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The objects of interest

(M, g) is a connected pseudo-Riemannian homogeneous manifold of finite volume.

o The metric tensor g is non-degenerate but can be indefinite.
@ A proper subspace U C T, M can be totally isotropic, that is, g, |y = 0.

@ The index s of (M, g) is the maximal dimension of a totally isotropic subspace
UcCTpyM.
e Riemannian s = 0 (positive definite).
o Lorentzian s = 1 (“lightlike lines”).
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Groups of isometries

(M, g) is a connected pseudo-Riemannian homogeneous manifold of finite volume;
@ M = G/H for a connected Lie group G and a closed subgroup H,
@ G acts transitively and by isometries (in particular volume-preserving),

o G acts almost effectively (H has no connected normal subgroups).

Question:
@ Which Lie groups G can be isometry groups of such M ?
@ Which subgroups H C G can be stabilizers of such actions?
@ How is geometry of G and M related?



Related work

Zimmer’s and Gromov’s work in the 1980s on rigid geometric structures.

Adams & Stuck (1997), Zeghib (1998):

Classification of isometry groups of compact Lorentzian manifolds.

(Higher indices are much more difficult.)

Zeghib (1998):

Classification of compact homogeneous Lorentzian manifolds.
Quiroga-Barranco (2006):

Structure of compact M with arbitrary index and topologically transitive action
of a simple G.
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Induced scalar product

Assumptions:
@ G acts transitively and by isometrieson M = G/H,

@ G acts almost effectively (H has no connected normal subgroups).

The metric g on M induces a symmetric bilinear form (-, -) on g. Then:
@ (-,-) is Ady(H )-invariant (and adq(h)-invariant),

(Adg(h)x,Adg(h)y) = (x,y) forallh e H,
(adg(h')x,y) = —(x,adg(h’)y) forallh’ €.

@ The kernel of (-, -) is

gt ={xegl{x,) =0 =
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Recall: Zariski closure

G < GL,(C) is a linear algebralc group (given by polynomial equations).
For a subgroup of H < G, let H" denote the Zariski closure of H in Gt

o H” is the smallest algebraic subgroup of G that contains H .
o H is Zariski-dense in Gif H = G.



Density properties

Mostow Density Theorem (1971)
Let

@ G be a connected Lie group,

o H aclosed subgroup,

® . a finite G -invariant finite measure on G/H ,

@ 0 : G — GL(V) a representation, where dim V' < oo.

Then U(H)Z contains a cocompact normal subgroup ofo(G)Z.



Density properties

Mostow Density Theorem (1971)
Let

@ G be a connected Lie group,

o H aclosed subgroup,

® . a finite G -invariant finite measure on G/H ,

@ 0 : G — GL(V) a representation, where dim V' < oo.

Then O‘(H)Z contains a cocompact normal subgroup ofo(G)Z.

This means:

o o(H )Z contains every unipotent subgroup of O'(G)Z.



Density properties

Mostow Density Theorem (1971)
Let

@ G be a connected Lie group,

o H aclosed subgroup,

® . a finite G -invariant finite measure on G/H ,

@ 0 : G — GL(V) a representation, where dim V' < oo.

Then O‘(H)Z contains a cocompact normal subgroup ofo(G)Z.

This means:
o o(H )Z contains every unipotent subgroup of O'(G)Z.
o In particular:

U(H)Z contains every non-compact connected simple subgroup of 0 (G),
and (7(H)Z D (r(N)Z, where N is the nilradical of G.




Density properties

Mostow Density Theorem (1971)
Let

@ G be a connected Lie group,

o H aclosed subgroup,

® . a finite G -invariant finite measure on G/H ,

@ 0 : G — GL(V) a representation, where dim V' < oo.

Then O‘(H)Z contains a cocompact normal subgroup ofo(G)Z.

This means:
o o(H )Z contains every unipotent subgroup of O'(G)Z.
o In particular:

U(H)Z contains every non-compact connected simple subgroup of 0 (G),
and (7(H)Z D (r(N)Z, where N is the nilradical of G.

o o(H )Z contains every R-diagonalizable subgroup of U(G)Z.
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Nil-invariance
Recall:
@ G acts transitively and by isometries on M = G/H,
@ G acts almost effectively on M.
Then (-, -) is Adg(H )-invariant.

Let K.S be a Levi subgroup of G, where
@ K is compact semisimple and
o S is semisimple without compact factors.
Let R denote the solvable radical of G, so that G = KSR.

Since (-, -) is a quadratic function on g, Mostow’s density theorem applied to
o0 = Adg implies:

Corollary
O () is mz-invariant.
@ (-,-) is invariant under Adg(S) and Adg(R)spli-

In particular, (-, -) is invariant under all nilpotent elements in of Lie(Adgy(H )Z).
We say (-, -) is nil-invariant.
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Solvmanifolds

For now, assume that G is a connected solvable Lie group,
so that (M, g) is a compact pseudo-Riemannian solvmanifold.

@ To understand G, study solvable Lie algebras g with nil-invariant (-, -).
@ Recall: gJ- =h.

o If G acts almost effectively, then gJ- contains no ideal # 0 in g.
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Example: Oscillator algebra

A solvable Lie algebra with Lorentzian (nil-)invariant product is the
oscillator algebra

g = osc(ar) = R x heigy4q

where the Heisenberg algebra is
beizyt1 = R* xR,

two-step nilpotent with one-dimensional center IR,
and R acts on R2" by rotations with weights o = (g, ..., o).

Define Lorentzian (-, -) on osc(a) by a definite scalar product on IR?” and a dual
pairing of totally isotropic subspaces R and R.

@ Medina (1985) and Hilgert & Hofmann (1985) showed that this is the only
solvable non-abelian Lie algebra with invariant Lorentzian product.

e For index > 2, Kath and Olbrich (2004) gave a classification scheme for Lie
algebras with invariant scalar product, and a classification for index 2.

e For index > 3 classification becomes extremely complicated.
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Discrete stabilizer for solvable G

Proposition
Let (-, ) be a symmetric nil-invariant bilinear form on a solvable Lie algebra g.

o Then gl is an ideal in g.

° IfgL contains no non-trivial ideals of g, then gL =0.

Theorem A
Assume G is solvable.
Then G acts almost freely on M .

Meaning:
@ The stabiliser I" = Gy is discrete.

@ The metric g on M pulls back to a left-invariant pseudo-Riemannian metric gg
onG.

@ g is invariant under conjugation by I".
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Bi-invariant metric for solvable G
g is solvable with nil-invariant scalar product (-, -).

Proposition
(-,+) is invariant on g.

Proof
@ Letj be a totally isotropic central ideal in g. Define the reduction g = j- /j.
@ (-,-) induces a nil-invariant scalar product (-, -)g on g.
@ Assume that (-, -)g is invariant on g.
@ It is now easily verified that (-, -) on g is invariant if (-, -)7 is.
°

Iterated reduction to the abelian case and induction yield the result.

Theorem B
Assume G is solvable.
Then g pulls back to a bi-invariant pseudo-Riemannian metric gg on G.

Corollary A+B .
The universal cover M of M is a pseudo-Riemannian symmetric space.
In particular, M is locally symmetric.
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No larger isometry groups



No larger isometry groups

Theorem C
Assume G is solvable and effective.
Then G = Iso(M)°.

Implications:

@ Johnson (1972) showed that any solvmanifold has presentations by connected
solvable groups of arbitrary dimension.

@ Theorem A shows that most of them cannot act isometrically.

@ Theorem C shows that no larger non-solvable group can act isometrically.
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Compact pseudo-Riemannian homogeneous spaces for arbitrary Lie groups



Lie groups of general type

Now let G be an arbitrary connected Lie group, and K, S, R as before,
e K compact semisimple,
e § semisimple without compact factors,
@ R the solvable radical of G.



We study Lie algebras
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Nil-invariant forms

We study Lie algebras
g=(Exs)xrt

with nil-invariant symmetric bilinear form (-, -).

@ (-,-) is a priori invariant under Adgy(S) and Adg(R)splic (maximal
trigonalisable).

o From the solvable case it follows that
the restriction (-, -) sxv is invariant under Adg(SR).



Lorentzian case

If the index of (-,-) is 1, then g = € x 5 x v, with either s = 0 or s = sl (R).



Lorentzian case

If the index of (-,-) is 1, then g = € x 5 x v, with either s = 0 or s = sl (R).

Zeghib’s Theorem (1998)
Let M be a homogeneous Lorentzian manitfold of finite volume.
Then, up to “Riemannian type factors”, M is one of the following:
@ Iso(M, g) contains a cover of PSL (RR).
M = SLZ(]R) x L, where L is a compact Riemannian homogeneous space.
@ Iso(M, g) contains an oscillator group Osc(a).
M = Osc(a) xg1 L, and M = M/F where I is isomorphic to a lattice in
Osc(a).
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Suppose the index of (-, -) is > 1.

Theorem D
Q (-,-) is Adg(SR)-invariant.
Q (. -)sxc is Adg(G)-invariant.

Theorem E
If the index of (-, -) is < 2 and gJ' does not contain a non-trivial ideal of g, then:

@ gisadirect sumofideals g = € x5 x t.
Q@ gl Cci(t)yxtandgl N(sxt)=0.
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S R-invariance

Suppose the index of (-, -) is > 1.

Theorem D
Q (-,-) is Adg(SR)-invariant.
Q (. -)sxc is Adg(G)-invariant.

Theorem E

If the index of (-, -) is < 2 and gJ' does not contain a non-trivial ideal of g, then:

@ gisadirect sumofideals g = € x5 x t.
Q@ gl Cci(t)yxtandgl N(sxt)=0.

This allows us to
o classify Lie algebras with (-, -) for index < 2,
o recover Zeghib’s Theorem (Lorentzian case) by algebraic methods,

@ prove an analogue of Zeghib’s Theorem for index 2.

20



IV Application: Compact pseudo-Riemannian Einstein solvmanifolds
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(M, g) is called Einstein manifold if

Ric = Ag
for some constant A € R.
For a bi-invariant metric g on G,

Ri !
1C = ——K
4

where k(x, y) = tr(ad(x)ad(y)) is the Killing form of g.

Einstein metrics

22



Compact Einstein solvmanifolds

Let (M, gpr) be a compact pseudo-Riemannian solvmanifold.

Recall:
@ M = G/I foralattice I’ <G.
@ gjs pulls back to bi-invariant g¢ .

@ (-,-) on g is non-degenerate and invariant.
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Compact Einstein solvmanifolds

Let (M, gpr) be a compact pseudo-Riemannian solvmanifold.

Recall:
@ M = G/I foralattice I’ <G.
@ gjs pulls back to bi-invariant g¢ .

@ (-,-) on g is non-degenerate and invariant.

If (M, gpr) is Einstein, then
Ric =0 =«.

23
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Question: Are there solvable g, not nilpotent, with

Q@ «=0

@ and invariant scalar product (-, -)?

Example

24



Example
If g is nilpotent, then k = 0.
Question: Are there solvable g, not nilpotent, with

Q@ «=0

@ and invariant scalar product (-, -)?

Example

o Take the abelian Lie algebra ab‘l1 with dim ctb‘lt = 4 and a Lorentzian scalar
product.

24



Example
If g is nilpotent, then k = 0.
Question: Are there solvable g, not nilpotent, with

Q@ «=0

@ and invariant scalar product (-, -)?

Example

o Take the abelian Lie algebra ab‘l1 with dim ctb‘lt = 4 and a Lorentzian scalar
product.

@ Take extension
g=j" x (ab} Xy j)

where dimj = dimj* = 1 and @ € j* acts on ab} by

10 0 0
s |00 -1 0
“=lo 1 0 o0
00 0 -1

Define (-, )4 on j* x j by dual pairing. A cocycle w corrects the Lie bracket on
ab‘lt x j such that (-, -) 4 becomes invariant with signature (4, 2).

24
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Einstein scalar products

g solvable with nilradical n, then (as vector space)

g=adn.

@ ad(x) for x € nis nilpotent, so k(x,x) = 0.

@ For a € a, the Einstein condition (Ricci-flat, k = 0) becomes
A+ AR 207 4+ 205 — 28T — .. = 2B, =0,

where A; € Rand {; = o; +if; € C\R are the eigenvalues of ad(a).
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Einstein scalar products

g solvable with nilradical n, then (as vector space)

g=adn.

@ ad(x) for x € nis nilpotent, so k(x,x) = 0.

@ For a € a, the Einstein condition (Ricci-flat, k = 0) becomes
A+ AR 207 4+ 205 — 28T — .. = 2B, =0,
where A; € Rand {; = o; +if; € C\R are the eigenvalues of ad(a).
Theorem F

Let (g, (-, -)) be a solvable Lie algebra with invariant Einstein scalar product.
If g is not nilpotent, then dim g > 6 and the index of (-, -) is > 2.

25
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Lattices

26



Lattices

Solvable non-nilpotent Lie groups G with Einstein metrics exist.
For the existence of a compact quotient M of G, there must be a lattice I" < G.

26



Lattices

Solvable non-nilpotent Lie groups G with Einstein metrics exist.
For the existence of a compact quotient M of G, there must be a lattice I" < G.

If a lattice exists (e.g. Mostow 1970), then:
@ G has a faithful matrix representation. . .

© ...such that I is represented by integer matrices.

26



Lattices

Solvable non-nilpotent Lie groups G with Einstein metrics exist.
For the existence of a compact quotient M of G, there must be a lattice I" < G.

If a lattice exists (e.g. Mostow 1970), then:
@ G has a faithful matrix representation. . .
© ...such that I is represented by integer matrices.

The characteristic polynomial of exp(ad(a)) has coefficients in Z for certain a € a..
which means that all eigenvalues e’ ¢%/ of exp(ad(a)) are algebraic numbers.

26



Digression: Hilbert’s 7th Problem

Hilbert’s 7th Problem
“The expression ob, for an algebraic base « and an irrational algebraic exponent f,

e.g., the number 2V2 or e, always represents a transcendental or at least an
irrational number.”
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Digression: Hilbert’s 7th Problem

Hilbert’s 7th Problem

“The expression ob, for an algebraic base « and an irrational algebraic exponent f,
e.g., the number 2V2 or e, always represents a transcendental or at least an
irrational number.”

Gelfond-Schneider Theorem (1935)
Leta € C\{0, 1} and Ilet B € C be irrational.
Then at least one of &, f and P is transcendental.

Generalizations:

@ Baker’s Theorem (1966/67) on linear forms in logarithms of algebraic numbers
(Fields Medal 1970).

@ Schanuel’s Conjecture, stating:
Letaq, ..., o4 be complex numbers that are linearly independent over Q.
Then the transcendence degree over @ of the extension field
Qo ...,ag,e*, ... e%)isatleast d.

27
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Algebraic lemma

Use the Gelfond-Schneider Theorem in the search for lattices.

Algebraic Lemma
Let X € R™" in the normal form of ad(a) with eigenvalues A1, ..., Ay € R and
C1veoilm, Cq, ..., ¢, € C\RR. Suppose the eigenvalues satisfy

A2+ A2+ 2Re(61)? + ...+ 2Re(Gm)? — 2Im(81)% — ... — 2Im(§m)? = 0.

Ifn <5, then exp(X) is not conjugate to a matrix in SL; (Z.).

Proof
@ To satisfy the given equation, X has at least one non-real eigenvalue pair , ¢
Ifn <5,thenn =4orn =5.
@ One can show that there always exists a pair of eigenvalues £, &' for exp(X)
(need n < 5).
@ By Gelfond-Schneider Theorem:
One of £ or £! is transcendental, so exp(X) is not conjugate to a matrix in SL,,(Z). O
Conjecture
If Schanuel’s Conjecture is true, then the Algebraic Lemma holds without “n < 5”.
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Solv = Nil

Theorem G
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Theorem G

Let M be a compact pseudo-Riemannian Einstein solvmanifold and dim M < 7.

Then M is a nilmanifold.

Proof
@ M = G/I',with I' < G alattice and G solvable, but not nilpotent.
@ By Theorem F: May assume 6 < dim M < 7.

@ Consider g = a @ n as before. For a € a, ad(a) is not nilpotent.

By Mostow’s result, we may assume exp(ad(a)) is conjugate to a matrix in SLy, (Z).

@ Let W = imad(a). Then dim W < 5 (from structure theory).

@ Apply Algebraic Lemma to ad(a)|w :
exp(ad(a)) is not conjugate to a matrix in SLj, (Z).

@ Contradiction, so G must be nilpotent.

Conjecture
Every compact pseudo-Riemannian Einstein solvmanifold is a nilmanifold.
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