Compact pseudo-Riemannian homogeneous spaces

WOLFGANG GLOBKE (joint works with Oliver Baues, Yuri Nikolayevsky and Abdelghani Zeghib)

School of Mathematical Sciences

Pure Mathematics Seminar University of Queensland, November 2017

I Introduction

(M, g) is a connected pseudo-Riemannian homogeneous manifold of finite volume.

(M, g) is a connected pseudo-Riemannian homogeneous manifold of finite volume.

• The metric tensor g is non-degenerate but can be indefinite.

(M, g) is a connected pseudo-Riemannian homogeneous manifold of finite volume.

- The metric tensor g is non-degenerate but can be indefinite.
- A proper subspace $U \subset T_p M$ can be totally isotropic, that is, $g_p|_U = 0$.

(M, g) is a connected pseudo-Riemannian homogeneous manifold of finite volume.

- The metric tensor g is non-degenerate but can be indefinite.
- A proper subspace $U \subset T_p M$ can be totally isotropic, that is, $g_p|_U = 0$.
- The index s of (M, g) is the maximal dimension of a totally isotropic subspace U ⊂ T_pM.
 - Riemannian s = 0 (positive definite).
 - Lorentzian s = 1 ("lightlike lines").

Groups of isometries

(M, g) is a connected pseudo-Riemannian homogeneous manifold of finite volume;

Groups of isometries

(M, g) is a connected pseudo-Riemannian homogeneous manifold of finite volume;

- M = G/H for a connected Lie group G and a closed subgroup H,
- G acts transitively and by isometries (in particular volume-preserving),
- G acts almost effectively (H has no connected normal subgroups).

Groups of isometries

(M, g) is a connected pseudo-Riemannian homogeneous manifold of finite volume;

- M = G/H for a connected Lie group G and a closed subgroup H,
- G acts transitively and by isometries (in particular volume-preserving),
- G acts almost effectively (H has no connected normal subgroups).

Question:

- Which Lie groups G can be isometry groups of such M?
- Which subgroups $H \subset G$ can be stabilizers of such actions?
- How is geometry of G and M related?

Related work

- Zimmer's and Gromov's work in the 1980s on rigid geometric structures.
- Adams & Stuck (1997), Zeghib (1998): Classification of isometry groups of compact Lorentzian manifolds. (Higher indices are much more difficult.)
- Zeghib (1998):

Classification of compact homogeneous Lorentzian manifolds.

• Quiroga-Barranco (2006): Structure of compact *M* with arbitrary index and topologically transitive action of a simple *G*.

Assumptions:

- G acts transitively and by isometries on M = G/H,
- *G* acts almost effectively (*H* has no connected normal subgroups).

Assumptions:

- G acts transitively and by isometries on M = G/H,
- *G* acts almost effectively (*H* has no connected normal subgroups).

The metric g on M induces a symmetric bilinear form $\langle \cdot, \cdot \rangle$ on g.

Assumptions:

- G acts transitively and by isometries on M = G/H,
- G acts almost effectively (H has no connected normal subgroups).

The metric g on M induces a symmetric bilinear form $\langle \cdot, \cdot \rangle$ on g. Then:

• $\langle \cdot, \cdot \rangle$ is $\operatorname{Ad}_{\mathfrak{g}}(H)$ -invariant (and $\operatorname{ad}_{\mathfrak{g}}(\mathfrak{h})$ -invariant),

$$\begin{split} & \langle \mathrm{Ad}_{\mathfrak{g}}(h)x, \mathrm{Ad}_{\mathfrak{g}}(h)y \rangle = \langle x, y \rangle \quad \text{for all } h \in H, \\ & \langle \mathrm{ad}_{\mathfrak{g}}(h')x, y \rangle = -\langle x, \mathrm{ad}_{\mathfrak{g}}(h')y \rangle \quad \text{for all } h' \in \mathfrak{h}. \end{split}$$

Assumptions:

- G acts transitively and by isometries on M = G/H,
- G acts almost effectively (H has no connected normal subgroups).

The metric g on M induces a symmetric bilinear form $\langle \cdot, \cdot \rangle$ on g. Then:

• $\langle \cdot, \cdot \rangle$ is $\operatorname{Ad}_{\mathfrak{g}}(H)$ -invariant (and $\operatorname{ad}_{\mathfrak{g}}(\mathfrak{h})$ -invariant),

$$\begin{split} & \langle \mathrm{Ad}_{\mathfrak{g}}(h)x, \mathrm{Ad}_{\mathfrak{g}}(h)y \rangle = \langle x, y \rangle \quad \text{for all } h \in H, \\ & \langle \mathrm{ad}_{\mathfrak{g}}(h')x, y \rangle = -\langle x, \mathrm{ad}_{\mathfrak{g}}(h')y \rangle \quad \text{for all } h' \in \mathfrak{h}. \end{split}$$

The kernel of (·, ·) is

$$\mathfrak{g}^{\perp} = \{ x \in \mathfrak{g} \mid \langle x, \cdot \rangle = 0 \} = \mathfrak{h}.$$

Recall: Zariski closure

 $G \leq GL_n(\mathbb{C})$ is a linear algebraic group (given by polynomial equations). For a subgroup of $H \leq G$, let \overline{H}^2 denote the Zariski closure of H in G:

Recall: Zariski closure

 $G \leq GL_n(\mathbb{C})$ is a linear algebraic group (given by polynomial equations). For a subgroup of $H \leq G$, let \overline{H}^Z denote the Zariski closure of H in G:

- \overline{H}^{z} is the smallest algebraic subgroup of G that contains H.
- *H* is Zariski-dense in G if $\overline{H}^z = G$.

Mostow Density Theorem (1971)

Let

- *G* be a connected Lie group,
- H a closed subgroup,
- μ a finite *G*-invariant finite measure on *G*/*H*,
- $\sigma: G \to \operatorname{GL}(V)$ a representation, where dim $V < \infty$.

Then $\overline{\sigma(H)}^{z}$ contains a cocompact normal subgroup of $\overline{\sigma(G)}^{z}$.

Mostow Density Theorem (1971)

Let

- *G* be a connected Lie group,
- H a closed subgroup,
- μ a finite *G*-invariant finite measure on *G*/*H*,
- $\sigma: G \to \operatorname{GL}(V)$ a representation, where dim $V < \infty$.

Then $\overline{\sigma(H)}^{z}$ contains a cocompact normal subgroup of $\overline{\sigma(G)}^{z}$.

This means:

• $\overline{\sigma(H)}^{z}$ contains every unipotent subgroup of $\overline{\sigma(G)}^{z}$.

Mostow Density Theorem (1971)

Let

- *G* be a connected Lie group,
- H a closed subgroup,
- μ a finite *G*-invariant finite measure on *G*/*H*,
- $\sigma: G \to \operatorname{GL}(V)$ a representation, where dim $V < \infty$.

Then $\overline{\sigma(H)}^{z}$ contains a cocompact normal subgroup of $\overline{\sigma(G)}^{z}$.

This means:

- $\overline{\sigma(H)}^{z}$ contains every unipotent subgroup of $\overline{\sigma(G)}^{z}$.
- In particular:

 $\overline{\sigma(H)}^{z}$ contains every non-compact connected simple subgroup of $\sigma(G)$, and $\overline{\sigma(H)}^{z} \supset \overline{\sigma(N)}^{z}$, where *N* is the nilradical of *G*.

Mostow Density Theorem (1971)

Let

- *G* be a connected Lie group,
- H a closed subgroup,
- μ a finite *G*-invariant finite measure on *G*/*H*,
- $\sigma: G \to \operatorname{GL}(V)$ a representation, where dim $V < \infty$.

Then $\overline{\sigma(H)}^{z}$ contains a cocompact normal subgroup of $\overline{\sigma(G)}^{z}$.

This means:

- $\overline{\sigma(H)}^{z}$ contains every unipotent subgroup of $\overline{\sigma(G)}^{z}$.
- In particular:

 $\overline{\sigma(H)}^{z}$ contains every non-compact connected simple subgroup of $\sigma(G)$, and $\overline{\sigma(H)}^{z} \supset \overline{\sigma(N)}^{z}$, where *N* is the nilradical of *G*.

• $\overline{\sigma(H)}^{z}$ contains every \mathbb{R} -diagonalizable subgroup of $\overline{\sigma(G)}^{z}$.

Recall:

- G acts transitively and by isometries on M = G/H,
- G acts almost effectively on M.

Then $\langle \cdot, \cdot \rangle$ is $\operatorname{Ad}_{\mathfrak{g}}(H)$ -invariant.

Recall:

- G acts transitively and by isometries on M = G/H,
- G acts almost effectively on M.

Then $\langle \cdot, \cdot \rangle$ is $\operatorname{Ad}_{\mathfrak{g}}(H)$ -invariant.

Let KS be a Levi subgroup of G, where

- K is compact semisimple and
- *S* is semisimple without compact factors.

Let *R* denote the solvable radical of *G*, so that G = KSR.

Recall:

- G acts transitively and by isometries on M = G/H,
- G acts almost effectively on M.

Then $\langle \cdot, \cdot \rangle$ is $\operatorname{Ad}_{\mathfrak{g}}(H)$ -invariant.

Let KS be a Levi subgroup of G, where

- K is compact semisimple and
- S is semisimple without compact factors.

Let *R* denote the solvable radical of *G*, so that G = KSR.

Since $\langle \cdot, \cdot \rangle$ is a quadratic function on g, Mostow's density theorem applied to $\sigma = Ad_g$ implies:

Corollary

- $\langle \cdot, \cdot \rangle$ is $\overline{\mathrm{Ad}_{\mathfrak{g}}(H)}^{\mathbb{Z}}$ -invariant.
- $(\langle \cdot, \cdot \rangle$ is invariant under $\mathrm{Ad}_{\mathfrak{g}}(S)$ and $\mathrm{Ad}_{\mathfrak{g}}(R)_{\mathrm{split}}$.

Recall:

- G acts transitively and by isometries on M = G/H,
- G acts almost effectively on M.

Then $\langle \cdot, \cdot \rangle$ is $\operatorname{Ad}_{\mathfrak{g}}(H)$ -invariant.

Let KS be a Levi subgroup of G, where

- K is compact semisimple and
- S is semisimple without compact factors.

Let *R* denote the solvable radical of *G*, so that G = KSR.

Since $\langle \cdot, \cdot \rangle$ is a quadratic function on \mathfrak{g} , Mostow's density theorem applied to $\sigma = Ad_{\mathfrak{g}}$ implies:

Corollary

- $\langle \cdot, \cdot \rangle$ is $\overline{\mathrm{Ad}_{\mathfrak{g}}(H)}^{\mathbb{Z}}$ -invariant.
- $(\langle \cdot, \cdot \rangle)$ is invariant under $\mathrm{Ad}_{\mathfrak{g}}(S)$ and $\mathrm{Ad}_{\mathfrak{g}}(R)_{\mathrm{split}}$.

In particular, $\langle \cdot, \cdot \rangle$ is invariant under all nilpotent elements in of $\mathfrak{Lie}(\overline{\mathrm{Ad}_{\mathfrak{g}}(H)}^{\mathbb{Z}})$. We say $\langle \cdot, \cdot \rangle$ is nil-invariant. II Compact pseudo-Riemannian solvmanifolds

For now, assume that G is a connected solvable Lie group, so that (M, g) is a compact pseudo-Riemannian solvmanifold.

For now, assume that G is a connected solvable Lie group, so that (M, g) is a compact pseudo-Riemannian solvmanifold.

• To understand G, study solvable Lie algebras \mathfrak{g} with nil-invariant $\langle \cdot, \cdot \rangle$.

For now, assume that G is a connected solvable Lie group, so that (M, g) is a compact pseudo-Riemannian solvmanifold.

- To understand G, study solvable Lie algebras \mathfrak{g} with nil-invariant $\langle \cdot, \cdot \rangle$.
- Recall: $\mathfrak{g}^{\perp} = \mathfrak{h}$.

For now, assume that G is a connected solvable Lie group, so that (M, g) is a compact pseudo-Riemannian solvmanifold.

- To understand G, study solvable Lie algebras \mathfrak{g} with nil-invariant $\langle \cdot, \cdot \rangle$.
- Recall: $\mathfrak{g}^{\perp} = \mathfrak{h}$.
- If G acts almost effectively, then \mathfrak{g}^{\perp} contains no ideal $\neq 0$ in \mathfrak{g} .

A solvable Lie algebra with Lorentzian (nil-)invariant product is the oscillator algebra

 $\mathfrak{g} = \mathfrak{osc}(\alpha) = \mathbb{R} \ltimes \mathfrak{hei}_{2n+1}$

where the Heisenberg algebra is

$$\mathfrak{hei}_{2n+1} = \mathbb{R}^{2n} \times \mathbb{R},$$

two-step nilpotent with one-dimensional center \mathbb{R} ,

A solvable Lie algebra with Lorentzian (nil-)invariant product is the oscillator algebra

 $\mathfrak{g} = \mathfrak{osc}(\alpha) = \mathbb{R} \ltimes \mathfrak{hei}_{2n+1}$

where the Heisenberg algebra is

$$\mathfrak{hei}_{2n+1} = \mathbb{R}^{2n} \times \mathbb{R},$$

two-step nilpotent with one-dimensional center \mathbb{R} , and \mathbb{R} acts on \mathbb{R}^{2n} by rotations with weights $\alpha = (\alpha_1, \dots, \alpha_n)$.

A solvable Lie algebra with Lorentzian (nil-)invariant product is the oscillator algebra

 $\mathfrak{g} = \mathfrak{osc}(\alpha) = \mathbb{R} \ltimes \mathfrak{hei}_{2n+1}$

where the Heisenberg algebra is

$$\mathfrak{hei}_{2n+1} = \mathbb{R}^{2n} \times \mathbb{R},$$

two-step nilpotent with one-dimensional center \mathbb{R} , and \mathbb{R} acts on \mathbb{R}^{2n} by rotations with weights $\alpha = (\alpha_1, \dots, \alpha_n)$.

Define Lorentzian $\langle \cdot, \cdot \rangle$ on $\mathfrak{osc}(\alpha)$ by a definite scalar product on \mathbb{R}^{2n} and a dual pairing of totally isotropic subspaces \mathbb{R} and \mathbb{R} .

A solvable Lie algebra with Lorentzian (nil-)invariant product is the oscillator algebra

 $\mathfrak{g} = \mathfrak{osc}(\alpha) = \mathbb{R} \ltimes \mathfrak{hei}_{2n+1}$

where the Heisenberg algebra is

$$\mathfrak{hei}_{2n+1} = \mathbb{R}^{2n} \times \mathbb{R},$$

two-step nilpotent with one-dimensional center \mathbb{R} , and \mathbb{R} acts on \mathbb{R}^{2n} by rotations with weights $\alpha = (\alpha_1, \dots, \alpha_n)$.

Define Lorentzian $\langle \cdot, \cdot \rangle$ on $\mathfrak{osc}(\alpha)$ by a definite scalar product on \mathbb{R}^{2n} and a dual pairing of totally isotropic subspaces \mathbb{R} and \mathbb{R} .

• Medina (1985) and Hilgert & Hofmann (1985) showed that this is the only solvable non-abelian Lie algebra with invariant Lorentzian product.

A solvable Lie algebra with Lorentzian (nil-)invariant product is the oscillator algebra

 $\mathfrak{g} = \mathfrak{osc}(\alpha) = \mathbb{R} \ltimes \mathfrak{hei}_{2n+1}$

where the Heisenberg algebra is

$$\mathfrak{hei}_{2n+1} = \mathbb{R}^{2n} \times \mathbb{R},$$

two-step nilpotent with one-dimensional center \mathbb{R} , and \mathbb{R} acts on \mathbb{R}^{2n} by rotations with weights $\alpha = (\alpha_1, \dots, \alpha_n)$.

Define Lorentzian $\langle \cdot, \cdot \rangle$ on $\mathfrak{osc}(\alpha)$ by a definite scalar product on \mathbb{R}^{2n} and a dual pairing of totally isotropic subspaces \mathbb{R} and \mathbb{R} .

- Medina (1985) and Hilgert & Hofmann (1985) showed that this is the only solvable non-abelian Lie algebra with invariant Lorentzian product.
- For index ≥ 2, Kath and Olbrich (2004) gave a classification scheme for Lie algebras with invariant scalar product, and a classification for index 2.
- For index \geq 3 classification becomes extremely complicated.

Discrete stabilizer for solvable G

Proposition

Let $\langle \cdot, \cdot \rangle$ be a symmetric nil-invariant bilinear form on a solvable Lie algebra \mathfrak{g} .

- Then \mathfrak{g}^{\perp} is an ideal in \mathfrak{g} .
- If \mathfrak{g}^{\perp} contains no non-trivial ideals of \mathfrak{g} , then $\mathfrak{g}^{\perp} = 0$.

Discrete stabilizer for solvable G

Proposition

Let $\langle \cdot, \cdot \rangle$ be a symmetric nil-invariant bilinear form on a solvable Lie algebra \mathfrak{g} .

- Then \mathfrak{g}^{\perp} is an ideal in \mathfrak{g} .
- If \mathfrak{g}^{\perp} contains no non-trivial ideals of \mathfrak{g} , then $\mathfrak{g}^{\perp} = 0$.

Theorem A Assume G is solvable. Then G acts almost freely on M.

Discrete stabilizer for solvable G

Proposition

Let $\langle \cdot, \cdot \rangle$ be a symmetric nil-invariant bilinear form on a solvable Lie algebra \mathfrak{g} .

- Then \mathfrak{g}^{\perp} is an ideal in \mathfrak{g} .
- If \mathfrak{g}^{\perp} contains no non-trivial ideals of \mathfrak{g} , then $\mathfrak{g}^{\perp} = 0$.

Theorem A Assume G is solvable. Then G acts almost freely on M.

Meaning:

- The stabiliser $\Gamma = G_x$ is discrete.
- The metric g on M pulls back to a left-invariant pseudo-Riemannian metric g_G on G.
- g_G is invariant under conjugation by Γ .

 \mathfrak{g} is solvable with nil-invariant scalar product $\langle \cdot, \cdot \rangle$.

 \mathfrak{g} is solvable with nil-invariant scalar product $\langle \cdot, \cdot \rangle$.

Proposition

 $\langle \cdot, \cdot \rangle$ is invariant on g.

 \mathfrak{g} is solvable with nil-invariant scalar product $\langle \cdot, \cdot \rangle$.

Proposition

 $\langle \cdot, \cdot \rangle$ is invariant on \mathfrak{g} .

Proof

- Let j be a totally isotropic central ideal in g. Define the reduction $\overline{g} = j^{\perp}/j$.
- $\langle \cdot, \cdot \rangle$ induces a nil-invariant scalar product $\langle \cdot, \cdot \rangle_{\overline{\mathfrak{g}}}$ on $\overline{\mathfrak{g}}$.

 \mathfrak{g} is solvable with nil-invariant scalar product $\langle \cdot, \cdot \rangle$.

Proposition

 $\langle \cdot, \cdot \rangle$ is invariant on $\mathfrak{g}.$

Proof

- Let j be a totally isotropic central ideal in g. Define the reduction $\overline{g} = j^{\perp}/j$.
- $\langle \cdot, \cdot \rangle$ induces a nil-invariant scalar product $\langle \cdot, \cdot \rangle_{\overline{\mathfrak{g}}}$ on $\overline{\mathfrak{g}}$.
- Assume that $\langle \cdot, \cdot \rangle_{\overline{\mathfrak{g}}}$ is invariant on $\overline{\mathfrak{g}}$.
- It is now easily verified that ⟨·, ·⟩ on g is invariant if ⟨·, ·⟩_g is.
- Iterated reduction to the abelian case and induction yield the result.

 \mathfrak{g} is solvable with nil-invariant scalar product $\langle \cdot, \cdot \rangle$.

Proposition

 $\langle \cdot, \cdot \rangle$ is invariant on g.

Proof

- Let j be a totally isotropic central ideal in g. Define the reduction $\overline{g} = j^{\perp}/j$.
- $\langle \cdot, \cdot \rangle$ induces a nil-invariant scalar product $\langle \cdot, \cdot \rangle_{\overline{\mathfrak{g}}}$ on $\overline{\mathfrak{g}}$.
- Assume that $\langle \cdot, \cdot \rangle_{\overline{\mathfrak{g}}}$ is invariant on $\overline{\mathfrak{g}}$.
- It is now easily verified that (·, ·) on g is invariant if (·, ·)_g is.
- Iterated reduction to the abelian case and induction yield the result.

Theorem B

Assume G is solvable.

Then g pulls back to a bi-invariant pseudo-Riemannian metric g_G on G.

 \mathfrak{g} is solvable with nil-invariant scalar product $\langle \cdot, \cdot \rangle$.

Proposition

 $\langle \cdot, \cdot \rangle$ is invariant on g.

Proof

- Let j be a totally isotropic central ideal in g. Define the reduction $\overline{g} = j^{\perp}/j$.
- $\langle \cdot, \cdot \rangle$ induces a nil-invariant scalar product $\langle \cdot, \cdot \rangle_{\overline{\mathfrak{g}}}$ on $\overline{\mathfrak{g}}$.
- Assume that $\langle \cdot, \cdot \rangle_{\overline{\mathfrak{g}}}$ is invariant on $\overline{\mathfrak{g}}$.
- It is now easily verified that (·, ·) on g is invariant if (·, ·)_g is.
- Iterated reduction to the abelian case and induction yield the result.

Theorem B

Assume G is solvable. Then g pulls back to a bi-invariant pseudo-Riemannian metric g_G on G.

Corollary A+B

The universal cover \widetilde{M} of M is a pseudo-Riemannian symmetric space. In particular, M is locally symmetric.

No larger isometry groups

Theorem C Assume G is solvable and effective. Then $G = \text{Iso}(M)^{\circ}$.

No larger isometry groups

Theorem C Assume G is solvable and effective. Then $G = Iso(M)^{\circ}$.

Implications:

- Johnson (1972) showed that any solvmanifold has presentations by connected solvable groups of arbitrary dimension.
- Theorem A shows that most of them cannot act isometrically.
- Theorem C shows that no larger non-solvable group can act isometrically.

III Compact pseudo-Riemannian homogeneous spaces for arbitrary Lie groups

Lie groups of general type

Now let G be an arbitrary connected Lie group, and K, S, R as before,

- *K* compact semisimple,
- S semisimple without compact factors,
- *R* the solvable radical of *G*.

Nil-invariant forms

We study Lie algebras

 $\mathfrak{g}=(\mathfrak{k}\times\mathfrak{s})\ltimes\mathfrak{r}$

with nil-invariant symmetric bilinear form $\langle \cdot, \cdot \rangle$.

Nil-invariant forms

We study Lie algebras

 $\mathfrak{g} = (\mathfrak{k} \times \mathfrak{s}) \ltimes \mathfrak{r}$

with nil-invariant symmetric bilinear form $\langle \cdot, \cdot \rangle$.

- $\langle \cdot, \cdot \rangle$ is a priori invariant under $\operatorname{Ad}_{\mathfrak{g}}(S)$ and $\operatorname{Ad}_{\mathfrak{g}}(R)_{\operatorname{split}}$ (maximal trigonalisable).
- From the solvable case it follows that the restriction ⟨·, ·⟩_{sK} is invariant under Ad_q(SR).

Lorentzian case

If the index of $\langle \cdot, \cdot \rangle$ is 1, then $\mathfrak{g} = \mathfrak{k} \times \mathfrak{s} \times \mathfrak{r}$, with either $\mathfrak{s} = 0$ or $\mathfrak{s} = \mathfrak{sl}_2(\mathbb{R})$.

Lorentzian case

If the index of $\langle \cdot, \cdot \rangle$ is 1, then $\mathfrak{g} = \mathfrak{k} \times \mathfrak{s} \times \mathfrak{r}$, with either $\mathfrak{s} = 0$ or $\mathfrak{s} = \mathfrak{sl}_2(\mathbb{R})$.

Zeghib's Theorem (1998)

Let *M* be a homogeneous Lorentzian manifold of finite volume. Then, up to "Riemannian type factors", *M* is one of the following:

- Iso(*M*, g) contains a cover of PSL₂(\mathbb{R}). $\widetilde{M} = \widetilde{SL}_2(\mathbb{R}) \times L$, where *L* is a compact Riemannian homogeneous space.
- Iso(M, g) contains an oscillator group $Osc(\alpha)$. $\widetilde{M} = Osc(\alpha) \times_{S^1} L$, and $M = \widetilde{M}/\Gamma$, where Γ is isomorphic to a lattice in $Osc(\alpha)$.

Suppose the index of $\langle \cdot, \cdot \rangle$ is ≥ 1 .

Suppose the index of $\langle \cdot, \cdot \rangle$ is ≥ 1 .

Theorem D

- $\langle \cdot, \cdot \rangle$ is $\operatorname{Ad}_{\mathfrak{g}}(SR)$ -invariant.
- $(\cdot, \cdot \rangle_{\mathfrak{s} \ltimes \mathfrak{r}} \text{ is } \mathrm{Ad}_{\mathfrak{g}}(G) \text{-invariant.}$

Suppose the index of $\langle \cdot, \cdot \rangle$ is ≥ 1 .

Theorem D

- $\langle \cdot, \cdot \rangle$ is $\operatorname{Ad}_{\mathfrak{g}}(SR)$ -invariant.
- $(\cdot, \cdot \rangle_{\mathfrak{s} \ltimes \mathfrak{r}} \text{ is } \mathrm{Ad}_{\mathfrak{g}}(G) \text{-invariant.}$

Theorem E

If the index of $\langle \cdot, \cdot \rangle$ is ≤ 2 and \mathfrak{g}^{\perp} does not contain a non-trivial ideal of \mathfrak{g} , then:

g is a direct sum of ideals g = t × s × r.
g[⊥] ⊂ ₃(r) × t and g[⊥] ∩ (s × r) = 0.

Suppose the index of $\langle \cdot, \cdot \rangle$ is ≥ 1 .

Theorem D

- $\langle \cdot, \cdot \rangle$ is $\operatorname{Ad}_{\mathfrak{g}}(SR)$ -invariant.
- $(\cdot, \cdot)_{\mathfrak{s} \ltimes \mathfrak{r}} \text{ is } \mathrm{Ad}_{\mathfrak{g}}(G) \text{-invariant.}$

Theorem E

If the index of $\langle \cdot, \cdot \rangle$ is ≤ 2 and \mathfrak{g}^{\perp} does not contain a non-trivial ideal of \mathfrak{g} , then:

g is a direct sum of ideals g = t × s × r.
g[⊥] ⊂ 3(r) × t and g[⊥] ∩ (s × r) = 0.

This allows us to

- classify Lie algebras with $\langle \cdot, \cdot \rangle$ for index ≤ 2 ,
- recover Zeghib's Theorem (Lorentzian case) by algebraic methods,
- prove an analogue of Zeghib's Theorem for index 2.

IV Application: Compact pseudo-Riemannian Einstein solvmanifolds

Einstein metrics

(M, g) is called Einstein manifold if

$$Ric = \lambda g$$

for some constant $\lambda \in \mathbb{R}$.

For a bi-invariant metric g on G,

$$\operatorname{Ric} = -\frac{1}{4}\kappa$$

where $\kappa(x, y) = tr(ad(x)ad(y))$ is the Killing form of \mathfrak{g} .

Compact Einstein solvmanifolds

Let (M, g_M) be a compact pseudo-Riemannian solvmanifold.

Recall:

- $M = G/\Gamma$ for a lattice $\Gamma \leq G$.
- g_M pulls back to bi-invariant g_G .
- $\langle \cdot, \cdot \rangle$ on g is non-degenerate and invariant.

Compact Einstein solvmanifolds

Let (M, g_M) be a compact pseudo-Riemannian solvmanifold.

Recall:

- $M = G/\Gamma$ for a lattice $\Gamma \leq G$.
- g_M pulls back to bi-invariant g_G .
- $\langle \cdot, \cdot \rangle$ on g is non-degenerate and invariant.

If (M, g_M) is Einstein, then

 $\operatorname{Ric} = 0 = \kappa$.

Example

If \mathfrak{g} is nilpotent, then $\kappa = 0$. Question: Are there solvable \mathfrak{g} , not nilpotent, with

- $\bigcirc \ \kappa = 0$
- **2** and invariant scalar product $\langle \cdot, \cdot \rangle$?

Example

If \mathfrak{g} is nilpotent, then $\kappa = 0$. Question: Are there solvable \mathfrak{g} , not nilpotent, with

- $\bullet \ \kappa = 0$
- **2** and invariant scalar product $\langle \cdot, \cdot \rangle$?

Example

• Take the abelian Lie algebra \mathfrak{ab}_1^4 with dim $\mathfrak{ab}_1^4 = 4$ and a Lorentzian scalar product.

Example

If \mathfrak{g} is nilpotent, then $\kappa = 0$. Question: Are there solvable \mathfrak{g} , not nilpotent, with

- $\bullet \ \kappa = 0$
- **2** and invariant scalar product $\langle \cdot, \cdot \rangle$?

Example

- Take the abelian Lie algebra \mathfrak{ab}_1^4 with dim $\mathfrak{ab}_1^4 = 4$ and a Lorentzian scalar product.
- Take extension

$$\mathfrak{g} = \mathfrak{j}^* \ltimes (\mathfrak{ab}_1^4 \times_\omega \mathfrak{j})$$

where dim $j = \dim j^* = 1$ and $a \in j^*$ acts on \mathfrak{ab}_1^4 by

$$\delta_a = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}$$

Define $\langle \cdot, \cdot \rangle_{\mathfrak{g}}$ on $\mathfrak{j}^* \times \mathfrak{j}$ by dual pairing. A cocycle ω corrects the Lie bracket on $\mathfrak{ab}_1^4 \times \mathfrak{j}$ such that $\langle \cdot, \cdot \rangle_{\mathfrak{g}}$ becomes invariant with signature (4, 2).

g solvable with nilradical n, then (as vector space)

 $\mathfrak{g}=\mathfrak{a}\oplus\mathfrak{n}.$

g solvable with nilradical n, then (as vector space)

 $\mathfrak{g}=\mathfrak{a}\oplus\mathfrak{n}.$

• ad(x) for $x \in \mathfrak{n}$ is nilpotent, so $\kappa(x, x) = 0$.

g solvable with nilradical n, then (as vector space)

 $\mathfrak{g}=\mathfrak{a}\oplus\mathfrak{n}.$

- ad(x) for $x \in \mathfrak{n}$ is nilpotent, so $\kappa(x, x) = 0$.
- For $a \in \mathfrak{a}$, the Einstein condition (Ricci-flat, $\kappa = 0$) becomes

$$\lambda_1^2 + \ldots + \lambda_k^2 + 2\alpha_1^2 + \ldots + 2\alpha_m^2 - 2\beta_1^2 - \ldots - 2\beta_m^2 = 0,$$

where $\lambda_i \in \mathbb{R}$ and $\zeta_j = \alpha_j + i\beta_j \in \mathbb{C} \setminus \mathbb{R}$ are the eigenvalues of ad(a).

g solvable with nilradical n, then (as vector space)

 $\mathfrak{g}=\mathfrak{a}\oplus\mathfrak{n}.$

- ad(x) for $x \in \mathfrak{n}$ is nilpotent, so $\kappa(x, x) = 0$.
- For $a \in \mathfrak{a}$, the Einstein condition (Ricci-flat, $\kappa = 0$) becomes

$$\lambda_1^2 + \ldots + \lambda_k^2 + 2\alpha_1^2 + \ldots + 2\alpha_m^2 - 2\beta_1^2 - \ldots - 2\beta_m^2 = 0,$$

where $\lambda_i \in \mathbb{R}$ and $\zeta_j = \alpha_j + i\beta_j \in \mathbb{C} \setminus \mathbb{R}$ are the eigenvalues of ad(a).

Theorem F

Let $(\mathfrak{g}, \langle \cdot, \cdot \rangle)$ be a solvable Lie algebra with invariant Einstein scalar product. If \mathfrak{g} is not nilpotent, then dim $\mathfrak{g} \ge 6$ and the index of $\langle \cdot, \cdot \rangle$ is ≥ 2 .

Solvable non-nilpotent Lie groups G with Einstein metrics exist.

Solvable non-nilpotent Lie groups G with Einstein metrics exist. For the existence of a compact quotient M of G, there must be a lattice $\Gamma \leq G$.

Solvable non-nilpotent Lie groups G with Einstein metrics exist. For the existence of a compact quotient M of G, there must be a lattice $\Gamma \leq G$.

If a lattice exists (e.g. Mostow 1970), then:

- \tilde{G} has a faithful matrix representation...
- 0 ... such that $\widetilde{\Gamma}$ is represented by integer matrices.

Solvable non-nilpotent Lie groups G with Einstein metrics exist. For the existence of a compact quotient M of G, there must be a lattice $\Gamma \leq G$.

If a lattice exists (e.g. Mostow 1970), then:

- \tilde{G} has a faithful matrix representation...
- 0 ... such that $\widetilde{\Gamma}$ is represented by integer matrices.

The characteristic polynomial of $\exp(\operatorname{ad}(a))$ has coefficients in \mathbb{Z} for certain $a \in \mathfrak{a}$... which means that all eigenvalues e^{λ_i} , e^{ξ_j} of $\exp(\operatorname{ad}(a))$ are algebraic numbers.

Digression: Hilbert's 7th Problem

Hilbert's 7th Problem

"The expression α^{β} , for an algebraic base α and an irrational algebraic exponent β , e.g., the number $2^{\sqrt{2}}$ or e^{π} , always represents a transcendental or at least an irrational number."

Digression: Hilbert's 7th Problem

Hilbert's 7th Problem

"The expression α^{β} , for an algebraic base α and an irrational algebraic exponent β , e.g., the number $2^{\sqrt{2}}$ or e^{π} , always represents a transcendental or at least an irrational number."

Gelfond-Schneider Theorem (1935) Let $\alpha \in \mathbb{C} \setminus \{0, 1\}$ and let $\beta \in \mathbb{C}$ be irrational. Then at least one of α , β and α^{β} is transcendental.

Digression: Hilbert's 7th Problem

Hilbert's 7th Problem

"The expression α^{β} , for an algebraic base α and an irrational algebraic exponent β , e.g., the number $2^{\sqrt{2}}$ or e^{π} , always represents a transcendental or at least an irrational number."

Gelfond-Schneider Theorem (1935) Let $\alpha \in \mathbb{C} \setminus \{0, 1\}$ and let $\beta \in \mathbb{C}$ be irrational. Then at least one of α , β and α^{β} is transcendental.

Generalizations:

- Baker's Theorem (1966/67) on linear forms in logarithms of algebraic numbers (Fields Medal 1970).
- Schanuel's Conjecture, stating:

Let $\alpha_1, \ldots, \alpha_d$ be complex numbers that are linearly independent over \mathbb{Q} . Then the transcendence degree over \mathbb{Q} of the extension field $\mathbb{Q}(\alpha_1, \ldots, \alpha_d, e^{\alpha_1}, \ldots, e^{\alpha_d})$ is at least *d*.

Use the Gelfond-Schneider Theorem in the search for lattices.

Use the Gelfond-Schneider Theorem in the search for lattices.

Algebraic Lemma

Let $X \in \mathbb{R}^{n \times n}$ in the normal form of $\operatorname{ad}(a)$ with eigenvalues $\lambda_1, \ldots, \lambda_k \in \mathbb{R}$ and $\zeta_1, \ldots, \zeta_m, \overline{\zeta}_1, \ldots, \overline{\zeta}_m \in \mathbb{C} \setminus \mathbb{R}$. Suppose the eigenvalues satisfy

 $\lambda_1^2 + \ldots + \lambda_k^2 + 2\text{Re}(\zeta_1)^2 + \ldots + 2\text{Re}(\zeta_m)^2 - 2\text{Im}(\zeta_1)^2 - \ldots - 2\text{Im}(\zeta_m)^2 = 0.$

If $n \leq 5$, then $\exp(X)$ is not conjugate to a matrix in $SL_n(\mathbb{Z})$.

Use the Gelfond-Schneider Theorem in the search for lattices.

Algebraic Lemma Let $X \in \mathbb{R}^{n \times n}$ in the normal form of $\operatorname{ad}(a)$ with eigenvalues $\lambda_1, \ldots, \lambda_k \in \mathbb{R}$ and $\zeta_1, \ldots, \zeta_m, \overline{\zeta}_1, \ldots, \overline{\zeta}_m \in \mathbb{C} \setminus \mathbb{R}$. Suppose the eigenvalues satisfy $\lambda_1^2 + \ldots + \lambda_k^2 + 2\operatorname{Re}(\zeta_1)^2 + \ldots + 2\operatorname{Re}(\zeta_m)^2 - 2\operatorname{Im}(\zeta_1)^2 - \ldots - 2\operatorname{Im}(\zeta_m)^2 = 0$. If $n \leq 5$, then $\exp(X)$ is not conjugate to a matrix in $\operatorname{SL}_n(\mathbb{Z})$.

Proof

To satisfy the given equation, X has at least one non-real eigenvalue pair ζ, ξ.
 If n ≤ 5, then n = 4 or n = 5.

Use the Gelfond-Schneider Theorem in the search for lattices.

Algebraic Lemma Let $X \in \mathbb{R}^{n \times n}$ in the normal form of $\operatorname{ad}(a)$ with eigenvalues $\lambda_1, \ldots, \lambda_k \in \mathbb{R}$ and

 $\zeta_1, \ldots, \zeta_m, \overline{\zeta}_1, \ldots, \overline{\zeta}_m \in \mathbb{C} \setminus \mathbb{R}$. Suppose the eigenvalues satisfy

 $\lambda_1^2 + \ldots + \lambda_k^2 + 2\operatorname{Re}(\zeta_1)^2 + \ldots + 2\operatorname{Re}(\zeta_m)^2 - 2\operatorname{Im}(\zeta_1)^2 - \ldots - 2\operatorname{Im}(\zeta_m)^2 = 0.$

If $n \leq 5$, then $\exp(X)$ is not conjugate to a matrix in $SL_n(\mathbb{Z})$.

- To satisfy the given equation, X has at least one non-real eigenvalue pair ζ, ξ.
 If n ≤ 5, then n = 4 or n = 5.
- One can show that there always exists a pair of eigenvalues ξ, ξⁱ for exp(X) (need n ≤ 5).

Use the Gelfond-Schneider Theorem in the search for lattices.

Algebraic Lemma

Let $X \in \mathbb{R}^{n \times n}$ in the normal form of $\operatorname{ad}(a)$ with eigenvalues $\lambda_1, \ldots, \lambda_k \in \mathbb{R}$ and $\zeta_1, \ldots, \zeta_m, \overline{\zeta}_1, \ldots, \overline{\zeta}_m \in \mathbb{C} \setminus \mathbb{R}$. Suppose the eigenvalues satisfy

 $\lambda_1^2 + \ldots + \lambda_k^2 + 2\operatorname{Re}(\zeta_1)^2 + \ldots + 2\operatorname{Re}(\zeta_m)^2 - 2\operatorname{Im}(\zeta_1)^2 - \ldots - 2\operatorname{Im}(\zeta_m)^2 = 0.$

If $n \leq 5$, then $\exp(X)$ is not conjugate to a matrix in $SL_n(\mathbb{Z})$.

- To satisfy the given equation, X has at least one non-real eigenvalue pair ζ, ξ̄.
 If n ≤ 5, then n = 4 or n = 5.
- One can show that there always exists a pair of eigenvalues ξ, ξⁱ for exp(X) (need n ≤ 5).
- By Gelfond-Schneider Theorem:
 One of ξ or ξⁱ is transcendental, so exp(X) is not conjugate to a matrix in SL_n(Z).

Use the Gelfond-Schneider Theorem in the search for lattices.

Algebraic Lemma

Let $X \in \mathbb{R}^{n \times n}$ in the normal form of ad(a) with eigenvalues $\lambda_1, \ldots, \lambda_k \in \mathbb{R}$ and $\zeta_1, \ldots, \zeta_m, \overline{\zeta}_1, \ldots, \overline{\zeta}_m \in \mathbb{C} \setminus \mathbb{R}$. Suppose the eigenvalues satisfy

 $\lambda_1^2 + \ldots + \lambda_k^2 + 2\operatorname{Re}(\zeta_1)^2 + \ldots + 2\operatorname{Re}(\zeta_m)^2 - 2\operatorname{Im}(\zeta_1)^2 - \ldots - 2\operatorname{Im}(\zeta_m)^2 = 0.$

If $n \leq 5$, then $\exp(X)$ is not conjugate to a matrix in $SL_n(\mathbb{Z})$.

Proof

- To satisfy the given equation, X has at least one non-real eigenvalue pair ζ, ξ̄.
 If n ≤ 5, then n = 4 or n = 5.
- One can show that there always exists a pair of eigenvalues ξ, ξⁱ for exp(X) (need n ≤ 5).
- By Gelfond-Schneider Theorem:
 One of ξ or ξⁱ is transcendental, so exp(X) is not conjugate to a matrix in SL_n(Z).

Conjecture

If Schanuel's Conjecture is true, then the Algebraic Lemma holds without " $n \leq 5$ ".

Theorem G Let M be a compact pseudo-Riemannian Einstein solvmanifold and dim $M \le 7$. Then M is a nilmanifold.

Theorem G

Let *M* be a compact pseudo-Riemannian Einstein solvmanifold and dim $M \leq 7$. Then *M* is a nilmanifold.

Proof

• $M = G/\Gamma$, with $\Gamma \leq G$ a lattice and G solvable, but not nilpotent.

Theorem G

Let *M* be a compact pseudo-Riemannian Einstein solvmanifold and dim $M \le 7$. Then *M* is a nilmanifold.

- $M = G/\Gamma$, with $\Gamma \leq G$ a lattice and G solvable, but not nilpotent.
- By Theorem F: May assume $6 \le \dim M \le 7$.

Theorem G

Let *M* be a compact pseudo-Riemannian Einstein solvmanifold and dim $M \leq 7$. Then *M* is a nilmanifold.

- $M = G/\Gamma$, with $\Gamma \leq G$ a lattice and G solvable, but not nilpotent.
- By Theorem F: May assume $6 \le \dim M \le 7$.
- Consider g = a ⊕ n as before. For a ∈ a, ad(a) is not nilpotent.
 By Mostow's result, we may assume exp(ad(a)) is conjugate to a matrix in SL_n(Z).

Theorem G

Let *M* be a compact pseudo-Riemannian Einstein solvmanifold and dim $M \le 7$. Then *M* is a nilmanifold.

- $M = G/\Gamma$, with $\Gamma \leq G$ a lattice and G solvable, but not nilpotent.
- By Theorem F: May assume $6 \le \dim M \le 7$.
- Consider g = a ⊕ n as before. For a ∈ a, ad(a) is not nilpotent.
 By Mostow's result, we may assume exp(ad(a)) is conjugate to a matrix in SL_n(Z).
- Let $W = \operatorname{im} \operatorname{ad}(a)$. Then dim $W \leq 5$ (from structure theory).

Theorem G

Let *M* be a compact pseudo-Riemannian Einstein solvmanifold and dim $M \le 7$. Then *M* is a nilmanifold.

- $M = G/\Gamma$, with $\Gamma \leq G$ a lattice and G solvable, but not nilpotent.
- By Theorem F: May assume $6 \le \dim M \le 7$.
- Consider g = a ⊕ n as before. For a ∈ a, ad(a) is not nilpotent.
 By Mostow's result, we may assume exp(ad(a)) is conjugate to a matrix in SL_n(ℤ).
- Let $W = \operatorname{im} \operatorname{ad}(a)$. Then dim $W \leq 5$ (from structure theory).
- Apply Algebraic Lemma to ad(a)|W:
 exp(ad(a)) is not conjugate to a matrix in SL_n(Z).

$Solv \Rightarrow Nil$

Theorem G

Let *M* be a compact pseudo-Riemannian Einstein solvmanifold and dim $M \le 7$. Then *M* is a nilmanifold.

- $M = G/\Gamma$, with $\Gamma \leq G$ a lattice and G solvable, but not nilpotent.
- By Theorem F: May assume $6 \le \dim M \le 7$.
- Consider g = a ⊕ n as before. For a ∈ a, ad(a) is not nilpotent.
 By Mostow's result, we may assume exp(ad(a)) is conjugate to a matrix in SL_n(ℤ).
- Let $W = \operatorname{im} \operatorname{ad}(a)$. Then dim $W \leq 5$ (from structure theory).
- Apply Algebraic Lemma to ad(a)|W:
 exp(ad(a)) is not conjugate to a matrix in SL_n(Z).
- Contradiction, so G must be nilpotent.

Theorem G

Let *M* be a compact pseudo-Riemannian Einstein solvmanifold and dim $M \leq 7$. Then *M* is a nilmanifold.

Proof

- $M = G/\Gamma$, with $\Gamma \leq G$ a lattice and G solvable, but not nilpotent.
- By Theorem F: May assume $6 \le \dim M \le 7$.
- Consider g = a ⊕ n as before. For a ∈ a, ad(a) is not nilpotent.
 By Mostow's result, we may assume exp(ad(a)) is conjugate to a matrix in SL_n(Z).
- Let $W = \operatorname{im} \operatorname{ad}(a)$. Then dim $W \leq 5$ (from structure theory).
- Apply Algebraic Lemma to ad(a)|W:
 exp(ad(a)) is not conjugate to a matrix in SL_n(Z).
- Contradiction, so G must be nilpotent.

Conjecture

Every compact pseudo-Riemannian Einstein solvmanifold is a nilmanifold.

References

- S. Adams, G. Stuck, The isometry group of a compact Lorentz manifold I, Inventiones Mathematicae 129, 1997
- O. Baues, W. Globke, Rigidity of compact pseudo-Riemannian homogeneous spaces for solvable Lie groups, to appear in International Mathematics Research Notices, arXiv:1507.02575
- O. Baues, W. Globke, A. Zeghib, The structure of compact homogeneous spaces with indefinite of low metric index, in preparation
- W. Globke, Y. Nikolayevsky, Compact pseudo-Riemannian homogeneous Einstein manifolds of low dimension, to appear in Differential Geometry and Applications, arXiv:1611.08662
- A. Zeghib,

Sur les espaces-temps homogènes,

Geometry and Topology Monographs 1: The Epstein Birthday Schrift, 1998