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I Introduction
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The objects of interest

.M; g/ is a connected pseudo-Riemannian homogeneous manifold of finite volume.

The metric tensor g is non-degenerate but can be indefinite.

A proper subspace U � TpM can be totally isotropic, that is, gp jU D 0.
The index s of .M; g/ is the maximal dimension of a totally isotropic subspace
U � TpM .

Riemannian s D 0 (positive definite).
Lorentzian s D 1 (“lightlike lines”).
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Groups of isometries

.M; g/ is a connected pseudo-Riemannian homogeneous manifold of finite volume;

M D G=H for a connected Lie group G and a closed subgroup H ,

G acts transitively and by isometries (in particular volume-preserving),

G acts almost effectively (H has no connected normal subgroups).

Question:

Which Lie groups G can be isometry groups of such M ?

Which subgroups H � G can be stabilizers of such actions?

How is geometry of G and M related?
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Related work

Zimmer’s and Gromov’s work in the 1980s on rigid geometric structures.

Adams & Stuck (1997), Zeghib (1998):
Classification of isometry groups of compact Lorentzian manifolds.
(Higher indices are much more difficult.)

Zeghib (1998):
Classification of compact homogeneous Lorentzian manifolds.

Quiroga-Barranco (2006):
Structure of compact M with arbitrary index and topologically transitive action
of a simple G.
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Induced scalar product

Assumptions:

G acts transitively and by isometries on M D G=H ,

G acts almost effectively (H has no connected normal subgroups).

The metric g on M induces a symmetric bilinear form h�; �i on g. Then:

h�; �i is Adg.H/-invariant (and adg.h/-invariant),

hAdg.h/x;Adg.h/yi D hx; yi for all h 2 H;

hadg.h0/x; yi D �hx; adg.h0/yi for all h0 2 h:

The kernel of h�; �i is

g? D fx 2 g j hx; �i D 0g D h:
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Recall: Zariski closure

G � GLn.C/ is a linear algebraic group (given by polynomial equations).
For a subgroup of H � G, let H

z
denote the Zariski closure of H in G:

H
z

is the smallest algebraic subgroup of G that contains H .

H is Zariski-dense in G if H
z
D G.

7



Recall: Zariski closure

G � GLn.C/ is a linear algebraic group (given by polynomial equations).
For a subgroup of H � G, let H

z
denote the Zariski closure of H in G:

H
z

is the smallest algebraic subgroup of G that contains H .

H is Zariski-dense in G if H
z
D G.

7



Density properties

Mostow Density Theorem (1971)
Let

G be a connected Lie group,

H a closed subgroup,

� a finite G-invariant finite measure on G=H ,

� W G ! GL.V / a representation, where dimV <1.

Then �.H/
z

contains a cocompact normal subgroup of �.G/
z
.

This means:

�.H/
z

contains every unipotent subgroup of �.G/
z
.

In particular:
�.H/

z
contains every non-compact connected simple subgroup of �.G/,

and �.H/
z
� �.N /

z
, where N is the nilradical of G.

�.H/
z

contains everyR-diagonalizable subgroup of �.G/
z
.
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Nil-invariance
Recall:

G acts transitively and by isometries on M D G=H ,
G acts almost effectively on M .

Then h�; �i is Adg.H/-invariant.

Let KS be a Levi subgroup of G, where
K is compact semisimple and
S is semisimple without compact factors.

Let R denote the solvable radical of G, so that G D KSR.

Since h�; �i is a quadratic function on g, Mostow’s density theorem applied to
� D Adg implies:

Corollary

1 h�; �i is Adg.H/
z
-invariant.

2 h�; �i is invariant under Adg.S/ and Adg.R/split.

In particular, h�; �i is invariant under all nilpotent elements in of Lie.Adg.H/
z
/.

We say h�; �i is nil-invariant.
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II Compact pseudo-Riemannian solvmanifolds
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Solvmanifolds

For now, assume that G is a connected solvable Lie group,
so that .M; g/ is a compact pseudo-Riemannian solvmanifold.

To understand G, study solvable Lie algebras g with nil-invariant h�; �i.

Recall: g? D h.

If G acts almost effectively, then g? contains no ideal¤ 0 in g.
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Example: Oscillator algebra

A solvable Lie algebra with Lorentzian (nil-)invariant product is the
oscillator algebra

g D osc.˛/ D R Ë hei2nC1

where the Heisenberg algebra is

hei2nC1 D R
2n
�R;

two-step nilpotent with one-dimensional centerR,

andR acts onR2n by rotations with weights ˛ D .˛1; : : : ; ˛n/.

Define Lorentzian h�; �i on osc.˛/ by a definite scalar product onR2n and a dual
pairing of totally isotropic subspacesR andR.

Medina (1985) and Hilgert & Hofmann (1985) showed that this is the only
solvable non-abelian Lie algebra with invariant Lorentzian product.

For index � 2, Kath and Olbrich (2004) gave a classification scheme for Lie
algebras with invariant scalar product, and a classification for index 2.

For index � 3 classification becomes extremely complicated.
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Discrete stabilizer for solvable G

Proposition
Let h�; �i be a symmetric nil-invariant bilinear form on a solvable Lie algebra g.

Then g? is an ideal in g.

If g? contains no non-trivial ideals of g, then g? D 0.

Theorem A
Assume G is solvable.
Then G acts almost freely on M .

Meaning:

The stabiliser � D Gx is discrete.

The metric g on M pulls back to a left-invariant pseudo-Riemannian metric gG
on G.

gG is invariant under conjugation by � .
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Bi-invariant metric for solvable G
g is solvable with nil-invariant scalar product h�; �i.

Proposition
h�; �i is invariant on g.

Proof
Let j be a totally isotropic central ideal in g. Define the reduction g D j?=j.

h�; �i induces a nil-invariant scalar product h�; �ig on g.

Assume that h�; �ig is invariant on g.

It is now easily verified that h�; �i on g is invariant if h�; �ig is.

Iterated reduction to the abelian case and induction yield the result.

Theorem B
Assume G is solvable.
Then g pulls back to a bi-invariant pseudo-Riemannian metric gG on G.

Corollary A+B
The universal cover fM of M is a pseudo-Riemannian symmetric space.
In particular, M is locally symmetric.
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No larger isometry groups

Theorem C
Assume G is solvable and effective.
Then G D Iso.M/ı.

Implications:

Johnson (1972) showed that any solvmanifold has presentations by connected
solvable groups of arbitrary dimension.

Theorem A shows that most of them cannot act isometrically.

Theorem C shows that no larger non-solvable group can act isometrically.
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III Compact pseudo-Riemannian homogeneous spaces for arbitrary Lie groups
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Lie groups of general type

Now let G be an arbitrary connected Lie group, and K, S , R as before,

K compact semisimple,

S semisimple without compact factors,

R the solvable radical of G.
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Nil-invariant forms

We study Lie algebras
g D .k � s/ Ë r

with nil-invariant symmetric bilinear form h�; �i.

h�; �i is a priori invariant under Adg.S/ and Adg.R/split (maximal
trigonalisable).

From the solvable case it follows that
the restriction h�; �isËr is invariant under Adg.SR/.
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Lorentzian case

If the index of h�; �i is 1, then g D k � s � r, with either s D 0 or s D sl2.R/.

Zeghib’s Theorem (1998)
Let M be a homogeneous Lorentzian manifold of finite volume.
Then, up to “Riemannian type factors”, M is one of the following:

1 Iso.M; g/ contains a cover of PSL2.R/.fM D fSL2.R/ � L, where L is a compact Riemannian homogeneous space.
2 Iso.M; g/ contains an oscillator group Osc.˛/.fM D Osc.˛/ �S1 L, and M DfM=� , where � is isomorphic to a lattice in

Osc.˛/.

19
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Osc.˛/.
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SR-invariance

Suppose the index of h�; �i is � 1.

Theorem D

1 h�; �i is Adg.SR/-invariant.
2 h�; �isËr is Adg.G/-invariant.

Theorem E
If the index of h�; �i is � 2 and g? does not contain a non-trivial ideal of g, then:

1 g is a direct sum of ideals g D k � s � r.
2 g? � z.r/ � k and g? \ .s � r/ D 0.

This allows us to

classify Lie algebras with h�; �i for index � 2,

recover Zeghib’s Theorem (Lorentzian case) by algebraic methods,

prove an analogue of Zeghib’s Theorem for index 2.
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IV Application: Compact pseudo-Riemannian Einstein solvmanifolds
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Einstein metrics

.M; g/ is called Einstein manifold if

Ric D �g

for some constant � 2 R.

For a bi-invariant metric g on G,

Ric D �
1

4
�

where �.x; y/ D tr.ad.x/ad.y// is the Killing form of g.
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Compact Einstein solvmanifolds

Let .M; gM / be a compact pseudo-Riemannian solvmanifold.

Recall:

M D G=� for a lattice � � G.

gM pulls back to bi-invariant gG .

h�; �i on g is non-degenerate and invariant.

If .M; gM / is Einstein, then
Ric D 0 D �:
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Example
If g is nilpotent, then � D 0.
Question: Are there solvable g, not nilpotent, with

1 � D 0

2 and invariant scalar product h�; �i?

Example

Take the abelian Lie algebra ab41 with dim ab41 D 4 and a Lorentzian scalar
product.

Take extension
g D j� Ë .ab41 �! j/

where dim j D dim j� D 1 and a 2 j� acts on ab41 by

ıa D

0BB@
1 0 0 0

0 0 �1 0

0 1 0 0

0 0 0 �1

1CCA :
Define h�; �ig on j� � j by dual pairing. A cocycle ! corrects the Lie bracket on
ab41 � j such that h�; �ig becomes invariant with signature .4; 2/.
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Einstein scalar products

g solvable with nilradical n, then (as vector space)

g D a˚ n:

ad.x/ for x 2 n is nilpotent, so �.x; x/ D 0.

For a 2 a, the Einstein condition (Ricci-flat, � D 0) becomes

�21 C : : :C �
2
k C 2˛

2
1 C : : :C 2˛

2
m � 2ˇ

2
1 � : : : � 2ˇ

2
m D 0;

where �i 2 R and �j D ˛j C iˇj 2 CnR are the eigenvalues of ad.a/.

Theorem F
Let .g; h�; �i/ be a solvable Lie algebra with invariant Einstein scalar product.
If g is not nilpotent, then dim g � 6 and the index of h�; �i is � 2.
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Lattices

Solvable non-nilpotent Lie groups G with Einstein metrics exist.

For the existence of a compact quotient M of G, there must be a lattice � � G.

If a lattice exists (e.g. Mostow 1970), then:
1 zG has a faithful matrix representation. . .
2 . . . such that z� is represented by integer matrices.

The characteristic polynomial of exp.ad.a// has coefficients inZ for certain a 2 a. . .
which means that all eigenvalues e�i , e�j of exp.ad.a// are algebraic numbers.
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Digression: Hilbert’s 7th Problem

Hilbert’s 7th Problem
“The expression ˛ˇ , for an algebraic base ˛ and an irrational algebraic exponent ˇ,
e.g., the number 2

p
2 or e , always represents a transcendental or at least an

irrational number.”

Gelfond-Schneider Theorem (1935)
Let ˛ 2 Cnf0; 1g and let ˇ 2 C be irrational.
Then at least one of ˛, ˇ and ˛ˇ is transcendental.

Generalizations:

Baker’s Theorem (1966/67) on linear forms in logarithms of algebraic numbers
(Fields Medal 1970).

Schanuel’s Conjecture, stating:
Let ˛1; : : : ; ˛d be complex numbers that are linearly independent over Q.
Then the transcendence degree over Q of the extension field
Q.˛1; : : : ; ˛d ; e˛1 ; : : : ; e˛d / is at least d .
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Algebraic lemma

Use the Gelfond-Schneider Theorem in the search for lattices.

Algebraic Lemma
Let X 2 Rn�n in the normal form of ad.a/ with eigenvalues �1; : : : ; �k 2 R and
�1; : : : ; �m; �1; : : : ; �m 2 CnR. Suppose the eigenvalues satisfy

�21 C : : :C �
2
k C 2Re.�1/2 C : : :C 2Re.�m/2 � 2Im.�1/2 � : : : � 2Im.�m/2 D 0:

If n � 5, then exp.X/ is not conjugate to a matrix in SLn.Z/.

Proof
To satisfy the given equation,X has at least one non-real eigenvalue pair � , � .
If n � 5, then n D 4 or n D 5.

One can show that there always exists a pair of eigenvalues � , � i for exp.X/
(need n � 5).

By Gelfond-Schneider Theorem:
One of � or � i is transcendental, so exp.X/ is not conjugate to a matrix in SLn.Z/.

Conjecture
If Schanuel’s Conjecture is true, then the Algebraic Lemma holds without “n � 5”.
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Solv) Nil

Theorem G
Let M be a compact pseudo-Riemannian Einstein solvmanifold and dimM � 7.
Then M is a nilmanifold.

Proof
M D G=� , with � � G a lattice andG solvable, but not nilpotent.

By Theorem F: May assume 6 � dimM � 7.

Consider g D a˚ n as before. For a 2 a, ad.a/ is not nilpotent.
By Mostow’s result, we may assume exp.ad.a// is conjugate to a matrix in SLn.Z/.

LetW D im ad.a/. Then dimW � 5 (from structure theory).

Apply Algebraic Lemma to ad.a/jW :
exp.ad.a// is not conjugate to a matrix in SLn.Z/.

Contradiction, soG must be nilpotent.

Conjecture
Every compact pseudo-Riemannian Einstein solvmanifold is a nilmanifold.

29



Solv) Nil

Theorem G
Let M be a compact pseudo-Riemannian Einstein solvmanifold and dimM � 7.
Then M is a nilmanifold.

Proof
M D G=� , with � � G a lattice andG solvable, but not nilpotent.

By Theorem F: May assume 6 � dimM � 7.

Consider g D a˚ n as before. For a 2 a, ad.a/ is not nilpotent.
By Mostow’s result, we may assume exp.ad.a// is conjugate to a matrix in SLn.Z/.

LetW D im ad.a/. Then dimW � 5 (from structure theory).

Apply Algebraic Lemma to ad.a/jW :
exp.ad.a// is not conjugate to a matrix in SLn.Z/.

Contradiction, soG must be nilpotent.

Conjecture
Every compact pseudo-Riemannian Einstein solvmanifold is a nilmanifold.

29



Solv) Nil

Theorem G
Let M be a compact pseudo-Riemannian Einstein solvmanifold and dimM � 7.
Then M is a nilmanifold.

Proof
M D G=� , with � � G a lattice andG solvable, but not nilpotent.

By Theorem F: May assume 6 � dimM � 7.

Consider g D a˚ n as before. For a 2 a, ad.a/ is not nilpotent.
By Mostow’s result, we may assume exp.ad.a// is conjugate to a matrix in SLn.Z/.

LetW D im ad.a/. Then dimW � 5 (from structure theory).

Apply Algebraic Lemma to ad.a/jW :
exp.ad.a// is not conjugate to a matrix in SLn.Z/.

Contradiction, soG must be nilpotent.

Conjecture
Every compact pseudo-Riemannian Einstein solvmanifold is a nilmanifold.

29



Solv) Nil

Theorem G
Let M be a compact pseudo-Riemannian Einstein solvmanifold and dimM � 7.
Then M is a nilmanifold.

Proof
M D G=� , with � � G a lattice andG solvable, but not nilpotent.

By Theorem F: May assume 6 � dimM � 7.

Consider g D a˚ n as before. For a 2 a, ad.a/ is not nilpotent.
By Mostow’s result, we may assume exp.ad.a// is conjugate to a matrix in SLn.Z/.

LetW D im ad.a/. Then dimW � 5 (from structure theory).

Apply Algebraic Lemma to ad.a/jW :
exp.ad.a// is not conjugate to a matrix in SLn.Z/.

Contradiction, soG must be nilpotent.

Conjecture
Every compact pseudo-Riemannian Einstein solvmanifold is a nilmanifold.

29



Solv) Nil

Theorem G
Let M be a compact pseudo-Riemannian Einstein solvmanifold and dimM � 7.
Then M is a nilmanifold.

Proof
M D G=� , with � � G a lattice andG solvable, but not nilpotent.

By Theorem F: May assume 6 � dimM � 7.

Consider g D a˚ n as before. For a 2 a, ad.a/ is not nilpotent.
By Mostow’s result, we may assume exp.ad.a// is conjugate to a matrix in SLn.Z/.

LetW D im ad.a/. Then dimW � 5 (from structure theory).

Apply Algebraic Lemma to ad.a/jW :
exp.ad.a// is not conjugate to a matrix in SLn.Z/.

Contradiction, soG must be nilpotent.

Conjecture
Every compact pseudo-Riemannian Einstein solvmanifold is a nilmanifold.

29



Solv) Nil

Theorem G
Let M be a compact pseudo-Riemannian Einstein solvmanifold and dimM � 7.
Then M is a nilmanifold.

Proof
M D G=� , with � � G a lattice andG solvable, but not nilpotent.

By Theorem F: May assume 6 � dimM � 7.

Consider g D a˚ n as before. For a 2 a, ad.a/ is not nilpotent.
By Mostow’s result, we may assume exp.ad.a// is conjugate to a matrix in SLn.Z/.

LetW D im ad.a/. Then dimW � 5 (from structure theory).

Apply Algebraic Lemma to ad.a/jW :
exp.ad.a// is not conjugate to a matrix in SLn.Z/.

Contradiction, soG must be nilpotent.

Conjecture
Every compact pseudo-Riemannian Einstein solvmanifold is a nilmanifold.

29



Solv) Nil

Theorem G
Let M be a compact pseudo-Riemannian Einstein solvmanifold and dimM � 7.
Then M is a nilmanifold.

Proof
M D G=� , with � � G a lattice andG solvable, but not nilpotent.

By Theorem F: May assume 6 � dimM � 7.

Consider g D a˚ n as before. For a 2 a, ad.a/ is not nilpotent.
By Mostow’s result, we may assume exp.ad.a// is conjugate to a matrix in SLn.Z/.

LetW D im ad.a/. Then dimW � 5 (from structure theory).

Apply Algebraic Lemma to ad.a/jW :
exp.ad.a// is not conjugate to a matrix in SLn.Z/.

Contradiction, soG must be nilpotent.

Conjecture
Every compact pseudo-Riemannian Einstein solvmanifold is a nilmanifold.

29



Solv) Nil

Theorem G
Let M be a compact pseudo-Riemannian Einstein solvmanifold and dimM � 7.
Then M is a nilmanifold.

Proof
M D G=� , with � � G a lattice andG solvable, but not nilpotent.

By Theorem F: May assume 6 � dimM � 7.

Consider g D a˚ n as before. For a 2 a, ad.a/ is not nilpotent.
By Mostow’s result, we may assume exp.ad.a// is conjugate to a matrix in SLn.Z/.

LetW D im ad.a/. Then dimW � 5 (from structure theory).

Apply Algebraic Lemma to ad.a/jW :
exp.ad.a// is not conjugate to a matrix in SLn.Z/.

Contradiction, soG must be nilpotent.

Conjecture
Every compact pseudo-Riemannian Einstein solvmanifold is a nilmanifold.

29



References

S. Adams, G. Stuck,
The isometry group of a compact Lorentz manifold I,
Inventiones Mathematicae 129, 1997

O. Baues, W. Globke,
Rigidity of compact pseudo-Riemannian homogeneous spaces for solvable Lie groups,
to appear in International Mathematics Research Notices, arXiv:1507.02575

O. Baues, W. Globke, A. Zeghib,
The structure of compact homogeneous spaces with indefinite of low metric index,
in preparation

W. Globke, Y. Nikolayevsky,
Compact pseudo-Riemannian homogeneous Einstein manifolds of low dimension,
to appear in Differential Geometry and Applications, arXiv:1611.08662

A. Zeghib,
Sur les espaces-temps homogènes,
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