Compact pseudo-Riemannian homogeneous spaces

WOLFGANG GLOBKE (joint works with Oliver Baues, Yuri Nikolayevsky and Abdelghani Zeghib)

School of Mathematical Sciences

Pure Mathematics Seminar University of Queensland, November 2017

I Introduction

 (M, g) is a connected pseudo-Riemannian homogeneous manifold of finite volume.

 (M, g) is a connected pseudo-Riemannian homogeneous manifold of finite volume.

The metric tensor g is non-degenerate but can be indefinite.

 (M, g) is a connected pseudo-Riemannian homogeneous manifold of finite volume.

- The metric tensor g is non-degenerate but can be indefinite.
- A proper subspace $U \subset T_pM$ can be totally isotropic, that is, $g_p|_U = 0$.

 (M, g) is a connected pseudo-Riemannian homogeneous manifold of finite volume.

- The metric tensor g is non-degenerate but can be indefinite.
- A proper subspace $U \subset T_pM$ can be totally isotropic, that is, $g_p|_U = 0$.
- The index s of (M, g) is the maximal dimension of a totally isotropic subspace $U \subset T_pM$.
	- Riemannian $s = 0$ (positive definite).
	- Lorentzian $s = 1$ ("lightlike lines").

Groups of isometries

 (M, g) is a connected pseudo-Riemannian homogeneous manifold of finite volume;

Groups of isometries

 (M, g) is a connected pseudo-Riemannian homogeneous manifold of finite volume;

- $M = G/H$ for a connected Lie group G and a closed subgroup H,
- G acts transitively and by isometries (in particular volume-preserving),
- \bullet G acts almost effectively (H has no connected normal subgroups).

Groups of isometries

 (M, g) is a connected pseudo-Riemannian homogeneous manifold of finite volume;

- $M = G/H$ for a connected Lie group G and a closed subgroup H,
- G acts transitively and by isometries (in particular volume-preserving),
- \bullet G acts almost effectively (H has no connected normal subgroups).

Question:

- Which Lie groups G can be isometry groups of such M ?
- Which subgroups $H \subset G$ can be stabilizers of such actions?
- \bullet How is geometry of G and M related?

Related work

- Zimmer's and Gromov's work in the 1980s on rigid geometric structures.
- Adams & Stuck (1997), Zeghib (1998): Classification of isometry groups of compact Lorentzian manifolds. (Higher indices are much more difficult.)
- Zeghib (1998):

Classification of compact homogeneous Lorentzian manifolds.

• Quiroga-Barranco (2006):

Structure of compact M with arbitrary index and topologically transitive action of a simple G.

Assumptions:

- G acts transitively and by isometries on $M = G/H$,
- \bullet G acts almost effectively (H has no connected normal subgroups).

Assumptions:

- G acts transitively and by isometries on $M = G/H$,
- G acts almost effectively (H has no connected normal subgroups).

The metric g on M induces a symmetric bilinear form $\langle \cdot, \cdot \rangle$ on g.

Assumptions:

- G acts transitively and by isometries on $M = G/H$,
- \bullet G acts almost effectively (H has no connected normal subgroups).

The metric g on M induces a symmetric bilinear form $\langle \cdot, \cdot \rangle$ on g. Then:

 $\bullet \langle \cdot, \cdot \rangle$ is Ad_a (H) -invariant (and ad_a (h) -invariant),

$$
\langle \mathrm{Ad}_{\mathfrak{g}}(h)x, \mathrm{Ad}_{\mathfrak{g}}(h)y \rangle = \langle x, y \rangle \quad \text{ for all } h \in H,
$$

$$
\langle \mathrm{ad}_{\mathfrak{g}}(h')x, y \rangle = -\langle x, \mathrm{ad}_{\mathfrak{g}}(h')y \rangle \quad \text{ for all } h' \in \mathfrak{h}.
$$

Assumptions:

- G acts transitively and by isometries on $M = G/H$,
- G acts almost effectively (H has no connected normal subgroups).

The metric g on M induces a symmetric bilinear form $\langle \cdot, \cdot \rangle$ on g. Then:

 $\bullet \langle \cdot, \cdot \rangle$ is Ad_a (H) -invariant (and $\text{ad}_{\mathfrak{a}}(\mathfrak{h})$ -invariant),

$$
\langle \mathrm{Ad}_{\mathfrak{g}}(h)x, \mathrm{Ad}_{\mathfrak{g}}(h)y \rangle = \langle x, y \rangle \quad \text{ for all } h \in H,
$$

$$
\langle \mathrm{ad}_{\mathfrak{g}}(h')x, y \rangle = -\langle x, \mathrm{ad}_{\mathfrak{g}}(h')y \rangle \quad \text{ for all } h' \in \mathfrak{h}.
$$

• The kernel of $\langle \cdot, \cdot \rangle$ is

 $\mathfrak{g}^{\perp} = \{x \in \mathfrak{g} \mid \langle x, \cdot \rangle = 0\} = \mathfrak{h}.$

Recall: Zariski closure

 $G \leq GL_n(\mathbb{C})$ is a linear algebraic group (given by polynomial equations). For a subgroup of $H \leq G$, let \overline{H}^2 denote the Zariski closure of H in G:

Recall: Zariski closure

 $G \leq GL_n(\mathbb{C})$ is a linear algebraic group (given by polynomial equations). For a subgroup of $H \leq G$, let \overline{H}^2 denote the Zariski closure of H in G:

- \overline{H}^z is the smallest algebraic subgroup of G that contains H.
- H is Zariski-dense in G if $\overline{H}^z = G$.

Mostow Density Theorem (1971)

Let

- G be a connected Lie group,
- \bullet H a closed subgroup,
- μ a finite G-invariant finite measure on G/H ,
- $\bullet \ \sigma : G \to GL(V)$ a representation, where dim $V < \infty$.

Then $\overline{\sigma(H)}^{\mathbb{Z}}$ contains a cocompact normal subgroup of $\overline{\sigma(G)}^{\mathbb{Z}}$.

Mostow Density Theorem (1971)

Let

- G be a connected Lie group,
- \bullet H a closed subgroup,
- μ a finite G-invariant finite measure on G/H ,
- $\bullet \ \sigma : G \to GL(V)$ a representation, where dim $V < \infty$.

Then $\overline{\sigma(H)}^{\mathbb{Z}}$ contains a cocompact normal subgroup of $\overline{\sigma(G)}^{\mathbb{Z}}$.

This means:

 $\overline{\sigma(H)}^{\mathbb{Z}}$ contains every unipotent subgroup of $\overline{\sigma(G)}^{\mathbb{Z}}$.

Mostow Density Theorem (1971)

Let

- G be a connected Lie group,
- \bullet H a closed subgroup,
- μ a finite G-invariant finite measure on G/H ,
- $\bullet \ \sigma : G \to GL(V)$ a representation, where dim $V < \infty$.

Then $\overline{\sigma(H)}^{\mathbb{Z}}$ contains a cocompact normal subgroup of $\overline{\sigma(G)}^{\mathbb{Z}}$.

This means:

- $\overline{\sigma(H)}^{\mathbb{Z}}$ contains every unipotent subgroup of $\overline{\sigma(G)}^{\mathbb{Z}}$.
- In particular:

 $\frac{1}{\sigma(H)}^{\alpha}$ contains every non-compact connected simple subgroup of $\sigma(G)$, and $\overline{\sigma(H)}^z \supset \overline{\sigma(N)}^z$, where N is the nilradical of G.

Mostow Density Theorem (1971)

Let

- G be a connected Lie group,
- \bullet H a closed subgroup,
- μ a finite G-invariant finite measure on G/H ,
- $\bullet \ \sigma : G \to GL(V)$ a representation, where dim $V < \infty$.

Then $\overline{\sigma(H)}^{\mathbb{Z}}$ contains a cocompact normal subgroup of $\overline{\sigma(G)}^{\mathbb{Z}}$.

This means:

- $\overline{\sigma(H)}^{\mathbb{Z}}$ contains every unipotent subgroup of $\overline{\sigma(G)}^{\mathbb{Z}}$.
- In particular:

 $\frac{1}{\sigma(H)}^{\alpha}$ contains every non-compact connected simple subgroup of $\sigma(G)$, and $\overline{\sigma(H)}^z \supset \overline{\sigma(N)}^z$, where N is the nilradical of G.

 $\overline{\sigma(H)}^{\mathbb{Z}}$ contains every R-diagonalizable subgroup of $\overline{\sigma(G)}^{\mathbb{Z}}$.

Recall:

- G acts transitively and by isometries on $M = G/H$,
- \bullet G acts almost effectively on M.

Then $\langle \cdot, \cdot \rangle$ is Ad_g (H) -invariant.

Recall:

- G acts transitively and by isometries on $M = G/H$,
- \bullet G acts almost effectively on M.

Then $\langle \cdot, \cdot \rangle$ is Ad_q (H) -invariant.

Let KS be a Levi subgroup of G, where

- \bullet K is compact semisimple and
- \bullet S is semisimple without compact factors.

Let R denote the solvable radical of G, so that $G = KSR$.

Recall:

- G acts transitively and by isometries on $M = G/H$,
- \bullet G acts almost effectively on M.

Then $\langle \cdot, \cdot \rangle$ is Ad_q (H) -invariant.

Let KS be a Levi subgroup of G, where

- \bullet K is compact semisimple and
- \bullet S is semisimple without compact factors.

Let R denote the solvable radical of G, so that $G = KSR$.

Since $\langle \cdot, \cdot \rangle$ is a quadratic function on g, Mostow's density theorem applied to $\sigma = \text{Ad}_{\mathfrak{a}}$ implies:

Corollary

- $\bullet \langle \cdot, \cdot \rangle$ is $\overline{\text{Ad}_{\mathfrak{g}}(H)}^{\mathfrak{g}}$ -invariant.
- $\bullet \langle \cdot, \cdot \rangle$ is invariant under $\text{Ad}_{\mathfrak{a}}(S)$ and $\text{Ad}_{\mathfrak{a}}(R)_{\text{split}}$.

Recall:

- G acts transitively and by isometries on $M = G/H$,
- \bullet G acts almost effectively on M.

Then $\langle \cdot, \cdot \rangle$ is Ad_a (H) -invariant.

Let KS be a Levi subgroup of G, where

- \bullet K is compact semisimple and
- \bullet S is semisimple without compact factors.

Let R denote the solvable radical of G, so that $G = KSR$.

Since $\langle \cdot, \cdot \rangle$ is a quadratic function on g, Mostow's density theorem applied to $\sigma = \text{Ad}_{\mathfrak{a}}$ implies:

Corollary

- $\bullet \langle \cdot, \cdot \rangle$ is $\overline{\text{Ad}_{\mathfrak{g}}(H)}^{\mathfrak{g}}$ -invariant.
- $\bullet \langle \cdot, \cdot \rangle$ is invariant under $\text{Ad}_{\mathfrak{a}}(S)$ and $\text{Ad}_{\mathfrak{a}}(R)_{\text{split}}$.

In particular, $\langle \cdot, \cdot \rangle$ is invariant under all nilpotent elements in of $\mathfrak{Lie}(\overline{\mathrm{Ad}_{\mathfrak{g}}(H)}^{\mathfrak{z}})$. We say $\langle \cdot, \cdot \rangle$ is nil-invariant.

II Compact pseudo-Riemannian solvmanifolds

For now, assume that G is a connected solvable Lie group, so that (M, g) is a compact pseudo-Riemannian solvmanifold.

For now, assume that G is a connected solvable Lie group, so that (M, g) is a compact pseudo-Riemannian solvmanifold.

• To understand G, study solvable Lie algebras g with nil-invariant $\langle \cdot, \cdot \rangle$.

For now, assume that G is a connected solvable Lie group, so that (M, g) is a compact pseudo-Riemannian solvmanifold.

- To understand G, study solvable Lie algebras g with nil-invariant $\langle \cdot, \cdot \rangle$.
- Recall: $\mathfrak{g}^{\perp} = \mathfrak{h}$.

For now, assume that G is a connected solvable Lie group, so that (M, g) is a compact pseudo-Riemannian solvmanifold.

- To understand G, study solvable Lie algebras q with nil-invariant $\langle \cdot, \cdot \rangle$.
- Recall: $\mathfrak{g}^{\perp} = \mathfrak{h}$.
- If G acts almost effectively, then \mathfrak{g}^{\perp} contains no ideal $\neq 0$ in g.

A solvable Lie algebra with Lorentzian (nil-)invariant product is the oscillator algebra

 $\mathfrak{g} = \mathfrak{osc}(\alpha) = \mathbb{R} \ltimes \mathfrak{hei}_{2n+1}$

where the Heisenberg algebra is

$$
\mathfrak{hei}_{2n+1} = \mathbb{R}^{2n} \times \mathbb{R},
$$

two-step nilpotent with one-dimensional center \mathbb{R} ,

A solvable Lie algebra with Lorentzian (nil-)invariant product is the oscillator algebra

 $\mathfrak{g} = \mathfrak{osc}(\alpha) = \mathbb{R} \ltimes \mathfrak{hei}_{2n+1}$

where the Heisenberg algebra is

$$
\mathfrak{hei}_{2n+1} = \mathbb{R}^{2n} \times \mathbb{R},
$$

two-step nilpotent with one-dimensional center R, and $\mathbb R$ acts on $\mathbb R^{2n}$ by rotations with weights $\alpha = (\alpha_1, \dots, \alpha_n)$.

A solvable Lie algebra with Lorentzian (nil-)invariant product is the oscillator algebra

 $\mathfrak{g} = \mathfrak{osc}(\alpha) = \mathbb{R} \ltimes \mathfrak{hei}_{2n+1}$

where the Heisenberg algebra is

$$
\mathfrak{hei}_{2n+1} = \mathbb{R}^{2n} \times \mathbb{R},
$$

two-step nilpotent with one-dimensional center R, and $\mathbb R$ acts on $\mathbb R^{2n}$ by rotations with weights $\alpha = (\alpha_1, \dots, \alpha_n)$.

Define Lorentzian $\langle \cdot, \cdot \rangle$ on $\mathfrak{osc}(\alpha)$ by a definite scalar product on \mathbb{R}^{2n} and a dual pairing of totally isotropic subspaces $\mathbb R$ and $\mathbb R$.

A solvable Lie algebra with Lorentzian (nil-)invariant product is the oscillator algebra

 $\mathfrak{g} = \mathfrak{osc}(\alpha) = \mathbb{R} \ltimes \mathfrak{hei}_{2n+1}$

where the Heisenberg algebra is

$$
\mathfrak{hei}_{2n+1} = \mathbb{R}^{2n} \times \mathbb{R},
$$

two-step nilpotent with one-dimensional center R, and $\mathbb R$ acts on $\mathbb R^{2n}$ by rotations with weights $\alpha = (\alpha_1, \dots, \alpha_n)$.

Define Lorentzian $\langle \cdot, \cdot \rangle$ on $\mathfrak{osc}(\alpha)$ by a definite scalar product on \mathbb{R}^{2n} and a dual pairing of totally isotropic subspaces $\mathbb R$ and $\mathbb R$.

• Medina (1985) and Hilgert & Hofmann (1985) showed that this is the only solvable non-abelian Lie algebra with invariant Lorentzian product.

A solvable Lie algebra with Lorentzian (nil-)invariant product is the oscillator algebra

 $\mathfrak{g} = \mathfrak{osc}(\alpha) = \mathbb{R} \ltimes \mathfrak{hei}_{2n+1}$

where the Heisenberg algebra is

$$
\mathfrak{hei}_{2n+1} = \mathbb{R}^{2n} \times \mathbb{R},
$$

two-step nilpotent with one-dimensional center R, and $\mathbb R$ acts on $\mathbb R^{2n}$ by rotations with weights $\alpha = (\alpha_1, \dots, \alpha_n)$.

Define Lorentzian $\langle \cdot, \cdot \rangle$ on $\mathfrak{osc}(\alpha)$ by a definite scalar product on \mathbb{R}^{2n} and a dual pairing of totally isotropic subspaces $\mathbb R$ and $\mathbb R$.

- Medina (1985) and Hilgert & Hofmann (1985) showed that this is the only solvable non-abelian Lie algebra with invariant Lorentzian product.
- For index ≥ 2 , Kath and Olbrich (2004) gave a classification scheme for Lie algebras with invariant scalar product, and a classification for index 2.
- For index \geq 3 classification becomes extremely complicated.

Discrete stabilizer for solvable G

Proposition

Let $\langle \cdot, \cdot \rangle$ be a symmetric nil-invariant bilinear form on a solvable Lie algebra q.

- Then \mathfrak{g}^{\perp} is an ideal in \mathfrak{g} .
- If \mathfrak{g}^{\perp} contains no non-trivial ideals of \mathfrak{g} , then $\mathfrak{g}^{\perp} = 0$.

Discrete stabilizer for solvable G

Proposition

Let $\langle \cdot, \cdot \rangle$ be a symmetric nil-invariant bilinear form on a solvable Lie algebra g.

- Then \mathfrak{g}^{\perp} is an ideal in \mathfrak{g} .
- If \mathfrak{g}^{\perp} contains no non-trivial ideals of \mathfrak{g} , then $\mathfrak{g}^{\perp} = 0$.

Theorem A Assume G is solvable. Then G acts almost freely on M.
Discrete stabilizer for solvable G

Proposition

Let $\langle \cdot, \cdot \rangle$ be a symmetric nil-invariant bilinear form on a solvable Lie algebra g.

- Then \mathfrak{g}^{\perp} is an ideal in \mathfrak{g} .
- If \mathfrak{g}^{\perp} contains no non-trivial ideals of \mathfrak{g} , then $\mathfrak{g}^{\perp} = 0$.

Theorem A Assume G is solvable. Then G acts almost freely on M.

Meaning:

- The stabiliser $\Gamma = G_x$ is discrete.
- The metric g on M pulls back to a left-invariant pseudo-Riemannian metric g_G on G.
- g_G is invariant under conjugation by Γ .

 $\mathfrak g$ is solvable with nil-invariant scalar product $\langle \cdot, \cdot \rangle$.

g is solvable with nil-invariant scalar product $\langle \cdot, \cdot \rangle$.

Proposition

 $\langle \cdot, \cdot \rangle$ is invariant on g.

g is solvable with nil-invariant scalar product $\langle \cdot, \cdot \rangle$.

Proposition

 $\langle \cdot, \cdot \rangle$ is invariant on q.

Proof

- Let j be a totally isotropic central ideal in g. Define the reduction $\overline{\mathfrak{g}}=j^{\perp}/j$.
- $\bullet \langle \cdot, \cdot \rangle$ induces a nil-invariant scalar product $\langle \cdot, \cdot \rangle_{\overline{\mathfrak{g}}}$ on $\overline{\mathfrak{g}}$.

g is solvable with nil-invariant scalar product $\langle \cdot, \cdot \rangle$.

Proposition

 $\langle \cdot, \cdot \rangle$ is invariant on g.

Proof

- Let j be a totally isotropic central ideal in g. Define the reduction $\overline{g} = j^{\perp}/j$.
- $\bullet \langle \cdot, \cdot \rangle$ induces a nil-invariant scalar product $\langle \cdot, \cdot \rangle_{\overline{\mathfrak{g}}}$ on $\overline{\mathfrak{g}}$.
- Assume that $\langle \cdot, \cdot \rangle_{\overline{\mathfrak{g}}}$ is invariant on $\overline{\mathfrak{g}}$.
- It is now easily verified that $\langle \cdot, \cdot \rangle$ on g is invariant if $\langle \cdot, \cdot \rangle_{\overline{g}}$ is.
- Iterated reduction to the abelian case and induction yield the result.

□

g is solvable with nil-invariant scalar product $\langle \cdot, \cdot \rangle$.

Proposition

 $\langle \cdot, \cdot \rangle$ is invariant on g.

Proof

- Let j be a totally isotropic central ideal in g. Define the reduction $\overline{g} = j^{\perp}/j$.
- $\bullet \langle \cdot, \cdot \rangle$ induces a nil-invariant scalar product $\langle \cdot, \cdot \rangle_{\overline{\mathfrak{g}}}$ on $\overline{\mathfrak{g}}$.
- Assume that $\langle \cdot, \cdot \rangle_{\overline{\mathfrak{g}}}$ is invariant on $\overline{\mathfrak{g}}$.
- It is now easily verified that $\langle \cdot, \cdot \rangle$ on g is invariant if $\langle \cdot, \cdot \rangle_{\overline{g}}$ is.
- Iterated reduction to the abelian case and induction yield the result.

Theorem B

Assume G is solvable.

Then g pulls back to a bi-invariant pseudo-Riemannian metric g_G on G.

□

g is solvable with nil-invariant scalar product $\langle \cdot, \cdot \rangle$.

Proposition

 $\langle \cdot, \cdot \rangle$ is invariant on g.

Proof

- Let j be a totally isotropic central ideal in g. Define the reduction $\overline{g} = j^{\perp}/j$.
- $\bullet \langle \cdot, \cdot \rangle$ induces a nil-invariant scalar product $\langle \cdot, \cdot \rangle_{\overline{\mathfrak{g}}}$ on $\overline{\mathfrak{g}}$.
- Assume that $\langle \cdot, \cdot \rangle_{\overline{\mathfrak{g}}}$ is invariant on $\overline{\mathfrak{g}}$.
- It is now easily verified that $\langle \cdot, \cdot \rangle$ on g is invariant if $\langle \cdot, \cdot \rangle_{\overline{\mathfrak{g}}}$ is.
- Iterated reduction to the abelian case and induction yield the result.

Theorem B

Assume G is solvable.

Then g pulls back to a bi-invariant pseudo-Riemannian metric g_G on G.

Corollary A+B

The universal cover \overline{M} of M is a pseudo-Riemannian symmetric space. In particular, M is locally symmetric.

□

No larger isometry groups

Theorem C Assume G is solvable and effective. Then $G = \text{Iso}(M)^\circ$.

No larger isometry groups

Theorem C Assume G is solvable and effective. Then $G = \text{Iso}(M)^\circ$.

Implications:

- Johnson (1972) showed that any solvmanifold has presentations by connected solvable groups of arbitrary dimension.
- Theorem A shows that most of them cannot act isometrically.
- Theorem C shows that no larger non-solvable group can act isometrically.

III Compact pseudo-Riemannian homogeneous spaces for arbitrary Lie groups

Lie groups of general type

Now let G be an arbitrary connected Lie group, and K , S , R as before,

- \bullet *K* compact semisimple,
- \bullet S semisimple without compact factors,
- \bullet R the solvable radical of G.

Nil-invariant forms

We study Lie algebras

 $\mathfrak{g} = (\mathfrak{k} \times \mathfrak{s}) \ltimes \mathfrak{r}$

with nil-invariant symmetric bilinear form $\langle \cdot, \cdot \rangle$.

Nil-invariant forms

We study Lie algebras

 $\mathfrak{g} = (\mathfrak{k} \times \mathfrak{s}) \ltimes \mathfrak{r}$

with nil-invariant symmetric bilinear form $\langle \cdot, \cdot \rangle$.

- \bullet $\langle \cdot, \cdot \rangle$ is a priori invariant under $\text{Ad}_{\mathfrak{a}}(S)$ and $\text{Ad}_{\mathfrak{g}}(R)_{\text{split}}$ (maximal trigonalisable).
- From the solvable case it follows that the restriction $\langle \cdot, \cdot \rangle_{\mathfrak{s}\ltimes \mathfrak{r}}$ is invariant under Ad_a(SR).

Lorentzian case

If the index of $\langle \cdot, \cdot \rangle$ is 1, then $\mathfrak{g} = \mathfrak{k} \times \mathfrak{s} \times \mathfrak{r}$, with either $\mathfrak{s} = 0$ or $\mathfrak{s} = \mathfrak{sl}_2(\mathbb{R})$.

Lorentzian case

If the index of $\langle \cdot, \cdot \rangle$ is 1, then $\mathfrak{g} = \mathfrak{k} \times \mathfrak{s} \times \mathfrak{r}$, with either $\mathfrak{s} = 0$ or $\mathfrak{s} = \mathfrak{sl}_2(\mathbb{R})$.

Zeghib's Theorem (1998)

Let M be a homogeneous Lorentzian manifold of finite volume. Then, up to "Riemannian type factors", M is one of the following:

- **1** Iso. (M, g) contains a cover of $PSL_2(\mathbb{R})$. $\widetilde{M} = \widetilde{\mathrm{SL}}_2(\mathbb{R}) \times L$, where L is a compact Riemannian homogeneous space.
- **2** Iso (M, g) contains an oscillator group Osc (α) . $\widetilde{M} = \text{Osc}(\alpha) \times_{S^1} L$, and $M = \widetilde{M}/\Gamma$, where Γ is isomorphic to a lattice in $Osc(\alpha)$.

Suppose the index of $\langle \cdot, \cdot \rangle$ is ≥ 1 .

Suppose the index of $\langle \cdot, \cdot \rangle$ is ≥ 1 .

Theorem D

- $\bigodot \langle \cdot, \cdot \rangle$ is Ad_g(SR)-invariant.
- $\bigodot \langle \cdot, \cdot \rangle_{\mathfrak{s}\ltimes \mathfrak{r}}$ is Ad_g (G) -invariant.

Suppose the index of $\langle \cdot, \cdot \rangle$ is > 1 .

Theorem D

- \bigcirc $\langle \cdot, \cdot \rangle$ is Ad_g (SR) -invariant.
- \bigodot $\langle \cdot, \cdot \rangle_{\mathfrak{s}\ltimes \mathfrak{r}}$ is Ad_a (G) -invariant.

Theorem E

If the index of $\langle \cdot, \cdot \rangle$ is ≤ 2 and \mathfrak{g}^{\perp} does not contain a non-trivial ideal of \mathfrak{g} , then:

1 g is a direct sum of ideals $g = \mathfrak{k} \times \mathfrak{s} \times \mathfrak{r}$. **2** $g^{\perp} \subset \mathfrak{z}(\mathfrak{r}) \times \mathfrak{k}$ and $g^{\perp} \cap (\mathfrak{s} \times \mathfrak{r}) = 0$.

Suppose the index of $\langle \cdot, \cdot \rangle$ is > 1 .

Theorem D

- \bigcirc $\langle \cdot, \cdot \rangle$ is Ad_g (SR) -invariant.
- \bigodot $\langle \cdot, \cdot \rangle_{\mathfrak{s}\ltimes \mathfrak{r}}$ is Ad_a (G) -invariant.

Theorem E

If the index of $\langle \cdot, \cdot \rangle$ is ≤ 2 and \mathfrak{g}^{\perp} does not contain a non-trivial ideal of \mathfrak{g} , then:

1 g is a direct sum of ideals $g = \mathfrak{k} \times \mathfrak{s} \times \mathfrak{r}$. **2** $g^{\perp} \subset \mathfrak{z}(\mathfrak{r}) \times \mathfrak{k}$ and $g^{\perp} \cap (\mathfrak{s} \times \mathfrak{r}) = 0$.

This allows us to

- classify Lie algebras with $\langle \cdot, \cdot \rangle$ for index $\langle 2, \cdot \rangle$
- recover Zeghib's Theorem (Lorentzian case) by algebraic methods,
- prove an analogue of Zeghib's Theorem for index 2.

IV Application: Compact pseudo-Riemannian Einstein solvmanifolds

Einstein metrics

(M, g) is called Einstein manifold if

$$
\text{Ric} = \lambda g
$$

for some constant $\lambda \in \mathbb{R}$.

For a bi-invariant metric g on G ,

$$
\operatorname{Ric} = -\frac{1}{4}\kappa
$$

where $\kappa(x, y) = \text{tr}(\text{ad}(x) \text{ad}(y))$ is the Killing form of g.

Compact Einstein solvmanifolds

Let (M, g_M) be a compact pseudo-Riemannian solvmanifold.

Recall:

- $M = G/\Gamma$ for a lattice $\Gamma \leq G$.
- g_M pulls back to bi-invariant g_G .
- $\bullet \langle \cdot, \cdot \rangle$ on g is non-degenerate and invariant.

Compact Einstein solvmanifolds

Let (M, g_M) be a compact pseudo-Riemannian solvmanifold.

Recall:

- $M = G/\Gamma$ for a lattice $\Gamma \leq G$.
- g_M pulls back to bi-invariant g_G .
- $\bullet \langle \cdot, \cdot \rangle$ on g is non-degenerate and invariant.

If (M, g_M) is Einstein, then

 $Ric = 0 = \kappa$.

Example

If g is nilpotent, then $\kappa = 0$. Question: Are there solvable g, not nilpotent, with

- \bullet $\kappa = 0$
- 2 and invariant scalar product $\langle \cdot, \cdot \rangle$?

Example

If g is nilpotent, then $\kappa = 0$. Question: Are there solvable g, not nilpotent, with

- \bullet $\kappa = 0$
- 2 and invariant scalar product $\langle \cdot, \cdot \rangle$?

Example

Take the abelian Lie algebra \mathfrak{ab}_1^4 with dim $\mathfrak{ab}_1^4 = 4$ and a Lorentzian scalar product.

Example

If g is nilpotent, then $\kappa = 0$. Question: Are there solvable g, not nilpotent, with

- \bullet $\kappa = 0$
- 2 and invariant scalar product $\langle \cdot, \cdot \rangle$?

Example

- Take the abelian Lie algebra \mathfrak{ab}_1^4 with dim $\mathfrak{ab}_1^4 = 4$ and a Lorentzian scalar product.
- Take extension

$$
\mathfrak{g}=\mathfrak{j}^*\ltimes(\mathfrak{ab}_1^4\times_\omega\mathfrak{j})
$$

where dim j = dim j^{*} = 1 and $a \in j^*$ acts on \mathfrak{ab}_1^4 by

$$
\delta_a = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}
$$

:

Define $\langle \cdot, \cdot \rangle_{\mathfrak{g}}$ on j^{*} \times j by dual pairing. A cocycle ω corrects the Lie bracket on $\mathfrak{a}\mathfrak{b}_1^4$ \times j such that $\langle \cdot, \cdot \rangle_{\mathfrak{g}}$ becomes invariant with signature (4, 2).

 $\mathfrak g$ solvable with nilradical $\mathfrak n$, then (as vector space)

 $\mathfrak{g} = \mathfrak{a} \oplus \mathfrak{n}.$

g solvable with nilradical n, then (as vector space)

 $\mathfrak{g} = \mathfrak{a} \oplus \mathfrak{n}.$

• ad(x) for $x \in \mathfrak{n}$ is nilpotent, so $\kappa(x, x) = 0$.

g solvable with nilradical n, then (as vector space)

 $a = a \oplus n$.

- ad(x) for $x \in \mathfrak{n}$ is nilpotent, so $\kappa(x, x) = 0$.
- For $a \in \mathfrak{a}$, the Einstein condition (Ricci-flat, $\kappa = 0$) becomes

$$
\lambda_1^2 + \ldots + \lambda_k^2 + 2\alpha_1^2 + \ldots + 2\alpha_m^2 - 2\beta_1^2 - \ldots - 2\beta_m^2 = 0,
$$

where $\lambda_i \in \mathbb{R}$ and $\zeta_i = \alpha_j + i\beta_j \in \mathbb{C} \backslash \mathbb{R}$ are the eigenvalues of ad(*a*).

g solvable with nilradical n, then (as vector space)

 $a = a \oplus n$.

- ad(x) for $x \in \mathfrak{n}$ is nilpotent, so $\kappa(x, x) = 0$.
- For $a \in \mathfrak{a}$, the Einstein condition (Ricci-flat, $\kappa = 0$) becomes

 $\lambda_1^2 + \ldots + \lambda_k^2 + 2\alpha_1^2 + \ldots + 2\alpha_m^2 - 2\beta_1^2 - \ldots - 2\beta_m^2 = 0,$

where $\lambda_i \in \mathbb{R}$ and $\zeta_i = \alpha_j + i\beta_j \in \mathbb{C} \backslash \mathbb{R}$ are the eigenvalues of ad(*a*).

Theorem F

Let $(g, \langle \cdot, \cdot \rangle)$ be a solvable Lie algebra with invariant Einstein scalar product. If g is not nilpotent, then dim $g \ge 6$ and the index of $\langle \cdot, \cdot \rangle$ is ≥ 2 .

Solvable non-nilpotent Lie groups G with Einstein metrics exist.

Solvable non-nilpotent Lie groups G with Einstein metrics exist. For the existence of a compact quotient M of G, there must be a lattice $\Gamma \leq G$.

Solvable non-nilpotent Lie groups G with Einstein metrics exist. For the existence of a compact quotient M of G, there must be a lattice $\Gamma \leq G$.

If a lattice exists (e.g. Mostow 1970), then:

- \bullet \tilde{G} has a faithful matrix representation...
- \bullet ... such that $\tilde{\Gamma}$ is represented by integer matrices.

Solvable non-nilpotent Lie groups G with Einstein metrics exist. For the existence of a compact quotient M of G, there must be a lattice $\Gamma \leq G$.

If a lattice exists (e.g. Mostow 1970), then:

- \bullet \tilde{G} has a faithful matrix representation...
- \bullet ... such that $\tilde{\Gamma}$ is represented by integer matrices.

The characteristic polynomial of $exp(ad(a))$ has coefficients in $\mathbb Z$ for certain $a \in \mathfrak a$... which means that all eigenvalues e^{λ_i} , e^{ζ_j} of $exp(ad(a))$ are algebraic numbers.

Digression: Hilbert's 7th Problem

Hilbert's 7th Problem

"The expression α^{β} , for an algebraic base α and an irrational algebraic exponent β , e.g., the number $2^{\sqrt{2}}$ or e^{π} , always represents a transcendental or at least an *irrational number.*"

Digression: Hilbert's 7th Problem

Hilbert's 7th Problem

"The expression α^{β} , for an algebraic base α and an irrational algebraic exponent β , e.g., the number $2^{\sqrt{2}}$ or e^{π} , always represents a transcendental or at least an *irrational number.*"

Gelfond-Schneider Theorem (1935)

Let $\alpha \in \mathbb{C} \setminus \{0, 1\}$ and let $\beta \in \mathbb{C}$ be irrational. Then at least one of α , β and α^{β} is transcendental.
Digression: Hilbert's 7th Problem

Hilbert's 7th Problem

"The expression α^{β} , for an algebraic base α and an irrational algebraic exponent β , e.g., the number $2^{\sqrt{2}}$ or e^{π} , always represents a transcendental or at least an *irrational number.*"

Gelfond-Schneider Theorem (1935) Let $\alpha \in \mathbb{C} \setminus \{0, 1\}$ and let $\beta \in \mathbb{C}$ be irrational. Then at least one of α , β and α^{β} is transcendental.

Generalizations:

- Baker's Theorem (1966/67) on linear forms in logarithms of algebraic numbers (Fields Medal 1970).
- Schanuel's Conjecture, stating:

Let $\alpha_1, \ldots, \alpha_d$ be complex numbers that are linearly independent over Q. Then the transcendence degree over Q of the extension field $\mathbb{Q}(\alpha_1,\ldots,\alpha_d,\mathrm{e}^{\alpha_1},\ldots,\mathrm{e}^{\alpha_d})$ is at least d.

Use the Gelfond-Schneider Theorem in the search for lattices.

Use the Gelfond-Schneider Theorem in the search for lattices.

Algebraic Lemma

Let $X \in \mathbb{R}^{n \times n}$ in the normal form of ad(a) with eigenvalues $\lambda_1, \ldots, \lambda_k \in \mathbb{R}$ and $\zeta_1, \ldots, \zeta_m, \overline{\zeta}_1, \ldots, \overline{\zeta}_m \in \mathbb{C} \backslash \mathbb{R}$. Suppose the eigenvalues satisfy

 $\lambda_1^2 + \ldots + \lambda_k^2 + 2\text{Re}(\zeta_1)^2 + \ldots + 2\text{Re}(\zeta_m)^2 - 2\text{Im}(\zeta_1)^2 - \ldots - 2\text{Im}(\zeta_m)^2 = 0.$

If $n \leq 5$, then $exp(X)$ is not conjugate to a matrix in $SL_n(\mathbb{Z})$.

Use the Gelfond-Schneider Theorem in the search for lattices.

Algebraic Lemma Let $X \in \mathbb{R}^{n \times n}$ in the normal form of ad(a) with eigenvalues $\lambda_1, \ldots, \lambda_k \in \mathbb{R}$ and $\zeta_1, \ldots, \zeta_m, \overline{\zeta}_1, \ldots, \overline{\zeta}_m \in \mathbb{C} \backslash \mathbb{R}$. Suppose the eigenvalues satisfy $\lambda_1^2 + \ldots + \lambda_k^2 + 2\text{Re}(\zeta_1)^2 + \ldots + 2\text{Re}(\zeta_m)^2 - 2\text{Im}(\zeta_1)^2 - \ldots - 2\text{Im}(\zeta_m)^2 = 0.$ If $n \leq 5$, then $exp(X)$ is not conjugate to a matrix in $SL_n(\mathbb{Z})$.

Proof

 \bullet To satisfy the given equation, X has at least one non-real eigenvalue pair ζ . $\overline{\zeta}$. If $n \leq 5$, then $n = 4$ or $n = 5$.

Use the Gelfond-Schneider Theorem in the search for lattices.

Algebraic Lemma

Let $X \in \mathbb{R}^{n \times n}$ in the normal form of ad(a) with eigenvalues $\lambda_1, \ldots, \lambda_k \in \mathbb{R}$ and $\zeta_1, \ldots, \zeta_m, \overline{\zeta}_1, \ldots, \overline{\zeta}_m \in \mathbb{C} \backslash \mathbb{R}$. Suppose the eigenvalues satisfy

 $\lambda_1^2 + \ldots + \lambda_k^2 + 2\text{Re}(\zeta_1)^2 + \ldots + 2\text{Re}(\zeta_m)^2 - 2\text{Im}(\zeta_1)^2 - \ldots - 2\text{Im}(\zeta_m)^2 = 0.$

If $n \leq 5$, then $exp(X)$ is not conjugate to a matrix in $SL_n(\mathbb{Z})$.

- \bullet To satisfy the given equation, X has at least one non-real eigenvalue pair ζ . $\overline{\zeta}$. If $n \leq 5$, then $n = 4$ or $n = 5$.
- One can show that there always exists a pair of eigenvalues ξ , ξ^i for $exp(X)$ (need $n \leq 5$).

Use the Gelfond-Schneider Theorem in the search for lattices.

Algebraic Lemma

Let $X \in \mathbb{R}^{n \times n}$ in the normal form of ad(a) with eigenvalues $\lambda_1, \ldots, \lambda_k \in \mathbb{R}$ and $\zeta_1, \ldots, \zeta_m, \overline{\zeta}_1, \ldots, \overline{\zeta}_m \in \mathbb{C} \backslash \mathbb{R}$. Suppose the eigenvalues satisfy

 $\lambda_1^2 + \ldots + \lambda_k^2 + 2\text{Re}(\zeta_1)^2 + \ldots + 2\text{Re}(\zeta_m)^2 - 2\text{Im}(\zeta_1)^2 - \ldots - 2\text{Im}(\zeta_m)^2 = 0.$

If $n \leq 5$, then $exp(X)$ is not conjugate to a matrix in $SL_n(\mathbb{Z})$.

Proof

- \bullet To satisfy the given equation, X has at least one non-real eigenvalue pair ζ . $\overline{\zeta}$. If $n \leq 5$, then $n = 4$ or $n = 5$.
- One can show that there always exists a pair of eigenvalues ξ , ξ^i for $exp(X)$ (need $n \leq 5$).
- By Gelfond-Schneider Theorem: One of ξ or ξ^i is transcendental, so $exp(X)$ is not conjugate to a matrix in $SL_n(\mathbb{Z})$.

 \Box

Use the Gelfond-Schneider Theorem in the search for lattices.

Algebraic Lemma

Let $X \in \mathbb{R}^{n \times n}$ in the normal form of ad(a) with eigenvalues $\lambda_1, \ldots, \lambda_k \in \mathbb{R}$ and $\zeta_1, \ldots, \zeta_m, \overline{\zeta}_1, \ldots, \overline{\zeta}_m \in \mathbb{C} \backslash \mathbb{R}$. Suppose the eigenvalues satisfy

 $\lambda_1^2 + \ldots + \lambda_k^2 + 2\text{Re}(\zeta_1)^2 + \ldots + 2\text{Re}(\zeta_m)^2 - 2\text{Im}(\zeta_1)^2 - \ldots - 2\text{Im}(\zeta_m)^2 = 0.$

If $n \leq 5$, then $exp(X)$ is not conjugate to a matrix in $SL_n(\mathbb{Z})$.

Proof

- \bullet To satisfy the given equation, X has at least one non-real eigenvalue pair ζ . $\overline{\zeta}$. If $n \leq 5$, then $n = 4$ or $n = 5$.
- One can show that there always exists a pair of eigenvalues ξ , ξ^i for $exp(X)$ (need $n \leq 5$).
- By Gelfond-Schneider Theorem:

One of ξ or ξ^i is transcendental, so $exp(X)$ is not conjugate to a matrix in $SL_n(\mathbb{Z})$. \Box

Conjecture

If Schanuel's Conjecture is true, then the Algebraic Lemma holds without " $n \leq 5$ ".

Theorem G Let M be a compact pseudo-Riemannian Einstein solvmanifold and dim $M \le 7$. Then M is a nilmanifold.

Theorem G

Let M be a compact pseudo-Riemannian Einstein solvmanifold and dim $M \le 7$. Then M is a nilmanifold.

Proof

 $M = G/\Gamma$, with $\Gamma \leq G$ a lattice and G solvable, but not nilpotent.

Theorem G

Let M be a compact pseudo-Riemannian Einstein solvmanifold and dim $M \le 7$. Then M is a nilmanifold.

- $M = G/\Gamma$, with $\Gamma \leq G$ a lattice and G solvable, but not nilpotent.
- By Theorem F: May assume $6 \le \dim M \le 7$.

Theorem G

Let M be a compact pseudo-Riemannian Einstein solvmanifold and $\dim M < 7$. Then M is a nilmanifold.

- $M = G/\Gamma$, with $\Gamma \leq G$ a lattice and G solvable, but not nilpotent.
- By Theorem F: May assume $6 \le \dim M \le 7$.
- Consider $\mathfrak{g} = \mathfrak{a} \oplus \mathfrak{n}$ as before. For $a \in \mathfrak{a}$, ad(a) is not nilpotent. By Mostow's result, we may assume $exp(ad(a))$ is conjugate to a matrix in $SL_n(\mathbb{Z})$.

Theorem G

Let M be a compact pseudo-Riemannian Einstein solvmanifold and $\dim M < 7$. Then M is a nilmanifold.

- $M = G/\Gamma$, with $\Gamma \leq G$ a lattice and G solvable, but not nilpotent.
- By Theorem F: May assume $6 \le \dim M \le 7$.
- Consider $\mathfrak{g} = \mathfrak{a} \oplus \mathfrak{n}$ as before. For $a \in \mathfrak{a}$, ad(a) is not nilpotent. By Mostow's result, we may assume $exp(ad(a))$ is conjugate to a matrix in $SL_n(\mathbb{Z})$.
- Let $W = \text{im ad}(a)$. Then dim $W \le 5$ (from structure theory).

Theorem G

Let M be a compact pseudo-Riemannian Einstein solvmanifold and $\dim M < 7$. Then M is a nilmanifold.

- $M = G/\Gamma$, with $\Gamma \leq G$ a lattice and G solvable, but not nilpotent.
- By Theorem F: May assume $6 \le \dim M \le 7$.
- Consider $\mathfrak{g} = \mathfrak{a} \oplus \mathfrak{n}$ as before. For $a \in \mathfrak{a}$, ad(a) is not nilpotent. By Mostow's result, we may assume $exp(ad(a))$ is conjugate to a matrix in $SL_n(\mathbb{Z})$.
- Let $W = \text{im ad}(a)$. Then dim $W \le 5$ (from structure theory).
- Apply Algebraic Lemma to $\text{ad}(a)|_W$: $\exp(\text{ad}(a))$ is not conjugate to a matrix in $SL_n(\mathbb{Z})$.

Theorem G

Let M be a compact pseudo-Riemannian Einstein solvmanifold and $\dim M < 7$. Then M is a nilmanifold.

Proof

- $M = G/\Gamma$, with $\Gamma \leq G$ a lattice and G solvable, but not nilpotent.
- By Theorem F: May assume $6 \le \dim M \le 7$.
- Consider $\mathfrak{g} = \mathfrak{a} \oplus \mathfrak{n}$ as before. For $a \in \mathfrak{a}$, ad(a) is not nilpotent. By Mostow's result, we may assume $exp(ad(a))$ is conjugate to a matrix in $SL_n(\mathbb{Z})$.
- Let $W = \text{im ad}(a)$. Then dim $W \le 5$ (from structure theory).
- Apply Algebraic Lemma to $\text{ad}(a)|_W$: $\exp(\text{ad}(a))$ is not conjugate to a matrix in $SL_n(\mathbb{Z})$.
- \bullet Contradiction, so G must be nilpotent.

□

Theorem G

Let M be a compact pseudo-Riemannian Einstein solvmanifold and $\dim M < 7$. Then M is a nilmanifold.

Proof

- $M = G/\Gamma$, with $\Gamma \leq G$ a lattice and G solvable, but not nilpotent.
- By Theorem F: May assume $6 \le \dim M \le 7$.
- Consider $\mathfrak{g} = \mathfrak{a} \oplus \mathfrak{n}$ as before. For $a \in \mathfrak{a}$, ad(a) is not nilpotent. By Mostow's result, we may assume $exp(ad(a))$ is conjugate to a matrix in $SL_n(\mathbb{Z})$.
- Let $W = \text{im ad}(a)$. Then dim $W \le 5$ (from structure theory).
- Apply Algebraic Lemma to $\text{ad}(a)|_W$: $\exp(\text{ad}(a))$ is not conjugate to a matrix in $SL_n(\mathbb{Z})$.
- \bullet Contradiction, so G must be nilpotent.

Conjecture

Every compact pseudo-Riemannian Einstein solvmanifold is a nilmanifold.

 \Box

References

- S. Adams, G. Stuck, The isometry group of a compact Lorentz manifold I, Inventiones Mathematicae 129, 1997
- O. Baues, W. Globke, Rigidity of compact pseudo-Riemannian homogeneous spaces for solvable Lie groups, to appear in International Mathematics Research Notices, arXiv:1507.02575
- O. Baues, W. Globke, A. Zeghib, The structure of compact homogeneous spaces with indefinite of low metric index, in preparation
- W. Globke, Y. Nikolayevsky, Compact pseudo-Riemannian homogeneous Einstein manifolds of low dimension, to appear in Differential Geometry and Applications, arXiv:1611.08662
- \bullet A. Zeghib,

Sur les espaces-temps homogènes,

Geometry and Topology Monographs 1: The Epstein Birthday Schrift, 1998