm × SLn, (ω1 ⊗ 1)⊕s
⊕ (ω1 ⊗ ω1)⊕k

⊕ (1 ⊗ ω∗1)⊕t
)

is prehomogeneous if and only if(
GL j

1 × SLm ×GLn, (ω1 ⊗ 1)⊕s
⊕ (ω1 ⊗ ω1)⊕k

⊕ (1 ⊗ ω∗1)⊕t
)

is prehomogeneous, where j = 1 for s + kt = m (and we cannot replace it by j = 0
in this case), and j = 0 for s + kt < m. If km < n, we can replace GLn by SLn.

P: The “if”-part of the lemma is obvious.

Now assume the GLk+s+t
1 × SLm × SLn-module is prehomogeneous. In particular,

ω⊕s
1 ⊗ 1 and (ω1 ⊗ ω1)⊕k

⊕ (1 ⊗ ω∗1)⊕t must be prehomogeneous. By propositions
9.26 and 9.27 (with m1 = km and m2 = t), the latter is equivalent to (GLk+s+t−1

1 ×

SLm, ω⊕k
1 ⊗ 1⊕t) being prehomogeneous. But as s + kt ≤ m, this is equivalent to(

GLk+t+s−1
1 × SLm, ω

⊕s
1 ⊕ (ω⊕k

1 ⊗ 1⊕t)
)

and even (
GL j

1 × SLm, ω
⊕s
1 ⊕ (ω⊕k

1 ⊗ 1⊕t)
)

being prehomogeneous, with j = 1 for s + kt = m by Ks I-2 in theorem 11.2, and
j = 0 by s + kt < m by Ks II-1 in theorem 11.2. For the generic isotropy subgroup
H of (GL j

× SLm, ω⊕s
1 ), this is equivalent to (H, ω1|

⊕k
H ⊗ 1⊕t) being prehomogeneous

(cf. proposition 9.11). Again by using proposition 9.27, we have that(
H ×GLn, (ω1|H ⊗ ω1)⊕k

⊕ (1 ⊗ ω∗1)⊕t
)
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is prehomogeneous, and because H × GLn is the isotropy subgroup of (GL j
1 ×

SLm × GLn, ω⊕s
1 ⊗ 1), we have the prehomogeneity of the GL j

1 × SLm ×GLn-module
by proposition 9.11.

By corollary 9.28, we can replace GLn by SLn for km < n. �

Next, we have a case where a certain number of scalar multiplications is inde-
spensable.

Lemma 13.15 Let 2 ≤ s ≤ n + 1. Assume the module(
GL j

1 × SLn × G, ((ω⊕s−1
1 ⊕ ω∗1) ⊗ 1) ⊕ %

)
to be prehomogeneous, where % is any representation of GL j

1 × SLn × G. Then we
have j ≥ s − 1, with GLs−1

1 acting on ω⊕s−1
1 ⊗ 1 (and even j ≥ s for s = n + 1, with

GLn+1
1 acting on (ω⊕n

1 ⊕ ω
∗

1) ⊗ 1).

P: First assume s = n+ 1. Then we must have j ≥ n+ 1, because for j < n+ 1,
the component (ω⊕s−1

1 ⊕ω∗1)⊗1 would not be prehomogeneous by Ks I-4 in theorem
11.2.

For s ≤ n, the component (ω⊕s−1
1 ⊕ ω∗1) ⊗ 1 would not be prehomogeneous for

j < s − 1 by Ks II-2 in theorem 11.2.

Alternatively, one could proof this by a similar argument as in the proof of lemma
13.6, part 2, by considering the decomposition ω[n]⊕s−2

1 = (ω[n−1]
1 ⊕ µ)⊕s−2 under the

action of the isotropy subgroup GLn−1, where additional scalar multiplications are
needed for each of the s − 2 components (µ,k) to be prehomogeneous. �

Remark 13.16 Note that if a module is special for GL j
1×SLm×SLn, we do not have

to check whether it is special for GLl
1 × SLm × SLn with l > j. We can never discard

all scalar multiplications, as there are no special modules for semisimple groups
(like SLm × SLn).

Lemma 13.17 Let G be a simple algebraic group and let %, σi (resp. τi) be irre-
ducible representations of G (resp. SLn), dim(%) = n. As %(G) is a subgroup of SLn,
we can define representations τi ◦ %∗ for G. Then, for 0 ≤ j ≤ s + t,(

GL1+ j
1 × G × SLn, (µ ⊗ % ⊗ ω1) ⊕ (σ1 ⊕ . . . ⊕ σs) ⊗ 1 ⊕ 1 ⊗ (τ1 ⊕ . . . ⊕ τt)

)
is a special module if and only if(

GL j
1 × G, σ1 ⊕ . . . ⊕ σs ⊕ (τ1 ⊕ . . . ⊕ τt) ◦ %∗

)
is special.
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P: We identify the module for µ ⊗ % ⊗ ω1 with Matn. The isotropy subgroup
of GL j

1 × G × SLn at the generic point In of Matn is

{(%(A), %∗(A)) | A ∈ G}.

The SLn-part of this subgroup is %∗(G). By corollary 9.12, we have our result. �

We also use a non-trivial result from Kimura et al. [17]:

Lemma 13.18 Let %1 : G→ GL(Vm1) and %2 : G→ GL(Vm2) be rational representa-
tions of an algebraic group G. If n > m1 > m2, the module(

G ×GLn, (%1 ⊗ ω1) ⊕ (%2 ⊗ ω
∗

1), (Vm1 ⊗ k
n) ⊕ (Vm2 ⊗ k

n∗)
)

is a non-regular prehomogeneous module.

P: See part 1 of proposition 1.22 in Kimura et al. [17]. �

We now consider the cases 16-i to 16-iv one by one. See p. 100 for the respective
constraints on s1, s2, t1 and t2. In the following, let G denote the group and V the
module.

Lemma 13.19 We cannot obtain special modules from the case IV-16-i by replacing
GLn+1

1 × SLn × SLn by GL1 × SLn × SLn, and we also cannot obtain special modules
from the case IV-16-i when (s1 + t2) + (s2 + t1) < n.

P: Let c = (s1 + t2) + (s2 + t1).

If we replaced GLc+1
1 × SLn × SLn by GL1 × SLn × SLn, we would have

dim(G) − dim(V) = n2
− cn − 1,

so we have c < n if the module is prehomogeneous. But then we have

n2
− cn − 1 ≥ n(n − (n − 1)) − 1 = n − 1 > 0.

So we have dim(G) ≥ dim(GLn ×GLn) = 2n2, i.e.

dim(G) − dim(V) ≥ 2n2
− (cn + n2) = n2

− cn,

which is > 0 for any c < n. Thus we can get special modules for c ≥ n only. �

Proposition 13.20 From the case IV-16-i, we get the following special modules:

• (GLn+2
1 ×SLn×SLn, (ω1⊗1)⊕s1 ⊕ (ω∗1⊗1)⊕s2 ⊕ (ω1⊗ω1)⊕ (1⊗ω1)⊕t1 ⊕ (1⊗ω∗1)⊕t2),

with s1 + t2 = n and s2 + t1 = 1.

• (GLn+2
1 × SLn × SLn, (ω1 ⊗ 1)⊕s1 ⊕ (ω1 ⊗ ω1) ⊕ (1 ⊗ ω∗1)⊕t2),

with s1 + t2 = n + 1 and s2 + t1 = 0.



124 13 Examples of Special Modules

• (GLn ×GLn, (ω1 ⊗ 1)⊕s1 ⊕ (ω1 ⊗ ω1) ⊕ (1 ⊗ ω∗1)⊕t2),
with s1 + t2 = n and s2 = t1 = 0.

These are the only special modules obtained from IV-16-i.

P: Let a = s1 + t2, b = s2 + t1 and c = a + b.

For G = GLc+1
1 × SLn × SLn, we have

dim(G) − dim(V) = 2n2
− 2 + c + 1 − n2

− cn = n2 + c(1 − n) − 1 = 0

if and only if

c =
n2
− 1

n − 1
= n + 1.

Taking into account the constraints on a and b, this is true if and only if either a = n,
b = 1, or a = n + 1, b = 0 (or with a and b exchanged). Thus, we have the first two
cases of the proposition. Also, we have no special modules for GLc+1

1 × SLn × SLn

when c < n + 1.

For c = a = n, b = 0 and t2 > 0, the module is prehomogeneous for G = GLn ×GLn

by lemma 13.14, and a dimension count shows that it is even a special module.
Thus, we have the third case of the proposition.

For c = a = n, b = 0 and t2 = 0, the module is obviously a special module for
G = GLn ×GLn.

Now it remains to be shown that there are no special modules for GLn ×GLn with
a = n − 1, b = 1, and together with lemma 13.19 it follows that there are no other
special modules at all.

Let a = n − 1, b = 1, e.g. s2 = 1 and t1 = 0 (the argument is the same for s2 = 0,
t1 = 1). By lemma 13.17, our module is special if and only if(

GLn, (ω⊕s1
1 ⊕ ω

∗

1) ⊕ (ω∗⊕t2
1 ◦ ω∗1)

)
=

(
GLn, ω

⊕n−1
1 ⊕ ω∗1

)
is special, but by Ks II-2 (resp. Ks I-1 for n = 2) in theorem 11.2, the latter is not
prehomogeneous (resp. not special for n = 2). �

Proposition 13.21 From the case IV-16-ii (a), we get the following special modules:

• (GLn ×GLn, (ω1 ⊗ 1)⊕s1 ⊕ (ω1 ⊗ ω1)⊕k
⊕ (1 ⊗ ω∗1)⊕t2),

with s1 + kt2 = m.

From the case IV-16-ii (b), we get the following special modules:

• (GLn ×GLn, (ω∗1 ⊗ 1)⊕s2 ⊕ (ω1 ⊗ ω1) ⊕ (1 ⊗ ω1)⊕t1),
with s2 + kt1 = m.



13.2 Special Modules for KII 125

These are the only special modules obtained from IV-16-ii.

P: Note that by corollary 9.14 it suffices to treat the case (a) and get the
corresponding results for case (b) by exchanging s1, t2 with s2, t1.

For the case IV-16-ii (a), the conditions for lemma 13.14 are fulfilled and so we can
assume G = GLm ×GLn. We then have

dim(G) − dim(V) = (km)2 +m2
− (s1m + (km)2 + t2km)

= (km)2 +m2
− (s1 + kt2)m − (km)2

= m2
− (s1 + kt2)m ≥ 0,

with equality if and only if s1 + kt2 = m.

Furthermore, the module cannot be special for GL1×SLm×SLn in the case s1+kt2 =
m for dimension reasons, and going to s1 + kt2 < m, the modules dimension
decreases by m ≥ 2 at least, whereas the group dimension decreases only by 1
compared to GLm × GLn. So there are no special modules of type IV-16-ii for
GL1 × SLm × SLn. �

Proposition 13.22 From the case IV-16-iii, we get the following special modules:

• (GLt1−1
1 ×GLm ×GLn, (ω∗1 ⊗ 1)⊕s2 ⊕ (ω1 ⊗ ω1) ⊕ (1 ⊗ ω1) ⊕ (µ ⊗ 1 ⊗ ω1)⊕t1−1,

with k = 1, s2 + t1 = m + 1.

These are the only special modules obtained from IV-16-iii.

P: The component

(ω1 ⊗ ω1)⊕k
⊕ (1 ⊗ ω1) = (ω⊕k

1 ⊕ 1) ⊗ ω1

is of dimension (km + 1)n = n2, so the isotropy subgroup on this component is
(locally isomorphic to) SLn, hence reductive. We can apply corollary 9.14 and get
that our module is special if and only if(

GLk+s1+t2
1 × SLm × SLn, (ω1 ⊗ 1)⊕s1+k

⊕ (ω1 ⊗ ω1)⊕k
⊕ (1 ⊗ (ω1 ⊕ ω

∗⊕t1−1
1 ))

)
is special.

If we set t̃1 = 1, t̃2 = t1 − 1, s̃1 = s2, s̃2 = 0 and note that s̃1 + t̃2 ≤ m, this is the
case IV-16-iv (c) with parameters s̃1, s̃2, t̃1, t̃2. Thus, by the following proposition
13.23, we have that the module is special if and only if k = 1, s̃1 + t̃2 = m (i.e.
s2 + t1 = m + 1) and GLs2+1+t1

1 × SLm × SLn is replaced by GL1+t1
1 × SLm × SLn. �

Proposition 13.23 From the case IV-16-iv (a), we get the following special mo-
dules:
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• (GLm+1
1 × SLm × SLn, (µ ⊗ ω∗1 ⊗ 1) ⊕ (ω1 ⊗ ω1) ⊕ (µ ⊗ 1 ⊗ ω∗1)⊕m),

with t2 = m, s1 = 0, s2 = 1 and n = m + 1.

• (GLm × SLn, (ω1 ⊗ ω1) ⊕ (1 ⊗ ω∗1)⊕m),
with t2 = m, s1 = s2 = 0 and n = m + 1.

• (GLm+2
1 × SLm × SLn, (ω1 ⊗ ω1) ⊕ (1 ⊗ ω∗1)⊕m+1),

with t2 = m + 1, s1 = s2 = 0 and n = m + 1.

• (GLm+1
1 × SLm × SLn, (µ ⊗ ω1 ⊗ 1) ⊕ (ω1 ⊗ ω1) ⊕ (µ ⊗ 1 ⊗ ω∗1)⊕m),

with t2 = m, s1 = 1, s2 = 0 and n = m + 1.

From the case IV-16-iv (c), we get the following special modules:

• (GLt2
1 ×GLm ×GLn, (ω1 ⊗ 1)⊕s1 ⊕ (ω1 ⊗ ω1) ⊕ (1 ⊗ ω1) ⊕ (µ ⊗ 1 ⊗ ω∗1)⊕t2),

with k = 1, s1 + t2 = m and n = m + 1.

These are the only special modules obtained from IV-16-iv.

P: Consider the cases 16-iv (a), (b) and (c) separately.

(a) First we assume s2 = 1. We can use propositions 9.26, 9.27 and corollary 9.28
(with m1 = m, m2 = t2) almost exactly as in the proof of lemma 13.14 to show
that (

GLs1+2+t2
1 × SLm × SLn, ((ω⊕s1

1 ⊕ ω
∗

1) ⊗ 1) ⊕ (ω1 ⊗ ω1) ⊕ (1 ⊗ ω∗1)⊕t2
)

is prehomogeneous if and only if(
GL j

1 × SLm × SLn, (µ ⊗ ω1 ⊗ 1)⊕s1 ⊕ (µ̃ ⊗ ω∗1 ⊗ 1) ⊕ (ω1 ⊗ ω1) ⊕ (µ ⊗ 1 ⊗ ω∗1)⊕t2
)

is, where j = s1 + t2 for s1 + t2 ≤ m− 1 (i.e. µ̃ = 1) and j = m+ 1 for s1 + t2 = m
(i.e. µ̃ = µ), and no smaller j possible in either case. Let G = GL j

1×SLm×SLn.
For s1+t2 ≤ m−1, note that s1(1−m)+t2(1−n) is minimal for s1 = 0, t2 = m−1,
as n > m. Then we have

dim(G) − dim(V) = s1 + t2 +m2
− 1 + n2

− 1 − s1m −m −mn − t2n

= m2 + n2
− 2 + s1(1 −m) + t2(1 − n) −m −mn

≥ m2 + n2
− 2 + (m − 1)(1 − n) −m −mn

= m2 + n2
− 2m + n − 2

= (n −m)2 + (n − 2) > 0,

as n > m ≥ 2. So there are no special modules. For s1 + t2 = m, note that
−s1m − t2n is minimal for t2 = m, s1 = 0. We have

dim(G) − dim(V) = m + 1 +m2
− 1 + n2

− 1 − s1m −m −mn − t2n

≥ m2 + n2
− 1 − 2mn

= (n −m)2
− 1 ≥ 0,
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with equality if and only if n = m + 1 and t2 = m.

Now let s2 = 0. If s1 + t2 ≤ m and the module(
GLs1+1+t2

1 × SLm × SLn, (ω1 ⊗ 1)⊕s1 ⊕ (ω1 ⊗ ω1) ⊕ (1 ⊗ ω∗1)⊕t2
)

is prehomogeneous, then(
GLm × SLn, (ω1 ⊗ 1)⊕s1 ⊕ (ω1 ⊗ ω1) ⊕ (1 ⊗ ω∗1)⊕t2

)
must be prehomogeneous by lemma 13.14, so we only need to check whether
the latter module is special. Let G = GLm × SLn. Arguing similarly as in the
case s2 = 1, we have

dim(G) − dim(V) = n2 +m2
− 1 − s1m −mn − t2n

≥ n2 +m2
− 2mn − 1

= (n −m)2
− 1 ≥ 0,

with equality if and only if n = m + 1 and t2 = m.

For s1 = s2 = 0 and t2 = m+ 1, we consider G = GL1+m+1
1 × SLm × SLn, and we

have

dim(G) − dim(V) = m + n2 +m2
− (m + 1)n −mn

= n2 +m2 + (m − n) − 2nm

= (n −m)2
− (n −m) ≥ 0,

with equality if and only if n = m + 1.

For s2 = 0, s1 + t2 = m + 1 and s1 > 0, we can use propositions 9.26, 9.27 and
corollary 9.28 (with m1 = m, m2 = t2) almost exactly as in the proof of lemma
13.14 to show that(

GL1+m+1
1 × SLm × SLn, (ω1 ⊗ 1)⊕s1 ⊕ (ω1 ⊗ ω1) ⊕ (1 ⊗ ω∗1)⊕t2

)
is prehomogeneous if and only if(

GLm+1
1 × SLm × SLn, (µ ⊗ ω1 ⊗ 1)⊕s1 ⊕ (ω1 ⊗ ω1) ⊕ (µ ⊗ 1 ⊗ ω∗1)⊕t2

)
is, with no less than m+1 scalar multiplications possible. Similarly as before,
we have

dim(G) − dim(V) = m + 1 + n2 +m2
− 2 − s1m −mn − t2n

≥ n2 +m2
− 1 − 2mn

= (n −m)2
− 1 ≥ 0,

with equality if and only if m = n − 1, t2 = m and s1 = 1.
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(b) For G = GL j
1 × SLm × SLn with 1 ≤ j ≤ k + s1 + t2, we set

δ(n) = dim(G) − dim(V).

Then we have δ′(n) = 2n − t2 − km, i.e. as a function over the real numbers,
δ is minimal at n0 =

t2+km
2 and it is strictly increasing for n > n0.

Note that t2 < m because s1 + kt2 ≤ m and k ≥ 2. We then have

n0 =
km + t2

2
<

km +m
2

=
k + 1

2
m < km < n,

so all valid values for n (i.e. the integers with km < n) are contained in
the interval [n0,∞) where δ is strictly increasing, and thus δ(km + 1) is the
minimal value of δ at a valid integer. We show that even in the case j = 1,
we still have δ(km + 1) > 0, so this will also be the case for any j ≥ 2.

δ(km + 1) = m2 + (km2 + 2km + 1) − 1 − (s1m + km2 + km + t2km + t2)

= m2 + km − (s1 + kt2)m − t2

≥ m2 + km −m2
− t2

≥ km − t2 ≥ 2m − t2 ≥ 2(t2 + 1) − t2 ≥ 2 > 0.

In particular, δ(n) > 0 for any integer n > km + 1. So there are no special
modules to be obtained from IV-16-iv (b).

(c) By part 2 of lemma 13.6, the module(
GLs1+k+1+t2

1 × SLm × SLn, (ω1 ⊗ 1)⊕s1 ⊕ (ω1 ⊗ ω1)⊕k
⊕ (1 ⊗ (ω1 ⊕ ω

∗⊕t2
1 ))

)
is special if and only if(

GLs1+k
1 × SLm ×GLn−1, (µ ⊗ ω1 ⊗ 1)⊕s1+k

⊕ (ω1 ⊗ ω1)⊕k
⊕ (1 ⊗ ω∗1)⊕t2−1

)
is special.

If k ≥ 2, this is equivalent to the case IV-16-iv (b) with GLs1+k+t2−1
1 replaced by

GLs1+k+1
1 , and so there are no special modules by part (b) of this proposition.

Now assume k = 1. Set ñ = n − 1, m̃ = m, s̃1 = s1 + 1, s̃2 = 0, t̃1 = 0 and
t̃2 = t2 − 1. We have ñ ≥ m̃ and s̃1 + t̃2 = (s1 + 1) + (t2 − 1) = s1 + t2 ≤ m = m̃.

For m̃ = m = n − 1 = ñ, this is the case IV-16-i with parameters ñ = m̃, s̃1, s̃2,
t̃1, t̃2 and the condition s̃1 + s̃1 + t̃1 ≤ ñ, s̃2 = t̃1 = 0, but with at most s̃1 + 1
scalar multiplications. By proposition 13.20, the module is special only for
s̃1 + t̃2 = ñ (i.e. s1 + t2 = n − 1 = m), if we replace GLs1+1

1 × SLm × GLn−1 by
GLn−1 × GLn−1. This means we must discard s1 scalar multiplications of the
original module to obtain a special module.

For m̃ < ñ = n − 1, this is the case IV-16-iv (a) with parameters ñ, m̃, s̃1, s̃2, t̃2

and the condition s̃1 + t̃1 ≤ m̃, s̃2 = 0. By part (a) of this proposition, in order
to obtain a special module, we must have m̃ = ñ − 1 = n − 2, t̃2 = m̃, s̃1 = 0,
but we have s̃1 = s1 + 1 > 0, so it is not possible to fulfil these conditions.
Thus, there are no special modules for m̃ < ñ. �
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13.2.4 The case KV IV for km > n

Now we consider the module(
GLk+s1+s2+t1+t2

1 × SLm × SLn,

(ω1 ⊗ 1)⊕s1 ⊕ (ω∗1 ⊗ 1)⊕s2 ⊕ (ω1 ⊗ ω1)⊕k
⊕ (1 ⊗ ω1)⊕t1 ⊕ (1 ⊗ ω∗1)⊕t2

)
,

with n > m ≥ 2, k ≥ 2 and n < km, i.e. the case KII IV-17.

To handle this case, we have to take a close look at the proofs in section 4.2 of
Kimura et al. [17], where the prehomogeneity of this module is investigated. The
essential part for this case is to determine when a module of the form(

GLm ×GLn, (ω⊕s
1 ⊗ 1) ⊕ (ω1 ⊗ ω1)⊕k

⊕ (1 ⊗ ω∗⊕t
1 )

)
is special. In order to investigate this, we consider the generic isotropy algebra gX

of (
GLm ×GLn, (ω1 ⊗ ω1)⊕k

)
.

To understand the structure of gX, we use the fact that gX is isomorphic to the
generic isotropy algebra of a castling-equivalent module(

GLm0 ×GLn0 , (ω1 ⊗ ω1)⊕k
)

with km0 ≤ n0. Then we will show that

dim(gX) = dim((ω⊕s
1 ⊗ 1) ⊕ (1 ⊗ ω∗⊕t

1 ))

if and only if km0 = n0.

Recall definition 11.5. By theorem 4.5 in [17], we have a uniquely determined (i.e.
smallest) j = ν(k,m,n) such that (GLk

1 × SLm × SLn, (ω1 ⊗ω1)⊕k) is transformed to a
trivial prehomogeneous module of GLk

1 × SLm0 × SLn0 (i.e. km0 ≤ n0) or a simple
prehomogeneous module (i.e. m0 = 1) by j castling transformations. Further, we
have the sequence (ai) defined by

a−1 = −1, a0 = 0, ai = kai−1 − ai−2 for i > 0.

If we set (
ni

mi

)
=

(
ai+1 −ai

ai −ai−1

)
·

(
n0

m0

)
for the above m0 and n0, lemma 4.6 in [17] tells us that we obtain the following
sequence of modules by the above mentioned j castling transformations:(

GLk
1 × SLm0 × SLn0 , (ω1 ⊗ ω1)⊕k

)
...(

GLk
1 × SLmi × SLni , (ω1 ⊗ ω1)⊕k

)
...(

GLk
1 × SLm j × SLn j , (ω1 ⊗ ω1)⊕k

)
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In particular, we have

n = n j = a j+1n0 − a jm0, m = m j = a jn0 − a j−1m0.

Of course, this still holds if we replace GLk
1 × SLmi × SLni by GLmi ×GLni .

Remark 13.24 For all i ≥ 1, the matrix(
ai+1 −ai

ai −ai−1

)
=

(
k −1
1 0

)
·

(
ai −ai−1

ai−1 −ai−2

)
has determinant 1, which easily follows by induction from the recurrence relation
defining the sequence (ai).

Remark 13.25 Generic points Xi for (GLmi × GLni , (ω1 ⊗ ω1)⊕k) and i = 0, . . . , j are
inductively defined on p. 481 in Kimura et al. [17], but we do not need their
explicit form here. We consider the generic isotropy algebras gXi as different
representations of gX = gX j . As a consequence of lemma 4.9 in [17], the generic
isotropy algebra of (GLmi ×GLni , (ω1 ⊗ ω1)⊕k) is given by

gXi = {(−A>i−1,Ai)},

with Ai defined by

−A>
−1 = A ∈ glm0 , −A>0 =

 A
A⊕k−1

C0 B1 B2

 , −A>1 =


−A>⊕k−1

0
A⊕k−1

C1 B1 B2

 ,

−A>i =



−A>⊕k−1
i−1

−A>⊕k−2
i−2

. . .
−A>⊕k−2

0
A⊕k−1

Ci B1 B2


for i = 2, . . . , j.

Here, B1 ∈Matn0−km0,m0(k−1), B2 ∈Matn0−km0 and C0 are arbitrary matrices, and the Ci

depend on C0. Note that as B2 is quadratic, all submatrices A lie on the diagonal
of −A>i . The submatrices of the form (Ci B1 B2) are called black blocks. By bi we
denote the number of black blocks in −A>i for the case n0 − km0 > 0.

The following lemmata 13.26 and 13.27 give us some results on the sequences (ai)
and (bi).

Lemma 13.26 Let −A>i be defined as in remark 13.25.

1. An explicit formula for the ai:

For k = 2 : a−1 = −1, a0 = 0, ai = i, i > 0.

For k > 2 : a−1 = −1, a0 = 0, ai =
1

√

k2 − 4


k +

√

k2 − 4
2

i

−

k −
√

k2 − 4
2

i , i > 0.
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2. An explicit formula for the bi (for n0 − km0 > 0):

For k = 2 : b0 = 1, b1 = 2, bi = i + 1, i > 1.

For k > 2 : b0 = 1, b1 = k, bi =
k − 1
k − 2

(ai+1 − ai) −
1

k − 2
, i > 1.

P:

1. This was shown in lemma 4.6 of [17].

2. Consider the case k = 2. By looking at the definition of the −A>i , we immedi-
ately have b0 = 1 and b1 = 2. Further, we note that for i > 1, the matrix −A>i
contains all the black blocks from one copy of −A>i−1, plus one additional
black block. By induction, we have our result.

For the case k > 2, an inductive proof would certainly do, but we shall not
miss this opportunity to demonstrate the beauty of generating functions.
Throughout this proof, we write

g(z) =
1

1 − z
=

∞∑
i=0

zi

for the geometric series. We proceed in two steps.

• The generating function a(z) for (ai) is the formal power series

a(z) =
∞∑

i=0

aizi.

For simplicity, we ignore a−1 in this definition and pretend the sequence
(ai) to be initialised with a0 = 0 and a1 = 1. By looking at the recurrence
relation defining (ai), we get

a(z) = a0 + a1z +
∞∑

i=2

(kai−1 − ai−2)zi

= 0 + z + kz
∞∑

i=1

aizi
− z2

∞∑
i=0

aizi

= z + kza(z) − kza0︸︷︷︸
=0

−z2a(z)

= z + kza(z) − z2a(z),

which is equivalent to

a(z) =
z

z2 − kz + 1
.
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• By looking at the definition of the −A>i , we immediately have b0 = 1
and b1 = k. Also, we see that bi must satisfy the recurrence relation

bi = (k − 1)bi−1 − (bi−1 − bi−2) + 1 = kbi−1 − bi−2 + 1.

for i > 1. For the formal power series

b(z) =
∞∑

i=0

bizi

we then have

b(z) = b0 + b1z +
∞∑

i=2

(kbi−1 − bi−2 + 1)zi

= 1 + kz + kz
∞∑

i=1

bizi
− z2

∞∑
i=0

bizi + z2
∞∑

i=0

zi

= 1 + kz + kzb(z) − kzb0︸︷︷︸
=kz

−z2b(z) + z2g(z)

= 1 + kzb(z) − z2b(z) + z2g(z),

which is equivalent to

b(z) =
1 + z2g(z)
z2 − kz + 1

.

This can be rewritten as

b(z) =
k − 1
k − 2

( 1
z2 − kz + 1

−
z

z2 − kz + 1

)
−

1
k − 2

g(z).

Comparing with a(z), we see that

1
z2 − kz + 1

=
a(z) − a0

z
=

a(z)
z
,

and for any power series it holds that

a(z) − a0

z

is the power series with coefficient ai replaced by ai+1. Thus we have

bi =
k − 1
k − 2

(ai+1 − ai) −
1

k − 2

by comparing coefficients. �

For more background on generating functions, we refer to the wonderful book by
Graham, Knuth and Patashnik [10].
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Lemma 13.27 Let −A>i be defined as in remark 13.25.

1. The number of copies of A contained in −A>i is ai+2.

2. We have ai > ai−1 for all i.

3. For n0 − km0 > 0, we have bi < ai+2, i.e. the number of black blocks is smaller
than the number of copies of A in −A>i .

P:

1. This was shown in lemma 4.9 of [17].

2. We have a−1 = −1 < 0 = a0. Assume ai > ai−1. As k ≥ 2, we have

ai+1 = kai − ai−1 > kai − ai = (k − 1)ai ≥ ai.

3. For k > 2, we first note that k−1
k−2 = 1 + 1

k−2 < 2 < k. Then we have

bi =
k − 1
k − 2

(ai+1 − ai) −
1

k − 2
<

k − 1
k − 2

(ai+1 − ai)

< k(ai+1 − ai) = kai+1 − kai < kai+1 − ai = ai+2.

For k = 2, we have bi = i + 1 < i + 2 = ai+2. �

We now turn to the analysis of (GLm × GLn, (ω⊕s
1 ⊗ 1) ⊕ (ω1 ⊗ ω1)⊕k

⊕ (1 ⊗ ω∗⊕t
1 )).

This module is special if and only if the operation on (ω⊕s
1 ⊗ 1) ⊕ (1 ⊗ ω∗⊕t

1 ) of
the generic isotropy subgroup GX of (GLm × GLn, (ω1 ⊗ ω1)⊕k) yields a special
module (corollary 9.12). Due to castling equivalence, the group GX is isomorphic
to the generic isotropy subgroup of (GLm0 ×GLn0 , (ω1 ⊗ω1)⊕k), and so we have the
following lemma:

Lemma 13.28 The dimension of the generic isotropy algebra gX = Lie(GX) is

dim(gX) = dim(GLm0) + dim(GLn0) − dim((ω1 ⊗ ω1)⊕k) = n2
0 +m2

0 − km0n0.

Now we take a closer look at the action of gX on (ω⊕s
1 ⊗ 1) ⊕ (1 ⊗ ω∗⊕t

1 ).

Lemma 13.29 Consider (GLm × GLn, (ω⊕s
1 ⊗ 1) ⊕ (ω1 ⊗ ω1)⊕k

⊕ (1 ⊗ ω∗⊕t
1 )) and j =

ν(k,m,n). This module is not special if one of the following conditions holds:

1. sa j+1 + ta j+2 < m0.

2. sb j−1 + tb j < n0 (only relevant for the case n0 − km0 > 0).

On the other hand, if we have > in one of these cases, then the module is not even
prehomogeneous. So for a special module we must require equality in both cases.
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P: The vector space for the representation (ω⊕s
1 ⊗ 1) ⊕ (1 ⊗ ω∗⊕t

1 ) is

V = (km)⊕s
⊕ (kn)⊕t.

Recall from remark 13.25 that gX consists of pairs of matrices (−A>j−1,A j). If we
represent the elements of km (resp. kn) by column vectors, the action of gX on km

via ω1 is represented by a matrix −A>j−1 (resp. the action on kn via ω∗1 on kn is
represented by −A>j ).

If we restrict the action of gX to its subalgebra glm0 , the glm0-action is represented
by those blocks of −A>j−1 (resp. −A>j ) containing a copy of A ∈ glm0 . The number
of these blocks is a j+1 (resp. a j+2) by part 1 of lemma 13.27, so this is the number of
subspaces km0 ⊂ k

m (resp. km0 ⊂ k
n) that glm0 acts on non-trivially. Let

U = (km0)⊕sa j+1 ⊕ (km0)⊕ta j+2

be the direct sum of these subspaces. We chose a complement W of U in V such
that W is spanned by those unit vectors whose indices correspond to the row
numbers of the black blocks in −A>j−1 (resp. −A>j ). Note that V = U ⊕W is a direct
sum of vector spaces, but not a direct sum of gX-modules.

The image of the action of the black blocks on U is contained in W. So if the action
on U is prehomogeneous, then the action of glm0 on U must be prehomogenous
already, so we have

dim(glm0) = m2
0 ≥ (sa j+1 + ta j+2)m0 = dim(U),

and if dim(U) < m2
0, we have a non-trivial isotropy subalgebra. As this subalgebra

acts trivially on the complement W as well, it acts trivially on V, so the module
cannot be special in this case.

Now assume m0 = sa j+1+ta j+2 and n0−km0 > 0. By the construction of the matrices
in remark 13.25, each black block contains n0 − km0 rows, and there are b j−1 (resp.
b j) black blocks contained in −A>j−1 (resp. −A>j ). So the complement W must have
the form

W = (kn0−km0)⊕sb j−1 ⊕ (kn0−km0)⊕tb j .

If the module is prehomogeneous, we have

dim(gX) = n2
0 +m2

0 − km0n0 ≥ dim(V)
= dim(U) + dim(W)
= (sa j+1 + ta j+2)︸          ︷︷          ︸

=m0

m0 + (sb j−1 + tb j)(n0 − km0)

= m2
0 + (sb j−1 + tb j)(n0 − km0),

with equality if and only if sb j−1 + tb j = n0. As a consequence, the module cannot
be special if sb j−1 + tb j < n0. �
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Proposition 13.30 For n > m ≥ 2, k ≥ 2 and n < km, the module(
GLm ×GLn, (ω1 ⊗ 1)⊕s

⊕ (ω1 ⊗ ω1)⊕k
⊕ (1 ⊗ ω∗1)⊕t

)
special if and only if n0 = km0 and sa j+1 + ta j+2 = m0 for j = ν(k,m,n) and(

n
m

)
=

(
a j+1 −a j

a j −a j−1

)
·

(
n0

m0

)
.

We give two different proofs for this proposition.

F : For n0 = km0, we have

dim(gX) = (km0)2 +m2
0 − (km0)2

≥ dim(V) = (sa j+1 + ta j+2)m0

as in the proof of lemma 13.29. Equality holds if and only if sa j+1 + ta j+2 = m0.

Now let n0 − km0 > 0. By our assumptions on m0 and n0, we have m0 < n0, and by
lemma 13.29 we have sa j+1 + ta j+2 ≤ m0 if the module is prehomogeneous. Then
part 3 of lemma 13.27 gives us

sb j−1 + tb j < sa j+1 + tb j < sa j+1 + ta j+2 ≤ m0 < n0,

so the module is not special again by lemma 13.29. �

S : Recall that n = a j+1n0 − a jm0 and m = a jn0 − a j−1m0.

Given j, k and m0, we define

δX(n0) = dim(gX) − dim((ω⊕s
1 ⊗ 1) ⊕ (1 ⊗ ω∗⊕t

1 ))

= m2
0 + n2

0 − km0n0 − s(a jn0 − a j−1m0) − t(a j+1n0 − a jm0).

For a special module, there must exist an integer n0 such that δX(n0) = 0. All valid
candidates for n0 are the integers contained in the interval [km0,∞). Pretending
that δX is a function over the real numbers, we take the derivative:

δ′X(n0) = 2n0 − km0 − sa j − ta j+1.

So the function has its minimum at

km0 + sa j + ta j+1

2
.

By lemma 13.29, we have sa j+1 + ta j+2 ≤ m0, and together with part 2 of lemma
13.27, we have sa j + ta j+1 < m0. So we have

km0 + sa j + ta j+1

2
<

km0 +m0

2
≤

n0

2
+

m0

2
< n0
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for any integer n0 ≥ km0. It follows that δX is strictly increasing on [km0,∞), and
attains its smallest value for a valid integer at n0 = km0. We have

δX(km0) = (km0)2 +m2
0 − (km0)2

− s(a jkm0 − a j−1m0)︸               ︷︷               ︸
=m0sa j+1

− t(a j+1km0 − a jm0)︸               ︷︷               ︸
=m0ta j+2

= m2
0 −m0(sa j+1 + ta j+2︸       ︷︷       ︸

≤m0

)

≥ 0,

with equality if and only if sa j+1+ta j+2 = m0. As δX is strictly increasing on [km0,∞),
we have δX(n0) > δX(km0 + 1) ≥ 0 for all valid integers n0 > km0. Thus, the module
is not special for n0 > km0. �

From either of the two proofs of proposition 13.30, we get the following corollary.

Corollary 13.31 We cannot obtain any special module by replacing GLm ×GLn by
GL1 × SLm × SLn in proposition 13.30.

P: Replacing GLm ×GLn by GL1 × SLm × SLn decreases the group dimension
by 1.

For the case n0 = km0, the module’s dimension must be smaller by at least 2 than
the dimension of the special GLm × GLn-module, as any irreducible component
has dimension ≥ 2.

For n0 − km0 > 0, we have sb j−1 + tb j < m0 ≤ n0 − 3, as k ≥ 2. Then we have
dim(gX) − dim(V) ≥ 2 similarly as in the proof of lemma 13.29. Alternatively, one
could show by direct computation that δX(km0 + 1) ≥ 2 in the second proof of
proposition 13.30. �

We are now prepared to take a closer look at the prehomogeneous modules of
type KII IV-17. The prehomogeneity of these modules is proved in theorems 4.13
to 4.18 in Kimura et al. [17] by relating them to modules of type KII IV-16, KII I or
to (GLm ×GLn, (ω⊕s

1 ⊗ 1) ⊕ (ω1 ⊗ ω1)⊕k
⊕ (1 ⊗ ω∗⊕t

1 )). Thus, we can determine if one
of these modules is special by the case it is related to.

Further, we may assume (k,m,n) ∈ T (cf. definition 11.5), because for dim(G) =
dim((ω1 ⊗ ω1)⊕k), the module (GLk

1 × SLm × SLn, (ω1 ⊗ ω1)⊕k) is castling-equivalent
to Ks I-3 by theorem 4.5 in [17]. So, in order to obtain a special module with
(k,m,n) ∈ T, we must have at least one component ω(∗)

1 ⊗ 1 or 1 ⊗ ω(∗)
1 .

The following lemma 4.14 from Kimura et al. [17] is our starting point.

Lemma 13.32 Assume that for s1 + s2 > 0 or t1 + t2 > 0, the module(
GLk+s1+s2+t1+t2

1 × SLm × SLn,

(ω1 ⊗ 1)⊕s1 ⊕ (ω∗1 ⊗ 1)⊕s2 ⊕ (ω1 ⊗ ω1)⊕k
⊕ (1 ⊗ ω1)⊕t1 ⊕ (1 ⊗ ω∗1)⊕t2

)
,
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with km > n > m ≥ 2 and k ≥ 2, is prehomogeneous. Then one of the following
cases holds:

1. (a) s2 = t1 = 0, t2 ≥ 1.

(b) s2 = t2 = 0.

(c) s1 = t2 = 0, s2 ≥ 1.

2. (a) s2 = 0, t1 ≥ 1, t2 = 1.

(b) s1 = 1, s2 ≥ 1, t2 = 0.

3. (a) s2 = 0, t1 = 1, t2 ≥ 0.

(b) s1 ≥ 2, s2 = 1, t2 = 0.

4. s2 = t2 = 1.

Remark 13.33 As km > n, at least one castling transformation must be applied to
obtain m0, n0 with km0 ≤ n0, so we may assume j = ν(k,m,n) ≥ 1. If t > 0, we then
have by lemmata 4.10 and 4.11 in [17]10) that(

GLm ×GLn, (ω⊕s
1 ⊗ 1) ⊕ (ω1 ⊗ ω1)⊕k

⊕ (1 ⊗ ω∗⊕t
1 )

)
is prehomogenous if and only if(

GLk+s+t
1 ×GLm ×GLn, (ω⊕s

1 ⊗ 1) ⊕ (ω1 ⊗ ω1)⊕k
⊕ (1 ⊗ ω∗⊕t

1 )
)

is prehomogeneous. As k + s + t ≥ 3, we can consider GLm × GLn a subgroup of
GLk+s+t

1 × SLm × SLn, and either of the above modules is prehomogeneous if and
only if (

GLk+s+t
1 × SLm × SLn, (ω⊕s

1 ⊗ 1) ⊕ (ω1 ⊗ ω1)⊕k
⊕ (1 ⊗ ω∗⊕t

1 )
)

is prehomogeneous. In particular, the latter module is not special, because

dim(GLk+s+t
1 × SLm × SLn) ≥ n2 +m2 + 1 > n2 +m2 = dim(GLm ×GLn) ≥ dim(V).

Now we determine when the cases in lemma 13.32 are special modules. Note that
we often use castling equivalence in the sense of lemma 9.25.

Proposition 13.34 From case 1 (a) in lemma 13.32 we get the following special
modules:

• (GLm ×GLn, (ω1 ⊗ 1)⊕s
⊕ (ω1 ⊗ ω1)⊕k

⊕ (1 ⊗ ω∗1)⊕t),
with sa j+1 + ta j+2 = m0 and n0 = km0.

Let p = km + t − n and q = kp −m = k2m + kt − kn −m. From case 1 (b) we get the
following special modules:

10)Be warned though that the meaning of m and n changes in the course of section 4.2 in [17].
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• (GLm ×GLn, (ω1 ⊗ 1)⊕s
⊕ (ω1 ⊗ ω1)⊕k

⊕ (1 ⊗ ω1)⊕t),
with kp > m, s > 0, ta j+1 + sa j+2 = m̃0 and ñ0 = km̃0 for m̃0 = a j+1p − a jm,
ñ0 = a jp − a j−1m and j = ν(k, p,m).

• (GLm ×GLn, (ω1 ⊗ ω1)⊕k
⊕ (1 ⊗ ω1)⊕t),

with kp > m, kq = p, 2 ≤ t and kt = q.

• (GLk+1
1 × SLm × SLn, (ω1 ⊗ ω1)⊕k

⊕ (1 ⊗ ω1)),
with kp > m, k = q + 1 and p = q2 + q.

• (GLm ×GLn, (ω1 ⊗ ω1)⊕k
⊕ (1 ⊗ ω1)),

with kp > m, k = q and p = q2.

• (GLm ×GLn, (ω1 ⊗ ω1)⊕k
⊕ (1 ⊗ ω1)⊕t),

with kp > m, kq > p, ta j+2 = m̃0 and km̃0 = ñ0 for m̃0 = a j+1q−a jp, ñ0 = a jq−a j−1p
and j = ν(k, q, p).

• (GL1+k+t
1 × SLm × SLn, (ω1 ⊗ 1) ⊕ (ω1 ⊗ ω1)⊕k

⊕ (1 ⊗ ω1)⊕t),
with kp = m and t + k = p + 1.

• (GLm ×GLn, (ω1 ⊗ 1) ⊕ (ω1 ⊗ ω1)⊕k
⊕ (1 ⊗ ω1)⊕t),

with kp = m and t + k = p.

• (GLm ×GLn, (ω1 ⊗ 1)⊕s
⊕ (ω1 ⊗ ω1)⊕k

⊕ (1 ⊗ ω1)⊕t),
with kp = m, 2 ≤ s and t + ks = p.

Let p = km+ t−n, q = kp+ s−m and r = kq−p. From case 1 (c) we get the following
special modules:

• (GLm ×GLn, (ω∗1 ⊗ 1)⊕s
⊕ (ω1 ⊗ ω1)⊕k

⊕ (1 ⊗ ω1)⊕t),
with kp > m, kq > p, t > 0, sa j+1 + ta j+2 = m̃0 and ñ0 = km̃0 for m̃0 = a j+1q− a jp,
ñ0 = a jq − a j−1p and j = ν(k, q, p).

• (GLm ×GLn, (ω∗1 ⊗ 1)⊕s
⊕ (ω1 ⊗ ω1)⊕k),

with kp > m, kq > p, kr = q, 2 ≤ s and ks = r.

• (GLk+1
1 × SLm × SLn, (ω∗1 ⊗ 1) ⊕ (ω1 ⊗ ω1)⊕k),

with kp > m, kq > p, k = r + 1 and q = r2 + r.

• (GLm ×GLn, (ω∗1 ⊗ 1) ⊕ (ω1 ⊗ ω1)⊕k),
with kp > m, kq > p, k = r and q = r2.

• (GLm ×GLn, (ω∗1 ⊗ 1)⊕s
⊕ (ω1 ⊗ ω1)⊕k),

with kp > m, kq > p, kr > q, sa j+2 = m̃0 and km̃0 = ñ0 for m̃0 = a j+1r − a jq,
ñ0 = a jr − a j−1q and j = ν(k, r, q).

• (GLs+k+1
1 × SLm × SLn, (ω∗1 ⊗ 1)⊕s

⊕ (ω1 ⊗ ω1)⊕k
⊕ (1 ⊗ ω1)),

with kp > m, kq = p and s + k = q + 1.



13.2 Special Modules for KII 139

• (GLm ×GLn, (ω∗1 ⊗ 1)⊕s
⊕ (ω1 ⊗ ω1)⊕k

⊕ (1 ⊗ ω1),
with kp > m, kq = p and s + k = q.

• (GLm ×GLn, (ω∗1 ⊗ 1)⊕s
⊕ (ω1 ⊗ ω1)⊕k

⊕ (1 ⊗ ω1)⊕t),
with kp > m, kq = p, 2 ≤ t and s + kt = q.

• (GLs
1 × SLm ×GLn, (ω∗1 ⊗ 1)⊕s

⊕ (ω1 ⊗ ω1)⊕k),
with k = p and kp + s − 1 = m.

• (GLs+k
1 × SLm × SLn, (ω∗1 ⊗ 1)⊕s

⊕ (ω1 ⊗ ω1)⊕k),
with k = p + 1 and kp + s − 1 = m.

• (GLs+k+1
1 × SLm × SLn, (ω∗1 ⊗ 1)⊕s

⊕ (ω1 ⊗ ω1)⊕k
⊕ (1 ⊗ ω1)),

with k = p and kp + s − 1 = m.

• (GLm ×GLn, (ω∗1 ⊗ 1)⊕s
⊕ (ω1 ⊗ ω1)⊕k),

with ks = p and kp = m.

P: We consider the subcases of case 1 from lemma 13.32 one by one.

(a) As stated in remark 13.33, the module can be special only if we replace
GLk+s+t

1 × SLm × SLn by GLm ×GLn, and in this case it is special if and only if
sa j+1 + ta j+2 = m0 and n0 = km0 by proposition 13.30.

(b) The module(
GLk+s+t

1 × SLm × SLn, (ω⊕s
1 ⊗ 1) ⊕ (ω1 ⊗ ω1)⊕k

⊕ (1 ⊗ ω⊕t
1 )

)
is castling-equivalent to(

GLk+s+t
1 × SLp × SLm, (ω⊕t

1 ⊗ 1) ⊕ (ω1 ⊗ ω1)⊕k
⊕ (1 ⊗ ω∗⊕s

1 )
)

with p = km + t − n. In particular, one of them is special if and only if the
other one is. By the proof of theorem 4.15 in [17], we have p < m.

• If kp > m and s > 0, this is the case 1 (a). The module is special if and
only if we replace the group by GLp ×GLm and if ta j+1 + sa j+2 = m̃0 and
km̃0 = ñ0, with j = ν(k, p,m), m̃0 = a j+1p − a jm, ñ0 = a jp − a j−1m holds.

• If kp > m and s = 0, then t > 0 and the module is castling-equivalent to(
GLk+t

1 × SLq × SLp, (ω1 ⊗ ω1)⊕k
⊕ (1 ⊗ ω∗⊕t

1 )
)

with q = kp −m < p. Let ñ = p, m̃ = q, s̃1 = s̃2 = 0, t̃1 = 0, t̃2 = t.
If kq ≤ p and t ≥ 2, this is the case KII IV-16-ii (a) or 16-iv (b) with
parameters k ≥ 2, ñ, m̃, s̃1, s̃2, t̃1 and t̃2. We get a special module from
IV-16-ii (a) (see proposition 13.21) by replacing the group by GLq ×GLp

and with s̃1 + kt̃2 = m̃, i.e. kt = k2m + kt − kn − m = q. We do not get
special modules from IV-16-iv (b) (see proposition 13.23).
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If kq ≤ p and t = 1, it is the second case in remark 11.6. By proposi-
tion 13.10 (and by looking up the simple special modules in proposi-
tion 13.3), there are two candidates for special modules. The first one
must satisfy k = m̃ + 1 (i.e. k = q + 1 = k2m + k − kn −m + 1) and ñ = km̃
(i.e. p = km+1−n = m̃2+m̃ = (k2m+k−kn−m+1)2+k2m+k−kn−m+1).
The second one is obtained by replacing GLk+1

1 ×SLq×SLp by GLq×GLp

with parameters satisfying k = m̃ = q = k2m + k − kn − m and ñ = p =
km + 1 − n = km̃ = (k2m + k − kn −m)2.
If kq > p, this is the case 1 (a). The module is special if and only if we
replace the group by GLq × GLp and if ta j+2 = m̃0 and km̃0 = ñ0, with
j = ν(k, q, p), m̃0 = a j+1q − a jp, ñ0 = a jq − a j−1p holds.

• If kp ≤ m and s = 0, it is the third case in remark 11.6. By proposition
13.8, it is special if kp = m and (GLl

1×SLp, ω⊕t
1 ) is a special module (from

proposition 13.3) for some l ≤ t. We obtain two candidates. The first
candidate must satisfy l = t and t = p+1 = km+ t−n+1, i.e. km+1 = n.
For the second candidate, replace the group by GLp × GLm (i.e. l = 1)
with t satisfying t = p = km + t − n, i.e. km − n = 0. In either case, we
have a contradiction to km > n, so we do not get a special module.

• If kp ≤ m and s = 1, it is the second case in remark 11.6. By proposition
13.10, it is special if and only if kp = m and (GLl

1×SLp, ω⊕t+k
1 ) is a special

module (from proposition 13.3) for some l ≤ t+k. We obtain two special
modules. The first module satisfies l = t+k and t+k = p+1 = km+t−n+1.
For the second module, replace the group by GLp×GLm (i.e. l = 1) with
t + k = p = km + t − n.

• If kp ≤ m and 2 ≤ s, it is the case KII IV-16-ii (a) or KII IV-16-iv (b) with
parameters ñ = m, m̃ = p, s̃1 = t, s̃2 = t̃1 = 0, t̃2 = s. For KII IV-16-ii
(a), i.e. kp = m, we get a special module by replacing the group by
GLp ×GLm with s̃1 + kt̃2 = m̃, i.e. t+ ks = p, see proposition 13.21. There
are no special modules for IV-16-iv (b) by proposition 13.23.

(c) The module(
GLk+s+t

1 × SLm × SLn, (ω∗⊕s
1 ⊗ 1) ⊕ (ω1 ⊗ ω1)⊕k

⊕ (1 ⊗ ω⊕t
1 )

)
is castling-equivalent to(

GLk+s+t
1 × SLp × SLm, (ω⊕t

1 ⊗ 1) ⊕ (ω1 ⊗ ω1)⊕k
⊕ (1 ⊗ ω⊕s

1 )
)

with p = km + t − n. By the proof of theorem 4.15 in [17], we have p < m.

• If kp > m, this is the case 1 (b) with parameters ñ = m, m̃ = p, t̃ = s ≥ 1
and s̃ = t. We get the special modules from the previous case 1 (b) by
plugging in these parameters.

• If kp + s ≤ m, this is the third case in remark 11.6. By proposition 13.8
it is special if and only if kp + s = m, if we replace GLk+s

1 by GL1, and if
(GLl

1 × SLp, ω⊕t
1 ) is a special module for some l ≤ t. Thus, we get two
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candidates for special modules. The first candidate has parameters
t = p and l = 1, i.e. km − n = 0. For the second candidate, replace
the group by GLp × GLm with parameters t = p + 1 and l = p + 1, i.e.
km − n + 1 = 0. In either case, we have a contradiction to km > n, so we
do not obtain any special modules.

• If kp+ s− 1 = m and t = 0 or t = 1, then this is the fourth case in remark
11.6. By proposition 13.9 it is special if and only if (GLl

1×SLp, ω⊕k
1 ⊕ω

∗⊕t
1 )

is a simple special module for some l ≤ k+t. Checking with proposition
13.3, we get three special modules. The first module has parameters
t = 0, l = 1 and k = p, and we replace GLk

1 by GL1. The second module
has parameters t = 0, l = p + 1 and k = p + 1. The third module has
parameters t = 1, l = p + 1 and k = p.

• If kp + 1 = m, s ≥ 3 and t = 0, this is the case KII IV-16-iii. According to
proposition 13.22, there are no special modules for k > 1.

• If kp = m, 2 ≤ s and t = 0, this is the case KII IV-16-ii (b) with parameters
ñ = m, m̃ = p, s̃1 = t = 0, s̃2 = 0, t̃1 = s and t̃2 = 0. By proposition 13.21,
it is special if and only if we replace the group by GLp × GLm, and the
parameters satisfy s̃2 + kt̃1 = m̃, i.e. ks = p. �

Proposition 13.35 Let p = km + t − n − 1. From case 2 (a) in lemma 13.32 we get
the following special modules:

• (GLm ×GLn, (ω1 ⊗ 1)⊕s
⊕ (ω1 ⊗ ω1)⊕k

⊕ (1 ⊗ (ω∗1 ⊕ ω
⊕t−1
1 )),

with kp > m, (t − 2)a j+1 + (k + s)a j+2 = m̃0 and ñ0 = km̃0 for m̃0 = a j+1p − a jm,
ñ0 = a jp − a j−1m and j = ν(k, p,m).

• (GLm ×GLn, (ω1 ⊗ 1)⊕s
⊕ (ω1 ⊗ ω1)⊕k

⊕ (1 ⊗ (ω∗1 ⊕ ω
⊕t−1
1 )),

with kp = m and t − 2 + k(k + s) = p.

Let p = km + t − n and q = kp + t − m − 1. From case 2 (b) in lemma 13.32 we get
the following special modules:

• (GLm ×GLn, ((ω1 ⊕ ω∗⊕s−1
1 ) ⊗ 1) ⊕ (ω1 ⊗ ω1)⊕k

⊕ (1 ⊗ ω⊕t
1 ),

with kp > m, kq > p, (s−2)a j+1+(k+t)a j+2 = m̃0 and ñ0 = km̃0 for m̃0 = a j+1q−a jp,
ñ0 = a jq − a j−1p and j = ν(k, q, p).

• (GLm ×GLn, ((ω1 ⊕ ω∗⊕s−1
1 ) ⊗ 1) ⊕ (ω1 ⊗ ω1)⊕k

⊕ (1 ⊗ ω⊕t
1 ),

with kp > m, kq = p and s − 2 + k(k + t) = q.

• (GLk+s+t
1 × SLm × SLn, ((ω1 ⊕ ω∗⊕s−1

1 ) ⊗ 1) ⊕ (ω1 ⊗ ω1)⊕k
⊕ (1 ⊗ ω⊕t

1 ),
with m = s − 1 + kp and k + t = p + 1.

• (GLs
1 × SLm ×GLn, ((ω1 ⊕ ω∗⊕s−1

1 ) ⊗ 1) ⊕ (ω1 ⊗ ω1)⊕k
⊕ (1 ⊗ ω⊕t

1 ),
with m = s − 1 + kp and k + t = p.

P: We consider the subcases of case 2 from lemma 13.32 one by one.
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(a) By lemma 13.6, the module(
GLk+s+t

1 × SLm × SLn, (ω⊕s
1 ⊗ 1) ⊕ (ω1 ⊗ ω1)⊕k

⊕ (1 ⊗ (ω∗1 ⊕ ω
⊕t−1
1 ))

)
is special if and only if(

GLk+s
1 × SLm ×GLn−1, (µ ⊗ ω⊕k+s

1 ⊗ 1) ⊕ (ω1 ⊗ ω1)⊕k
⊕ (1 ⊗ ω⊕t−2

1 )
)

is special, which is castling equivalent (in the sense of lemma 9.25) to(
GLk+s

1 ×GLp × SLm, (ω⊕t−2
1 ⊗ 1) ⊕ (ω1 ⊗ ω1)⊕k

⊕ (µ ⊗ 1 ⊗ ω∗⊕k+s
1 )

)
with p = km + (t − 2) − (n − 1) = km + t − n − 1.

• If kp > m, this is the case 1 (a) of lemma 13.32, with the group replaced
by GLk+s

1 ×GLp×SLm and parameters ñ = m, m̃ = p, s̃1 = t−2, s̃2 = t̃1 = 0
and t̃2 = k + s. By the proof of theorem 4.16 in [17], we have m > p.
Argueing as in remark 13.33, we still have to replace GLk+s

1 ×GLp × SLm

by GLp×GLm in order to obtain special modules. Then we obtain them
by plugging in the parameters in proposition 13.34.

• If kp ≤ m, as k + s ≥ 2, this is the case KII IV-16-ii (a) or KII IV-16-iv (b)
with parameters ñ = m, m̃ = p, s̃1 = t − 2, s̃2 = t̃1 = 0 and t̃2 = k + s. For
IV-16-ii (a), i.e. kp = m, we get a special module by replacing the group
by GLp ×GLm, see proposition 13.21. There are no special modules for
IV-16-iv (b) by proposition 13.23.

(b) The module(
GLk+s+t

1 × SLm × SLn, ((ω1 ⊕ ω
∗⊕s−1
1 ) ⊗ 1) ⊕ (ω1 ⊗ ω1)⊕k

⊕ (1 ⊗ ω⊕t
1 )

)
with 2 ≤ s is castling equivalent to(

GLk+s+t
1 × SLp × SLm, (ω⊕t

1 ⊗ 1) ⊕ (ω1 ⊗ ω1)⊕k
⊕ (1 ⊗ (ω∗1 ⊕ ω

⊕s−1
1 ))

)
with p = km + t − n and p < m (cf. theorem 4.5 in [17]).

• If kp > m, this is the case 2 (a) with parameters ñ = m, m̃ = p, s̃1 = t,
s̃2 = 0, t̃1 = s − 1 and t̃2 = 1. We get the special modules from the
previous case 2 (a) by plugging in these parameters.

• If kp ≤ m, this is the second case from remark 11.6. By proposition 13.10,
we obtain two special modules. The first module satisfies m = s−1+ kp
and k + t = p + 1. For the second module, replace GLk+t+s

1 × SLp × SLm

by GL1+s
1 × SLp × SLm with parameters m = s − 1 + kp and k + t = p. �

Proposition 13.36 From case 3 (a) in lemma 13.32 we get the following special
modules:
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• (GLm ×GLn, (ω1 ⊗ 1)⊕s
⊕ (ω1 ⊗ ω1)⊕k

⊕ (1 ⊗ (ω1 ⊕ ω∗⊕t−1
1 )),

with (k + s)a j+1 + (t − 2)a j+2 = m̃0 and ñ0 = km̃0, for m̃0 = a j+1m − a j(n − 1),
ñ0 = a jm − a j−1(n − 1) and j = ν(k,m,n − 1).

Let p = km + t − n. From case 3 (b) in lemma 13.32 we get the following special
modules:

• (GLm ×GLn, (ω1 ⊗ 1)⊕s
⊕ (ω1 ⊗ ω1)⊕k

⊕ (1 ⊗ (ω1 ⊕ ω∗⊕t−1
1 )),

with kp > m, (k+t)a j+1+(s−2)a j+2 = m̃0 and ñ0 = km̃0, for m̃0 = a j+1p−a j(m−1),
ñ0 = a jp − a j−1(m − 1) and j = ν(k, p,m − 1).

P: We consider the subcases of case 3 from lemma 13.32 one by one.

(a) By lemma 13.6, the module(
GLk+s+t

1 × SLm × SLn, (ω⊕s
1 ⊗ 1) ⊕ (ω1 ⊗ ω1)⊕k

⊕ (1 ⊗ (ω1 ⊕ ω
∗⊕t−1
1 ))

)
is special if and only if(

GLk+s
1 × SLm ×GLn−1, (µ ⊗ ω⊕k+s

1 ⊗ 1) ⊕ (ω1 ⊗ ω1)⊕k
⊕ (1 ⊗ ω∗⊕t−2

1 )
)

is special. Prehomogeneity implies m < n − 1, see theorem 4.5 in [17]. As
km > n − 1, this is the case 1 (a) in lemma 13.32 with the group replaced
by GLk+s

1 × SLm × GLn−1 and parameters ñ = n − 1, m̃ = m, s̃1 = k + s,
s̃2 = t̃1 = 0 and t̃2 = t−2. Argueing as in remark 13.33, we still have to replace
GLk+s

1 ×SLm×GLn−1 by GLm×GLn−1 in order to obtain special modules. Then
we obtain them by plugging in the parameters in proposition 13.34.

(b) The module(
GLk+s+t

1 × SLm × SLn, ((ω⊕s−1
1 ⊕ ω∗1) ⊗ 1) ⊕ (ω1 ⊗ ω1)⊕k

⊕ (1 ⊗ ω⊕t
1 )

)
is castling-equivalent to(

GLk+s+t
1 × SLp × SLm, (ω⊕t

1 ⊗ 1) ⊕ (ω1 ⊗ ω1)⊕k
⊕ (1 ⊗ (ω1 ⊕ ω

∗⊕s−1
1 ))

)
with p = km + t − n. By theorem 4.5 in [17] we have p < n.

• If kp > m, this is the case 3 (a) in lemma 13.32, with parameters ñ = m,
m̃ = p, s̃1 = t, s̃2 = 0, t̃1 = 1 and t̃2 = s− 1. We get the special modules by
plugging in these parameters in the previous case 3 (a).

• If kp ≤ m, this is the case KII IV-16-iv (c). By proposition 13.23, there
are no special modules for k > 1. �

Proposition 13.37 Let p = km + t − n − 1. From case 4 in lemma 13.32, we get the
following special modules:
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• (GLm ×GLn, ((ω⊕s−1
1 ⊕ ω∗1) ⊗ 1) ⊕ (ω1 ⊗ ω1)⊕k

⊕ (1 ⊗ (ω⊕t−1
1 ⊕ ω∗1))),

with kp > m − 1, (k + t − 2)a j+1 + (k + s − 2)a j+2 = m̃0 and ñ0 = km̃0 for
m̃0 = a j+1p − a j(m − 1), ñ0 = a jp − a j−1(m − 1) and j = ν(k, p,m − 1).

• (GLm ×GLn, ((ω⊕s−1
1 ⊕ ω∗1) ⊗ 1) ⊕ (ω1 ⊗ ω1)⊕k

⊕ (1 ⊗ (ω⊕t−1
1 ⊕ ω∗1))),

with m − 1 = kp and (k + t − 2) + k(k + s − 2) = p.

P: By applying lemma 13.6 twice, we have that(
GLk+s+t

1 × SLm × SLn, ((ω⊕s−1
1 ⊕ ω∗1) ⊗ 1) ⊕ (ω1 ⊗ ω1)⊕k

⊕ (1 ⊗ (ω⊕t−1
1 ⊕ ω∗1))

)
is special if and only if(

GLm−1 ×GLn−1, (ω⊕k+s−2
1 ⊗ 1) ⊕ (ω1 ⊗ ω1)⊕k

⊕ (1 ⊗ ω⊕k+t−2
1 )

)
is special. The latter module is castling equivalent to(

GLp ×GLm−1, (ω⊕k+t−2
1 ⊗ 1) ⊕ (ω1 ⊗ ω1)⊕k

⊕ (1 ⊗ ω∗⊕k+s−2
1 )

)
with p = k(m − 1) + (k + t − 2) − (n − 1) = km + t − n − 1 and p < m − 1 (cf. theorem
4.5 in [17]).

• If kp > m − 1, this is the case 1 (a) from lemma 13.32 with parameters ñ = m,
m̃ = n, s̃1 = k+ t− 2, s̃2 = t̃1 = 0 and t̃2 = k+ s− 2. We get the special modules
by plugging in these parameters in proposition 13.34.

• If k = 2, kp ≤ m − 1 and s = 1, this is the second case in remark 11.6. By
proposition 13.10, it is special if and only if m − 1 = 2p and (GLp, ω⊕t+2

1 ) is
special, i.e. t + 2 = p.

• If kp ≤ m− 1 and s > 1 or k > 2, this is the case KII IV-16-ii (a) or KII IV-16-iv
(b). If kp = m − 1, it is IV-16-ii (a) and the module is special if and only if
(k + t − 2) + k(k + s − 2) = p by proposition 13.21. For IV-16-iv (b), there are
no special modules by proposition 13.23. Note that these conditions even
include the previous case k = 2, s = 1. �

14 Some Results and Observations

In this chapter, we present some results on special modules obtained by applying
the results from the previous chapters of this part.
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14.1 Special Modules for GL1 × SLm × SLn

Consider the group GL1×SLm×SLn. If there were any irreducible special modules
for this group, each of them would either appear in theorem 11.1, SK I (not in SK
II or SK III by regularity), or be castling-equivalent to one of the modules there.
By writing GL2 = GL2 × SL1, we obtain the following theorem.

Theorem 14.1 The only irreducible special modules for GL1 × SLm × SLn are (up
to equivalence and castling equivalence)

• SK I-4: (GL2 × SL1, 3ω1 ⊗ ω1, Sym3
k

3).

• SK I-8: (SL3 ×GL2, 2ω1 ⊗ ω1, Sym2
k

3
⊗ k

2).

• SK I-11: (SL5 ×GL4, ω2 ⊗ ω1,
∧2
k

5
⊗ k

4).

Note that m , n in each of these cases. This holds even for non-irreducible
modules, because every irreducible component would have to be non-regular by
theorem 12.14, but by SK II and SK III in theorem 11.1, there are no non-regular
modules for the case m = n.

Theorem 14.2 There are no special modules for GL1 × SLn × SLn, n ≥ 2.

Remark 14.3 If we admit a centre GL2
1, then we trivially obtain special modules

with semisimple part SLn × SLn as direct compositions (see definition 10.22) of
special modules for GL1 × SLn.

14.2 Special Modules with Semisimple Factors other than SLn

One might be lead to believe that for every special module, the only simple factors
of the group are the groups SLn. But in fact, we found three special modules
containing a simple factor Sp2 (which is locally isomorphic to SO5). These are

• KI I-16: (GL2
1 × Sp2 × SL3, (ω1 ⊗ω1) ⊕ (ω2 ⊗ 1) ⊕ (1 ⊗ω∗1), (k4

⊗ k
3) ⊕V5

⊕ k
3).

• KI I-18: (GL3
1 × Sp2 × SL2, (ω1 ⊗ ω1) ⊕ (ω1 ⊗ 1) ⊕ (1 ⊗ ω1), (k4

⊗ k
2) ⊕ k4

⊕ k
2).

• KI I-19: (GL3
1 × Sp2 × SL4, (ω1 ⊗ ω1) ⊕ (ω1 ⊗ 1) ⊕ (1 ⊗ ω∗1), (k4

⊗ k
4) ⊕ k4

⊕ k
4).

Still, it remains an open question whether there are special modules with simple
factors other than SLn or Sp2.

For a reductive group with one-dimensional torus it is not even known if any
simple factor other than SLn is possible. For the irreducible case it is known that
this is not the case. For the non-irreducible case, theorem 12.14 tells us that the
only reductive groups possible must be castling-equivalent to those labelled by
SK III in theorem 11.1. We see that any such group may contain at most one simple
factor G , SLn.
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Part V

Appendix

A Tables of Groups and Lie Algebras

A.1 The Classical Groups and their Lie Algebras

G g = Lie(G) dimk(g)
general linear group

GLn = {A ∈Matn | det(A) , 0} gln =Matn n2

special linear group
SLn = {A ∈Matn | det(A) = 1} sln = {X ∈Matn | tr(X) = 0} n2

− 1
orthogonal group

On = {A ∈ GLn | AA> = In} on = {X ∈Matn | X> = −X} 1
2n(n − 1)

special orthogonal group
SOn = {A ∈ On | det(A) = 1} son = on

1
2n(n − 1)

unitary group
Un = {A ∈ GLn(C) | AA∗ = In} un = {X ∈Matn(C) | X = −X>} n2

special unitary group
SUn = {A ∈ Un | det(A) = 1} sun = {X ∈ un | tr(X) = 0} n2

− 1
symplectic group

Spn = {A ∈ GL2n | A>JA = J} spn = {X ∈Mat2n | X>J + JX = 0} n(2n + 1)

Note that un and sun are Lie algebras over k = R, but not over C.

A.2 Complex Simple Lie-Algebras

Type g dim(g)
An sln+1(C) n ≥ 1 n2 + 2n
Bn o2n+1(C) n ≥ 2 2n2 + n
Cn spn(C) n ≥ 3 2n2 + n
Dn o2n(C) n ≥ 4 2n2

− n
G2 - 14
F4 - 52
E6 - 72
E7 - 133
E8 - 248

Further we have A1 = B1 = C1, B2 = C2 and A3 = D3.
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A.3 Some Isomorphisms of Classical Lie Algebras

For an algebraically closed field k of characteristic 0, we have the following
isomorphisms of Lie algebras:

so2(k) � k � gl1(k)
sp1(k) � sl2(k)
so3(k) � sl2(k)

so4(k) � sl2(k) ⊕ sl2(k)
so5(k) � sp2(k)
so6(k) � sl4(k)

Not all of these isomorphisms hold over the real numbers. We have

sp1(R) � sl2(R)
so3(R) � su2

so4(R) � su2 ⊕ su2

so6(R) � su4

Recall that two groups with isomorphic Lie algebras are locally isomorphic.

B Tables of Special Modules

In this appendix, we present the special modules found in this thesis. Note that
this list is not claimed to be a complete classification of the respective cases.

B.1 Special Modules with Torus GL1

B.1.1 1-Simple Special Modules with Torus GL1

• SK I-4: (GL2, 3ω1, Sym3
k

2).

• Ks I-2: (GL1 × SLn, µ ⊗ ω⊕n
1 , (k

n)⊕n).

B.1.2 2-Simple Special Modules with Torus GL1

• SK I-8: (SL3 ×GL2, 2ω1 ⊗ ω1, Sym2
k

3
⊗ k

2).

• SK I-11: (SL5 ×GL4, ω2 ⊗ ω1,
∧2
k

5
⊗ k

4).

• KII I-2: (GL1 × G × SLn, (%1 ⊗ ω1) ⊕ . . . ⊕ (%k ⊗ ω1) ⊕ (%∗k+1 ⊗ 1) ⊕ . . . ⊕ (%∗l ⊗ 1)),
with n = −1 +

∑k
i=1 dim(%i) and (GL1 × G, %1 ⊕ . . . ⊕ %l) a special module for a

simple group G.

• KII IV-16-iv (a): (GLm × SLm+1, (ω1 ⊗ ω1) ⊕ (1 ⊗ ω∗1)⊕m+1), m ≥ 2.
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B.2 Special Modules with Spm

• KI I-16: (GL2
1 × Sp2 × SL3, (ω1 ⊗ω1) ⊕ (ω2 ⊗ 1) ⊕ (1 ⊗ω∗1), (k4

⊗ k
3) ⊕V5

⊕ k
3).

• KI I-18: (GL3
1 × Sp2 × SL2, (ω1 ⊗ ω1) ⊕ (ω1 ⊗ 1) ⊕ (1 ⊗ ω1), (k4

⊗ k
2) ⊕ k4

⊕ k
2).

• KI I-19: (GL3
1 × Sp2 × SL4, (ω1 ⊗ ω1) ⊕ (ω1 ⊗ 1) ⊕ (1 ⊗ ω∗1), (k4

⊗ k
4) ⊕ k4

⊕ k
4).

B.3 All Special Modules from Chapter 13

B.3.1 1-Simple Special Modules

• SK I-4: (GL2, 3ω1, Sym3
k

2).

• Ks I-2: (GL1 × SLn, µ ⊗ ω⊕n
1 , (k

n)⊕n).

• Ks I-3: (GLn+1
1 × SLn, ω⊕n+1

1 , (kn)⊕n+1).

• Ks I-4: (GLn+1
1 × SLn, ω⊕n

1 ⊕ ω
∗

1, (k
n)⊕n
⊕ k

n∗).

• Ks I-11 for n = 2: (GL2
1 × SL2, 2ω1 ⊕ ω1, Sym2

k
2
⊗ k

2).

B.3.2 2-Simple Special Modules

• SK I-8: (SL3 ×GL2, 2ω1 ⊗ ω1, Sym2
k

3
⊗ k

2).

• SK I-11: (SL5 ×GL4, ω2 ⊗ ω1,
∧2
k

5
⊗ k

4).

• KI I-1: (GL2
1 × SL4 × SL2, (ω2 ⊗ ω1) ⊕ (ω1 ⊗ ω1), (

∧2
k

4
⊗ k

2) ⊕ (k4
⊗ k

2)).

• KI I-2: (GL2
1 × SL4 × SL2, (ω2 ⊗ω1)⊕ (ω1 ⊗ 1)⊕ (1⊗ω1), (

∧2
k

4
⊗k

2)⊕k4
⊕k

2).

• KI I-6: (GL3
1×SL5×SL2, (ω2⊗ω1)⊕ (ω∗1⊗1)⊕ (ω(∗)

1 ⊗1), (
∧2
k

5
⊗k

2)⊕k5∗
⊕k

5(∗)).

• KI I-16: (GL2
1 × Sp2 × SL3, (ω1 ⊗ω1) ⊕ (ω2 ⊗ 1) ⊕ (1 ⊗ω∗1), (k4

⊗ k
3) ⊕V5

⊕ k
3).

• KI I-18: (GL3
1 × Sp2 × SL2, (ω1 ⊗ ω1) ⊕ (ω1 ⊗ 1) ⊕ (1 ⊗ ω1), (k4

⊗ k
2) ⊕ k4

⊕ k
2).

• KI I-19: (GL3
1 × Sp2 × SL4, (ω1 ⊗ ω1) ⊕ (ω1 ⊗ 1) ⊕ (1 ⊗ ω∗1), (k4

⊗ k
4) ⊕ k4

⊕ k
4).

• KII I-1: (GL j
1 × G ×GLn, ((σ1 ⊕ . . . ⊕ σs) ⊗ ω1) ⊕ ((%1 ⊕ . . . ⊕ %l) ⊗ 1)),

with n =
∑s

i=1 dim(%i) and (GL j
1×G, %1⊕ . . .⊕%l) a special module for a simple

group G, 1 ≤ j ≤ l.

• KII I-2: (GL j+t
1 ×G×SLn, ((%1⊕ . . .⊕ %k)⊗ω1)⊕ ((%∗k+1⊕ . . .⊕ %

∗

l )⊗ 1)⊕ (1⊗ω⊕t
1 )),

with n = t − 1 +
∑k

i=1 dim(%i), 1 ≤ j ≤ l, and (GL j
1 × G, %1 ⊕ . . . ⊕ %l) a special

module for a simple group G.
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• KII I-3: (GL j+t
1 ×G×SLn, ((%1⊕. . .⊕%k)⊗ω1)⊕((%k+1⊕. . .⊕%l)⊗1)⊕(1⊗(ω⊕t−1

1 ⊕ω∗1))),
with n = t − 1 +

∑k
i=1 dim(%i), 1 ≤ j ≤ l, and (GL j

1 × G, %1 ⊕ . . . ⊕ %l) a special
module for a simple group G.

• KII II-4-i (b): (GL3
1 × SL2 × SL3, (ω1 ⊗ ω1) ⊕ (1 ⊗ 2ω(∗)

1 ) ⊕ (ω(∗)
1 ⊗ 1)).

• KII II-4-ii (a): (GL5
1×SL3×SL4, (ω1⊗ω1)⊕(1⊗ω(∗)

2 )⊕((ω1⊕ω1)(∗)
⊗1)⊕(1⊗ω(∗)

1 )).

• KII II-4-iii (d): (GL5
1×SL2×SL3, (ω1⊗ω1)⊕(1⊗ω2)⊕((ω1⊕ω1)(∗)

⊗1)⊕(1⊗ω1)).

• KII II-4-iii (f): (GL5
1×SL2×SL3, (ω1⊗ω1)⊕(1⊗ω2)⊕(ω1⊗1)⊕(ω∗1⊗1)⊕(1⊗ω1)).

• KII II-4-iii (g): (GL4
1 × SL2 × SL3, (ω1 ⊗ ω1) ⊕ (1 ⊗ ω2) ⊕ (1 ⊗ ω1) ⊕ (1 ⊗ ω∗1)).

• KII II-4-iii (h): (GL4
1 × SL2 × SL3, (ω1 ⊗ ω1) ⊕ (1 ⊗ ω2) ⊕ (1 ⊗ ω∗1) ⊕ (1 ⊗ ω∗1)).

• KII II-4-iii (n): (GL5
1×SL2×SL3, (ω1⊗ω1)⊕(1⊗ω∗2)⊕((ω1⊕ω1)(∗)

⊗1)⊕(1⊗ω(∗)
1 )).

• KII II-4-iii (p): (GL4
1 × SL2 × SL3, (ω1 ⊗ ω1) ⊕ (1 ⊗ ω∗2) ⊕ (1 ⊗ ω∗1) ⊕ (1 ⊗ ω∗1)).

• KII II-4-iii (q): (GL5
1×SL2×SL3, (ω1⊗ω1)⊕(1⊗ω∗2)⊕(ω1⊗1)⊕(ω∗1⊗1)⊕(1⊗ω(∗)

1 )).

• KII II-5-i (b): (GL3
1 × SL2 × SL3, (2ω1 ⊗ ω1) ⊕ (1 ⊗ ω(∗)

2 ) ⊕ (ω1 ⊗ 1)).

• KII II-5-ii (b): (GL4
1 × SL2 × SL3, (ω1 ⊗ ω1) ⊕ (1 ⊗ ω2) ⊕ (2ω1 ⊗ 1) ⊕ (1 ⊗ ω1)).

• KII II-5-iii (e): (GL4
1 × SL2 × SL3, (ω1 ⊗ ω1) ⊕ (1 ⊗ ω∗2) ⊕ (2ω1 ⊗ 1) ⊕ (1 ⊗ ω(∗)

1 )).

• KII II-5-iv (a): (GL3
1 × SL2 × SL3, (ω1 ⊗ ω1) ⊕ (1 ⊗ ω∗2) ⊕ (1 ⊗ ω∗2)).

• KII II-6 (b): (GL3
1 × SL3 × SL5, (ω1 ⊗ ω1) ⊕ (1 ⊗ ω2) ⊕ (1 ⊗ ω2)).

• KII II-9 (a): (GL4
1 × SL6 × SL7, (ω1 ⊗ ω1) ⊕ (1 ⊗ ω∗2) ⊕ (1 ⊗ ω1) ⊕ (1 ⊗ ω1)).

• KII II-10: (GLr+1
1 × SLn × SLn, (ω1 ⊗ ω1) ⊕ (%1 ⊗ 1) ⊕ . . . ⊕ (%k ⊗ 1) ⊕ (1 ⊗ %∗k+1) ⊕

. . . ⊕ (1 ⊗ %∗r)), where (GLr
1 × SLn, %1 ⊕ . . . ⊕ %r) is a special module.

• KII III-12: (GL2
1 × SL4 × SL8, (ω2 ⊗ ω1) ⊕ (ω1 ⊗ ω1)).

• KII III-13-i (d): (GL5
1×SL2×SL3, (ω1⊗ω1)⊕(1⊗ω∗1)⊕(1⊗ω∗1)⊕(ω(∗)

2 ⊗1)⊕(1⊗ω∗1)).

• KII III-13-i (e): (GL5
1×SL2×SL3, (ω1⊗ω1)⊕(1⊗ω∗1)⊕(1⊗ω∗1)⊕(ω∗2⊗1)⊕(1⊗ω1)).

• KII III-13-i (g): (GL5
1×SL2×SL3, (ω1⊗ω1)⊕(1⊗ω∗1)⊕(1⊗ω∗1)⊕(ω2⊗1)⊕(1⊗ω1)).

• KII III-13-ii (a): (GL5
1×SL2×SL3, (ω1⊗ω1)⊕(1⊗ω1)⊕(1⊗ω1)⊕(1⊗ω1)⊕(ω2⊗1)).

• KII III-13-ii (b): (GL5
1×SL2×SL3, (ω1⊗ω1)⊕(1⊗ω1)⊕(1⊗ω1)⊕(1⊗ω1)⊕(ω∗2⊗1)).

• KII IV-16-i: (GLn+2
1 ×SLn×SLn, (ω1⊗1)⊕s1 ⊕ (ω∗1⊗1)⊕s2 ⊕ (ω1⊗ω1)⊕ (1⊗ω1)⊕t1 ⊕

(1 ⊗ ω∗1)⊕t2),
with s1 + t2 = n and s2 + t1 = 1.
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• KII IV-16-i: (GLn+2
1 × SLn × SLn, (ω1 ⊗ 1)⊕s1 ⊕ (ω1 ⊗ ω1) ⊕ (1 ⊗ ω∗1)⊕t2),

with s1 + t2 = n + 1.

• KII IV-16-i: (GLn ×GLn, (ω1 ⊗ 1)⊕s1 ⊕ (ω1 ⊗ ω1) ⊕ (1 ⊗ ω∗1)⊕t2),
with s1 + t2 = n.

• KII IV-16-ii (a): (GLn ×GLn, (ω1 ⊗ 1)⊕s1 ⊕ (ω1 ⊗ ω1)⊕k
⊕ (1 ⊗ ω∗1)⊕t2),

with s1 + kt2 = m.

• KII IV-16-ii (b): (GLn ×GLn, (ω∗1 ⊗ 1)⊕s2 ⊕ (ω1 ⊗ ω1) ⊕ (1 ⊗ ω1)⊕t1),
with s2 + kt1 = m.

• KII IV-16-iii: (GLt1−1
1 ×GLm×GLn, (ω∗1⊗1)⊕s2⊕(ω1⊗ω1)⊕(1⊗ω1)⊕(µ⊗1⊗ω1)⊕t1−1,

with s2 + t1 = m + 1.

• KII IV-16-iv (a): (GLm+1
1 × SLm × SLn, (µ⊗ω∗1 ⊗ 1)⊕ (ω1 ⊗ω1)⊕ (µ⊗ 1⊗ω∗1)⊕m),

with n = m + 1.

• KII IV-16-iv (a): (GLm × SLn, (ω1 ⊗ ω1) ⊕ (1 ⊗ ω∗1)⊕m),
with n = m + 1.

• KII IV-16-iv (a): (GLm+2
1 × SLm × SLn, (ω1 ⊗ ω1) ⊕ (1 ⊗ ω∗1)⊕m+1),

with n = m + 1.

• KII IV-16-iv (a): (GLm+1
1 × SLm × SLn, (µ⊗ω1 ⊗ 1)⊕ (ω1 ⊗ω1)⊕ (µ⊗ 1⊗ω∗1)⊕m),

with n = m + 1.

• KII IV-16-iv (c): (GLt2
1 ×GLm×GLn, (ω1⊗1)⊕s1⊕(ω1⊗ω1)⊕(1⊗ω1)⊕(µ⊗1⊗ω∗1)⊕t2),

with s1 + t2 = m and n = m + 1.

• KII IV-17 (1a): (GLm ×GLn, (ω1 ⊗ 1)⊕s
⊕ (ω1 ⊗ ω1)⊕k

⊕ (1 ⊗ ω∗1)⊕t),
with sa j+1 + ta j+2 = m0 and n0 = km0.

Let p = km + t − n and q = kp −m = k2m + kt − kn −m.

• KII IV-17 (1b): (GLm ×GLn, (ω1 ⊗ 1)⊕s
⊕ (ω1 ⊗ ω1)⊕k

⊕ (1 ⊗ ω1)⊕t),
with kp > m, s > 0, ta j+1 + sa j+2 = m̃0 and ñ0 = km̃0 for m̃0 = a j+1p − a jm,
ñ0 = a jp − a j−1m and j = ν(k, p,m).

• KII IV-17 (1b): (GLm ×GLn, (ω1 ⊗ ω1)⊕k
⊕ (1 ⊗ ω1)⊕t),

with kp > m, kq = p, 2 ≤ t and kt = q.

• KII IV-17 (1b): (GLk+1
1 × SLm × SLn, (ω1 ⊗ ω1)⊕k

⊕ (1 ⊗ ω1)),
with kp > m, k = q + 1 and p = q2 + q.

• KII IV-17 (1b): (GLm ×GLn, (ω1 ⊗ ω1)⊕k
⊕ (1 ⊗ ω1)),

with kp > m, k = q and p = q2.

• KII IV-17 (1b): (GLm ×GLn, (ω1 ⊗ ω1)⊕k
⊕ (1 ⊗ ω1)⊕t),

with kp > m, kq > p, ta j+2 = m̃0 and km̃0 = ñ0 for m̃0 = a j+1q−a jp, ñ0 = a jq−a j−1p
and j = ν(k, q, p).
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• KII IV-17 (1b): (GL1+k+t
1 × SLm × SLn, (ω1 ⊗ 1) ⊕ (ω1 ⊗ ω1)⊕k

⊕ (1 ⊗ ω1)⊕t),
with kp = m and t + k = p + 1.

• KII IV-17 (1b): (GLm ×GLn, (ω1 ⊗ 1) ⊕ (ω1 ⊗ ω1)⊕k
⊕ (1 ⊗ ω1)⊕t),

with kp = m and t + k = p.

• KII IV-17 (1b): (GLm ×GLn, (ω1 ⊗ 1)⊕s
⊕ (ω1 ⊗ ω1)⊕k

⊕ (1 ⊗ ω1)⊕t),
with kp = m, 2 ≤ s and t + ks = p.

Let p = km + t − n, q = kp + s −m and r = kq − p.

• KII IV-17 (1c): (GLm ×GLn, (ω∗1 ⊗ 1)⊕s
⊕ (ω1 ⊗ ω1)⊕k

⊕ (1 ⊗ ω1)⊕t),
with kp > m, kq > p, t > 0, sa j+1 + ta j+2 = m̃0 and ñ0 = km̃0 for m̃0 = a j+1q− a jp,
ñ0 = a jq − a j−1p and j = ν(k, q, p).

• KII IV-17 (1c): (GLm ×GLn, (ω∗1 ⊗ 1)⊕s
⊕ (ω1 ⊗ ω1)⊕k),

with kp > m, kq > p, kr = q, 2 ≤ s and ks = r.

• KII IV-17 (1c): (GLk+1
1 × SLm × SLn, (ω∗1 ⊗ 1) ⊕ (ω1 ⊗ ω1)⊕k),

with kp > m, kq > p, k = r + 1 and q = r2 + r.

• KII IV-17 (1c): (GLm ×GLn, (ω∗1 ⊗ 1) ⊕ (ω1 ⊗ ω1)⊕k),
with kp > m, kq > p, k = r and q = r2.

• KII IV-17 (1c): (GLm ×GLn, (ω∗1 ⊗ 1)⊕s
⊕ (ω1 ⊗ ω1)⊕k),

with kp > m, kq > p, kr > q, sa j+2 = m̃0 and km̃0 = ñ0 for m̃0 = a j+1r − a jq,
ñ0 = a jr − a j−1q and j = ν(k, r, q).

• KII IV-17 (1c): (GLs+k+1
1 × SLm × SLn, (ω∗1 ⊗ 1)⊕s

⊕ (ω1 ⊗ ω1)⊕k
⊕ (1 ⊗ ω1)),

with kp > m, kq = p and s + k = q + 1.

• KII IV-17 (1c): (GLm ×GLn, (ω∗1 ⊗ 1)⊕s
⊕ (ω1 ⊗ ω1)⊕k

⊕ (1 ⊗ ω1),
with kp > m, kq = p and s + k = q.

• KII IV-17 (1c): (GLm ×GLn, (ω∗1 ⊗ 1)⊕s
⊕ (ω1 ⊗ ω1)⊕k

⊕ (1 ⊗ ω1)⊕t),
with kp > m, kq = p, 2 ≤ t and s + kt = q.

• KII IV-17 (1c): (GLs
1 × SLm ×GLn, (ω∗1 ⊗ 1)⊕s

⊕ (ω1 ⊗ ω1)⊕k),
with k = p and kp + s − 1 = m.

• KII IV-17 (1c): (GLs+k
1 × SLm × SLn, (ω∗1 ⊗ 1)⊕s

⊕ (ω1 ⊗ ω1)⊕k),
with k = p + 1 and kp + s − 1 = m.

• KII IV-17 (1c): (GLs+k+1
1 × SLm × SLn, (ω∗1 ⊗ 1)⊕s

⊕ (ω1 ⊗ ω1)⊕k
⊕ (1 ⊗ ω1)),

with k = p and kp + s − 1 = m.

• KII IV-17 (1c): (GLm ×GLn, (ω∗1 ⊗ 1)⊕s
⊕ (ω1 ⊗ ω1)⊕k),

with ks = p and kp = m.

Let p = km + t − n − 1.
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• KII IV-17 (2a): (GLm ×GLn, (ω1 ⊗ 1)⊕s
⊕ (ω1 ⊗ ω1)⊕k

⊕ (1 ⊗ (ω∗1 ⊕ ω
⊕t−1
1 )),

with kp > m, (t − 2)a j+1 + (k + s)a j+2 = m̃0 and ñ0 = km̃0 for m̃0 = a j+1p − a jm,
ñ0 = a jp − a j−1m and j = ν(k, p,m).

• KII IV-17 (2a): (GLm ×GLn, (ω1 ⊗ 1)⊕s
⊕ (ω1 ⊗ ω1)⊕k

⊕ (1 ⊗ (ω∗1 ⊕ ω
⊕t−1
1 )),

with kp = m and t − 2 + k(k + s) = p.

Let p = km + t − n and q = kp + t −m − 1.

• KII IV-17 (2b): (GLm ×GLn, ((ω1 ⊕ ω∗⊕s−1
1 ) ⊗ 1) ⊕ (ω1 ⊗ ω1)⊕k

⊕ (1 ⊗ ω⊕t
1 ),

with kp > m, kq > p, (s−2)a j+1+(k+t)a j+2 = m̃0 and ñ0 = km̃0 for m̃0 = a j+1q−a jp,
ñ0 = a jq − a j−1p and j = ν(k, q, p).

• KII IV-17 (2b): (GLm ×GLn, ((ω1 ⊕ ω∗⊕s−1
1 ) ⊗ 1) ⊕ (ω1 ⊗ ω1)⊕k

⊕ (1 ⊗ ω⊕t
1 ),

with kp > m, kq = p and s − 2 + k(k + t) = q.

• KII IV-17 (2b): (GLk+s+t
1 ×SLm×SLn, ((ω1⊕ω∗⊕s−1

1 )⊗1)⊕ (ω1⊗ω1)⊕k
⊕ (1⊗ω⊕t

1 ),
with m = s − 1 + kp and k + t = p + 1.

• KII IV-17 (2b): (GLs
1 × SLm ×GLn, ((ω1 ⊕ω∗⊕s−1

1 ) ⊗ 1) ⊕ (ω1 ⊗ω1)⊕k
⊕ (1 ⊗ω⊕t

1 ),
with m = s − 1 + kp and k + t = p.

• KII IV-17 (3a): (GLm ×GLn, (ω1 ⊗ 1)⊕s
⊕ (ω1 ⊗ ω1)⊕k

⊕ (1 ⊗ (ω1 ⊕ ω∗⊕t−1
1 )),

with (k + s)a j+1 + (t − 2)a j+2 = m̃0 and ñ0 = km̃0, for m̃0 = a j+1m − a j(n − 1),
ñ0 = a jm − a j−1(n − 1) and j = ν(k,m,n − 1).

Let p = km + t − n.

• KII IV-17 (3b) (GLm ×GLn, (ω1 ⊗ 1)⊕s
⊕ (ω1 ⊗ ω1)⊕k

⊕ (1 ⊗ (ω1 ⊕ ω∗⊕t−1
1 )),

with kp > m, (k+t)a j+1+(s−2)a j+2 = m̃0 and ñ0 = km̃0, for m̃0 = a j+1p−a j(m−1),
ñ0 = a jp − a j−1(m − 1) and j = ν(k, p,m − 1).

Let p = km + t − n − 1.

• KII IV-17 (4): (GLm ×GLn, ((ω⊕s−1
1 ⊕ω∗1)⊗ 1)⊕ (ω1 ⊗ω1)⊕k

⊕ (1⊗ (ω⊕t−1
1 ⊕ω∗1))),

with kp > m − 1, (k + t − 2)a j+1 + (k + s − 2)a j+2 = m̃0 and ñ0 = km̃0 for
m̃0 = a j+1p − a j(m − 1), ñ0 = a jp − a j−1(m − 1) and j = ν(k, p,m − 1).

• KII IV-17 (4): (GLm ×GLn, ((ω⊕s−1
1 ⊕ω∗1)⊗ 1)⊕ (ω1 ⊗ω1)⊕k

⊕ (1⊗ (ω⊕t−1
1 ⊕ω∗1))),

with m − 1 = kp and (k + t − 2) + k(k + s − 2) = p.
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Einführung in die geometrische Invariantentheorie
Lecture Notes, 2004
http://www.uni-due.de/∼mat907/GeomInv.pdf

[30] P. T, R. Y
Lie Algebras and Algebraic Groups
Springer, 2005

http://www.math.unibas.ch/~kraft/Notizen/AlgTG.pdf
http://www.math.unibas.ch/~kraft/Papers/KP-Primer.pdf
http://www.jmilne.org/math/CourseNotes/aag.html
http://www.jstor.org/view/0003486x/di973379/97p00383/0
http://blms.oxfordjournals.org/cgi/reprint/9/1/38
http://en.scientificcommons.org/934316
http://www.uni-due.de/~mat907/GeomInv.pdf


158 References



Index
(G, %,V) (module), 28
(k,m,n) ∈ T, 102
(x, y, z) (associator), 43
A ⊕ B (direct sum of matrices), 7
A ⊗ B (tensor product of matrices), 7, 9
G ·H, G nH (semidirect product), 21
G◦ (connected component), 20
Gv (isotropy subgroup), 35, 57
In (identity matrix), 6
J (invariant matrix for Spn), 25
Q (invariant matrix for On), 26
V ⊗W (tensor product of vector spaces), 8
V�G (algebraic quotient), 37
Vm (vector space of dimension m), 6
V⊕k (multiple direct sum), 6
V⊗k (multiple tensor product), 6
Vω (weight space), 31
Ad(g) (adjoint representation), 30
Aff(V) (affine group), 46
X(G) (character group), 27
Xrel(G) (associated to relative invariants), 71
GLn (general linear group), 24, 147
G+m (additive group), 27
Grk(V) (Grassmann variety), 19
Lie(G) (Lie algebra of G), 23
NG(H) (normaliser), 21
Pf (Pfaffian), 37
Rad(G) (radical), 22
SLn (special linear group), 25, 147
SOn (special orthogonal group), 26, 147
SUn (special unitary group), 147
Spn (symplectic group), 25, 147
Spinn (spin group), 26
SymV (symmetric algebra), 10
SymkV (symmetric product), 9
TpX (tangent space), 18
Unn (unipotent group), 27
Vsing (singular set), 57
Z(G) (centre), 21
ZG(H) (centraliser), 21
ad(X) (adjoint representation), 30
aff(V) (affine algebra), 46⊕

(Gi, %i,Vi) (direct composition), 78∧
V (exterior algebra), 11∧k V (exterior product), 11

clos(X) (closure), 15

codim(X) (codimension), 17
dϕx (differential), 18
dim(%) (module dimension), 6
dis( f ) (discriminant), 37
evx (evaluation map), 47
I(X) (ideal of X), 15
gv (isotropy algebra), 35, 57
gln, 22, 24, 147
grad log f , 73
k(X) (rational functions), 15
k[V]G (invariant ring), 36
k[X] (coordinate ring), 15
O(X) (regular functions), 15
Matm,n, Matn (set of matrices), 6
µ (scalar multiplication), 34
ng(h) (normaliser), 24
ν(k,m,n), 102
nuc(g, ∗) (nucleus), 45
On (orthogonal group), 26, 147
on, 26, 147
ϕ∗ (comorphism), 16
ϕ f (= grad log f ), 73
rad(g) (radical), 24
%(g).v (group action), 6
spn, 25, 147
√
I (radical ideal), 13
sln, 25, 147
son, 26, 147
sun, 147
trdegk(K) (transcendence degree), 13
Un (unitary group), 79, 147
un, 147
Z ( f ) (zero set), 14
z(g) (centre), 24
zg(h) (centraliser), 24

absolute invariant, 69
additive group, 27
adjoint representation, 30
affine algebraic group, 20
affine connection

flat, 45
torsion free, 45

affine coordinate ring, 15
affine group, 46
affine space, 14
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affine variety, 14
algebraic degree, 13
algebraic element, 13
algebraic extension, 13
algebraic group, 20, 24

additive, 27
character, 27
linear, 24
morphism, 20
radical, 22
reductive, 33
semisimple, 21
simple, 21
solvable, 22
torus, 22

algebraic quotient, 37
algebraic set, 14
algebraic variety, 14
algebraically closed, 13
algebraically independent, 13
associated character, 69
associated Lie algebra, 44
associative kernel (see nucleus), 45
associator product, 43

basic relative invariants, 71
birationally equivalent, 16
black block, 130

canonical representative, 55
Cartan algebra, 30
Cartan subgroup, 33
castling equivalence, 66, 67
castling transform, 62
centraliser, 21, 24
centre, 21, 24, 104
character, 27

associated, 69
multiplicatively independent, 70

character group, 27
classical groups, 147
codimension, 17
commutator subalgebra, 23
commutator subgroup, 22
comorphism, 16
composition

GLn, 78
direct, 78

conjugate representations, 28
connected component, 20

convex homogeneous cone, 46
coordinate ring, 15
covariant derivative, 45

degree formula, 75
derivation, 18
differential, 18
dimension

local, 17
variety, 17

direct composition, 78
direct sum

of matrices, 7
discriminant, 37
dominant morphism, 16
dual representation, 29

equivalent representations, 29
evaluation map, 47
exceptional groups, 26
exterior algebra, 11
exterior product, 11, 32

family, 55
fibre

reduced, 39
zero, 39

field
algebraically closed, 13

field extension, 13
finitely generated, 13

finitely generated, 13
fully reducible module, 29
fully reducible representation, 29
fundamental weight, 32

general linear group, 24, 147
generating function, 131
generic isotropy subalgebra, 57
generic isotropy subgroup, 57
generic point, 48, 57
Grassmann variety, 19, 63
group

affine, 46
classical, 147
general linear, 147
orthogonal, 147
special linear, 147
special orthogonal, 147
special unitary, 147
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symplectic, 147
unitary, 147

Helmstetter transform, 45
highest weight, 31
highest weight vector, 31
homogeneous cone, 46
hypersurface, 17

ideal, 22
maximal, 12
primary, 12
prime, 12
radical, 13

indecomposable, 78
integral ring, 19
integrally closed, 19
invariant, 69

absolute, 69
relative, 69

invariant function, 36
invariant ring, 36
irreducible, 14
irreducible module, 29
irreducible representation, 29
isomorphism

of varieties, 16
isotropy algebra, 35
isotropy subgroup, 35

Jacobi identity, 22

KI, 90
KII, 95
Killing form, 30
Ks, 86

left-multiplication, 44
left-regular representation, 44
left-symmetric algebra, 43
Lie algebra, 22, 147

classification, 31
ideal, 22
radical, 24
reductive, 34
semisimple, 23
simple, 23, 31, 147
solvable, 23

Lie bracket, 22
Lie group, 36
Lie subalgebra, 22

linear algebraic group, 24
linear part, 47
linear representation, 48
local dimension, 17
local homomorphism, 23
localisation, 13

manifold, 45
maximal Ideal, 12
module, 28

fully reducible, 29
irreducible, 29
prehomogeneous, 57
special, 52

morphism, 16, 20
of algebraic groups, 20

multiplicative group, 27
multiplicatively independent, 70

Noetherian ring, 12
non-degenerate relative invariant, 74
normal variety, 19
normaliser, 21, 24
nucleus, 45

orbit, 35
orthogonal group, 26, 147

special, 147

Pfaffian, 37
pre-Lie algebra (see left-symmetric algebra),

43
prehomogeneous module, 57

n-simple, 62
2-simple, 90, 95
classification, 83, 86, 90, 95
irreducible, reduced, 83
reductive, 61
regular, 74
simple, 62, 86

prehomogeneous variety, 59
primary ideal, 12
prime ideal, 12

quasi-affine variety, 14
quotient field, 13

radical, 22, 24
radical ideal, 13
rank, 30
rational functions, 15
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rational representation, 103
reduced, 66
reduced fibre, 39
reduced root system, 30
reductive group, 33
reductive Lie algebra, 34
reductive prehomogeneous module, 61
regular, 74

prehomogeneous module, 74
regular function, 15
relative invariant, 69

basic, 71
non-degenerate, 74

representation, 28
étale, 48, 103
adjoint, 30
conjugate, 28
direct sum, 28
dual, 29
equivalent, 29
fully reducible, 29
irreducible, 29
linear, 48
rational, 103
tensor product, 28
trivial, 34

root, 30
root space, 30
root system, 30

reduced, 30

scalar multiplication, 34, 108
semidirect product, 21
semisimple, 23

Lie algebra, 23
semisimple group, 21
simple, 21, 23

group, 21
Lie algebra, 23

singular point, 18, 57
singular set, 57
SK, 83
smooth point, 18
smooth variety, 18
solvable group, 22
solvable Lie algebra, 23
solvable radical, 22, 24
special linear group, 25, 147
special module, 52, 103

special orthogonal group, 26, 147
special unitary group, 147
spin group, 26
stable subset, 35
standard representation, 32
subalgebra, 22
symmetric algebra, 10
symmetric product, 9, 32
symplectic group, 25, 147

tangent space, 18
tensor algebra, 8, 9
tensor product, 8

of mappings, 8
of matrices, 7, 9
representation, 28

theorem
Cartan, 34
Cartan’s criterion for semisimplicity, 30
Fundamental Theorem, 40, 41
Hilbert’s Nullstellensatz, 15
Hilbert-Nagata, 37
Luna, 35
Matsushima, 35
Rosenlicht, 38
Sato, 63
Sato, Kimura, 83

torus, 22
transcendence basis, 13
transcendence degree, 13
transcendent element, 13
transcendent extension, 13
translational part, 47
trival prehomogeneous module, 58
trival representation, 34
type I, 90
type II, 95

unipotent group, 27
unitary group, 147

special, 147

variety
normal, 19

vector field, 45

weight, 31
fundamental, 32
highest, 31

weight space, 31
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Zariski topology, 14
zero fibre, 39
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