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Notation: Group Actions

Group element γ acting on x ∈ X :

x 7→ γ.x

Orbit of Γ through x ∈ X :

Γ.x = {γ.x | γ ∈ Γ}

Stabiliser (isotropy subgroup) of a point x ∈ X :

Γx = {γ ∈ Γ | γ.x = x}
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Notation: Groups

Affine group:
Aff(Rn) = GLn(R) nRn

Euclidean group:

Iso(Rn) = On nRn
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Notation: Affine Maps
An affine map

γ : Rn → R
n, x 7→ A · x + v

with linear part
l(γ) = A ∈ GLn(R)

and translation part
t(γ) = v ∈ Rn

is written in tuple notation

γ = (A, v),

or in (augmented) matrix notation

γ =

(
A v

0 1

)
∈ GLn+1(R).
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I. Tilings and Crystals
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Lattice Patterns

Start with a single shape in Rn

 rotate, reflect and translate it.

Consider those shapes whose copies fill up space without gaps
or overlaps.

If the shape is a regular polyhedron, its vertices form a lattice
in space.
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2D: Ornaments

In dimension n = 2, we speak of ornaments
(or tilings, tessellations, wallpapers . . . )

�
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2D: Ornaments

Ornamental patterns challenged and inspired artists and
mathematicians throughout the centuries.

Ancient Egyptian and medieval Moorish artists created
elaborate ornamentations, thereby realising all of the 17
possible symmetry classes.
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2D: Ornaments
The Alhambra in Granada (Spain) contains ornamentations
realising “most” of the 17 symmetry classes.

Photographs by John Baez

http://math.ucr.edu/home/baez/alhambra/
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3D: Crystals

In dimension n = 3, we speak of crystals.
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The primitive cell on the left generates the crystal lattice of
graphite on the right.
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Classification by Symmetries

To each ornamental or crystallographic pattern X we can assign its
symmetry group Γ:

Γ is a subgroup of Iso(Rn) = On nRn.

Γ.X = X .

If γ.X = X , then γ ∈ Γ.

Classify ornaments and crystals by classifying their symmetry
groups!
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Fundamental Domains

Crystal patterns are generated by transformations of a fundamental
domain FΓ:

FΓ is open in Rn,

Γ.F Γ = R
n,

each Γ-orbit intersects FΓ at most once.

Note: Often, fundamental domains are much smaller than the
generating pattern of an ornament or a crystal.

13 / 54



Example: Hexagonal Pattern
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Example: Hexagonal Pattern
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Example: Hexagonal Pattern
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Example: Hexagonal Pattern?
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II. Bieberbach’s Theorems
and Classifications of Crystallographic Groups
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Crystallographic Groups

The symmetry group Γ of a crystal

is discrete (as a subset of Iso(Rn)),

is cocompact, i.e. Rn/Γ is compact.
(equivalent: F Γ is compact.)

Γ is called a crystallographic group.

If Γ is also torsion-free, i.e. for all γ ∈ Γ holds[
γk = id for some k ≥ 1

]
⇒ γ = id,

then Γ is called a Bieberbach group.
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Classification by Symmetries

When should two crystallographic groups Γ1 and Γ2 be considered
equivalent?

Conjugation by g ∈ Iso(Rn) is too restrictive!

Choose affine equivalence:

Γ1 ∼ Γ2 :⇔ Γ1 = g · Γ2 · g−1 for some g ∈ Aff(Rn)

As we will see later, this is a good choice!
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Classification for n = 2

Theorem (Fedorov, 1891)
There exist 17 (classes of) crystallographic groups in dimension 2.

Commonly known as wallpaper groups.
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Classification for n = 3

Theorem (Fedorov & Schoenfließ, 1891)
There exist 230 (classes of) crystallographic groups in dimension 3.

Wait. . . is it 230 or 219?

Answer:
Depends on whether conjugation by g with det(l(g)) < 0 is
allowed or not.

Mathematicians: Yes! ⇒ 219 groups.

Chemists/physicists: No! ⇒ 230 groups.
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Bieberbach Groups for n = 2

Among the 17 wallpaper groups,
there are only 2 Bieberbach groups:
The fundamental groups of the torus and the Klein bottle.
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Example: Torus Group

The fundamental group of the torus is generated by the two
translations

γ1 =

 1 0 1
0 1 0

0 0 1

 , γ2 =

 1 0 0
0 1 1

0 0 1

 .

Clearly, this group is torsion-free.
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Example: Klein Bottle Group

The fundamental group of the Klein bottle is generated by a
glide-reflection and a translation,

γ1 =

 1 0 1/2
0 −1 1/2

0 0 1

 , γ2 =

 1 0 0
0 1 1/2

0 0 1

 .

This group is also torsion-free (examine the first row in a group
word!).
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Example: Non-Bieberbach Crystallographic Group

The symmetry group of the hexagonal pattern on slide 14 is
generated by

(reflections) σ1 =

 1 0 0
0 −1 0
0 0 1

 , σ2 =

 −1 0 0
0 1 0
0 0 1

 ,

(rotation) % =

 √3/2 −1/2 0

1/2
√

3/2 0
0 0 1

 ,

(translations) τ1 =

 1 0 0
0 1 1
0 0 1

 , τ2 =

 1 0 (
√

6 +
√

2)/4

0 1 (
√

6−
√

2)/4
0 0 1

 .

The elements σ1, σ2 and % are of finite order.
So this is not a Bieberbach group.
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Bieberbach Groups for n = 3

Theorem (Hantzsche & Wendt, 1935)
Among the 219 space groups, there are only 10 Bieberbach groups.
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Hilbert’s 18th Problem

“Is there in n-dimensional Euclidean space [. . . ] only a finite
number of essentially different kinds of groups of motions with a
[compact] fundamental region?”

31 / 54



Bieberbach’s First Theorem

Theorem (Bieberbach, 1911)
Let Γ ⊂ Iso(Rn) be a crystallographic group.
Then:

l(Γ) is finite.

Γ ∩Rn is a lattice which spans Rn.

With respect to a basis in Γ ∩Rn, the linear group l(Γ) is
faithfully represented by matrices in GLn(Z).

In modern parlance:
Γ ∩Rn ∼= Z

n is of finite index in Γ, that is,
Γ is a group extension

0→ Z
n → Γ→ Θ→ 1

of Zn by some finite group Θ ∼= l(Γ).
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Bieberbach’s Second Theorem

Theorem (Bieberbach, 1912)
Let Γ1, Γ2 ⊂ Iso(Rn) be crystallographic groups.
Γ1
∼= Γ2 if and only if Γ1 and Γ2 are affinely equivalent.

Proof:

An isomorphism ψ : Γ1 → Γ2 maps Γ1 ∩Rn to Γ2 ∩Rn.

Therefore, T = ψ|Γ1∩Rn ∈ GLn(R).

The induced map ψl : l(Γ1)→ l(Γ2) on the linear parts is
ψl(A) = T · A · T−1.

Finite subgroups of Iso(Rn) have a fixed point (“origin”).

Choose v ∈ Rn to compensate for the displacement
from origin(l(Γ1)) to origin(l(Γ2)); then

ψ = (T , v) ∈ Aff(Rn).
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Bieberbach’s Third Theorem

Theorem (Bieberbach, 1912)
For given dimension n, there exist only finitely many
(affine equivalence classes of) crystallographic groups.

Proof:

By Bieberbach 2: Sufficient to prove that there are only finitely many
classes of isomorphic crystallographic groups.

By Bieberbach 1: Γ is an extension 0→ Z
n → Γ→ Θ→ 1.

By a Theorem of Jordan/Minkowski: Every finite subgroup of GLn(Z)
maps injectively to a subgroup of GLn(F3). So there is only a finite
number of non-equivalent finite subgroups.

Equivalent extensions for a Θ-module (Zn, %) are encoded by
H2(Θ,Zn, %), but this is finite for a finite group Θ.

Also, only finitely many modules (Zn, %) exist for a given finite group Θ.

Equivalence of extensions implies isomorphism of groups.
So there are only finitely many isomorphism classes.
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Zassenhaus’ Algorithm

Zassenhaus gave a constructive proof for the third Bieberbach
Theorem.

In doing so, he also proved a converse to the first:

Theorem (Zassenhaus, 1948)
A group Γ which is an extension of Zn by a finite Θ ⊂ GLn(Z) can
be embedded in Iso(Rn) as a crystallographic group.
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Higher Dimensions

n = 4 :

Crystallographic: 4783

Bieberbach: 74

n = 5 :

Crystallographic: 222018

Bieberbach: 1060

n = 6 :

Crystallographic: 28927915

Bieberbach: 38746

The computer algebra system GAP provides tables and algorithms
for crystallographic groups.
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III. Flat Manifolds
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Why Bieberbach Groups?

Theorem (Killing, 1891)
If M is a complete connected flat Riemannian manifold, then
M = R

n/Γ, where Γ ⊂ Iso(Rn) is the fundamental group of M.

The fundamental group Γ. . .

is discrete,

is torsion-free.
Proof: Assume γ ∈ Γ\{id} satisfies γk = id, k > 1.
Then x = − 1

k−2

∑k−1
j=1 vj (or x = 1

2
v1 for k = 2) is a fixed point for 〈γ〉,

where vj = t(γ j).

Contradiction to Γ acting simply transitively on the fibre π−1(π(x)).

Corollary
If M = R

n/Γ is a compact complete connected flat Riemannian
manifold, then its fundamental group Γ is a Bieberbach group.
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Bieberbach’s First Theorem (geometric)

Theorem
Let M be a compact complete connected flat Riemannian manifold.
Then the flat torus is a finite Riemannian cover of M.
The holonomy group Θ of M is finite.
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Bieberbach’s Second Theorem (geometric)

Theorem
Let M1 and M2 be a compact complete connected flat Riemannian
manifolds with fundamental groups Γ1 and Γ2.
Then Γ1

∼= Γ2 if and only if M1 and M2 are affinely equivalent.
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Bieberbach’s Third Theorem (geometric)

Theorem
For a given dimension n, there only finitely many equivalence
classes of compact complete connected flat Riemannian manifolds.
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Non-Compact Manifolds

Assume Γ is the fundamental group of a non-compact complete
connected flat Riemannian manifold M.

One can show that Γ is an embedding of a Bieberbach group
Γ ⊂ Iso(Rk) into Iso(Rn), where k < n = dim M.

In particular:
There exists a real analytic deformation retract of M onto a
compact totally geodesic submanifold of dimension k.
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IV. Holonomy
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Holonomy Groups of Flat Manifolds
Let M = R

n/Γ be a complete (affinely) flat manifold with
fundamental group Γ ⊂ Aff(Rn).

Theorem
Hol(M) = l(Γ).

Proof:

0
v

Rn

M

π

π(0) = π(v)

x Ax

γ = (A, v)

�γ

π

π∗x

π∗Ax
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Example: Disconnected Holonomy

Parallel transport on the Möbius Strip:

Γ =
〈 −1 0 0

0 1 1

0 0 1

〉 and Hol(M) =
〈( −1 0

0 1

)〉
.
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Example: Disconnected Holonomy

Parallel transport on the Möbius Strip:
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Classification Results

Theorem (Auslander & Kuranishi, 1957)
Let Θ be a finite group. Then there exist a Bieberbach group Γ
with l(Γ) = Θ and a compact complete flat Riemannian manifold
M with Hol(M) = Θ.

For Θ ∼= Z/pZ (p prime) a precise classification of the
corresponding Bieberbach groups is known.

Exploit that the faithful Θ-modules are known.

Isomorphism classes are determined by a finite number of
parameters.
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V. Related Topics
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Almost Flat Manifolds

Theorem (Gromov 1978, Ruh 1982)
There exists a number ε = ε(n) such that for a compact connected
n-dimensional Riemannian manifold M satisfying

diam(M)2 · |KM | ≤ ε,

where KM denotes the sectional curvature, there exists a nilpotent
Lie group N and a discrete subgroup Γ of Aut(N) n N such that

M is diffeomorphic to N/Γ,

Γ ∩ N has finite index in Γ,

Γ is an extension of a lattice Λ ⊂ N by a finite group Θ.

Such a manifold M is called almost flat.
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Quasi-Symmetries

There exist tilings of the plane constructed from regular
polygons that do not arise from group symmetries (Kepler,
1619).

Bravais proved that no crystal lattice in R3 has a 5-fold
symmetry.

Shechtman got the Nobel Prize in Chemistry 2011 for the
construction of quasi-crystals with a 5-fold symmetry.

There exists irregular polyhedra whose copies fill up space
even though they are not fundamental domains of groups
(n = 2 by Heesch, 1935, and n = 3 by Reinhardt, 1928).
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Generalisations

What happens if we assume that Γ. . .

acts by pseudo-Riemannian isometries?

acts by affine transformations?

Everything falls apart!
(No analogues to the Bieberbach Theorems.)

See part II of this talk!
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