Crystallographic Groups I The Classical Theory

Wolfgang Globke

School of Mathematical Sciences Differential Geometry Seminar

Notation

Notation: Group Actions

• Group element γ acting on $x \in X$:

 $x \mapsto \gamma . x$

• Orbit of Γ through $x \in X$:

$$\mathsf{\Gamma}.x = \{\gamma.x \mid \gamma \in \mathsf{\Gamma}\}$$

• Stabiliser (isotropy subgroup) of a point $x \in X$:

$$\mathsf{F}_{\mathsf{x}} = \{ \gamma \in \mathsf{F} \mid \gamma.x = x \}$$

Notation: Groups

• Affine group:

$$\operatorname{Aff}(\mathbb{R}^n) = \operatorname{GL}_n(\mathbb{R}) \ltimes \mathbb{R}^n$$

• Euclidean group:

 $\mathsf{lso}(\mathbb{R}^n) = \mathbf{O}_n \ltimes \mathbb{R}^n$

Notation: Affine Maps

An affine map

$$\gamma : \mathbb{R}^n \to \mathbb{R}^n, \quad x \mapsto A \cdot x + \mathbf{v}$$

with linear part

$$L(\gamma) = A \in \mathsf{GL}_n(\mathbb{R})$$

and translation part

$$\mathbf{T}(\gamma) = \mathbf{v} \in \mathbb{R}^n$$

is written in tuple notation

$$\gamma = (\mathbf{A}, \mathbf{v}),$$

or in (augmented) matrix notation

$$\gamma = \left(\begin{array}{c|c} A & \mathbf{v} \\ \hline \mathbf{0} & 1 \end{array}\right) \in \mathbf{GL}_{n+1}(\mathbb{R}).$$

I. Tilings and Crystals

Lattice Patterns

- Start with a single shape in ℝⁿ
 → rotate, reflect and translate it.
- Consider those shapes whose copies fill up space without gaps or overlaps.
- If the shape is a regular polyhedron, its vertices form a lattice in space.

2D: Ornaments

In dimension n = 2, we speak of ornaments (or tilings, tessellations, wallpapers ...)

2D: Ornaments

- Ornamental patterns challenged and inspired artists and mathematicians throughout the centuries.
- Ancient Egyptian and medieval Moorish artists created elaborate ornamentations, thereby realising all of the 17 possible symmetry classes.

2D: Ornaments

The Alhambra in Granada (Spain) contains ornamentations realising "most" of the 17 symmetry classes.

Photographs by John Baez http://math.ucr.edu/home/baez/alhambra/

3D: Crystals

In dimension n = 3, we speak of crystals.

The primitive cell on the left generates the crystal lattice of graphite on the right.

Classification by Symmetries

To each ornamental or crystallographic pattern X we can assign its symmetry group Γ :

• Γ is a subgroup of $\mathbf{Iso}(\mathbb{R}^n) = \mathbf{O}_n \ltimes \mathbb{R}^n$.

•
$$\Gamma X = X$$
.

• If
$$\gamma X = X$$
, then $\gamma \in \Gamma$.

Classify ornaments and crystals by classifying their symmetry groups!

Fundamental Domains

Crystal patterns are generated by transformations of a fundamental domain F_{Γ} :

- F_{Γ} is open in \mathbb{R}^n ,
- $\Gamma.\overline{F}_{\Gamma} = \mathbb{R}^n$,
- each Γ -orbit intersects F_{Γ} at most once.

Note: Often, fundamental domains are much smaller than the generating pattern of an ornament or a crystal.

References I

- J.J. Burckhardt, Die Bewegungsgruppen der Kristallographie, Birkhäuser, 1947
- J.H. Conway, H. Burgiel, C. Goodman-Strauss, The Symmetries of Things, A.K. Peters, 2008
- B. Grünbaum, What Symmetry Groups Are Present in the Alhambra?, Notices Amer. Math. Soc. 53, 2006, no. 6
- B. Grünbaum & G.C. Shephard, Tilings and Patterns, W.H. Freeman and Company, 1989
- D. Schattschneider, The Plane Symmetry Groups: Their Recognition and Notation, Amer. Math. Monthly 85, 1978, no. 6
- H. Weyl, Symmetry, Princeton University Press, 1952

II. Bieberbach's Theorems and Classifications of Crystallographic Groups

Crystallographic Groups

The symmetry group Γ of a crystal

- is discrete (as a subset of $\mathsf{Iso}(\mathbb{R}^n)$),
- is cocompact, i.e. Rⁿ/Γ is compact. (equivalent: F
 ^Γ is compact.)

 Γ is called a crystallographic group.

If Γ is also torsion-free, i.e. for all $\gamma\in\Gamma$ holds

$$\left[\gamma^k = \mathsf{id} \text{ for some } k \geq 1
ight] \quad \Rightarrow \quad \gamma = \mathsf{id},$$

then Γ is called a Bieberbach group.

Classification by Symmetries

When should two crystallographic groups Γ_1 and Γ_2 be considered equivalent?

- Conjugation by $g \in \mathsf{Iso}(\mathbb{R}^n)$ is too restrictive!
- Choose affine equivalence:

 $\Gamma_1 \sim \Gamma_2 \quad :\Leftrightarrow \quad \Gamma_1 = g \cdot \Gamma_2 \cdot g^{-1} \text{ for some } g \in \operatorname{Aff}(\mathbb{R}^n)$

As we will see later, this is a good choice!

Classification for n = 2

Theorem (Fedorov, 1891) There exist 17 (classes of) crystallographic groups in dimension 2.

Commonly known as wallpaper groups.

Classification for n = 3

Theorem (Fedorov & Schoenfließ, 1891)

There exist 230 (classes of) crystallographic groups in dimension 3.

Wait... is it 230 or 219?

Answer:

Depends on whether conjugation by g with det(L(g)) < 0 is allowed or not.

- Mathematicians: Yes! \Rightarrow 219 groups.
- Chemists/physicists: No! \Rightarrow 230 groups.

Bieberbach Groups for n = 2

Among the 17 wallpaper groups, there are only 2 Bieberbach groups: The fundamental groups of the torus and the Klein bottle. The fundamental group of the torus is generated by the two translations

$$\gamma_1 = \begin{pmatrix} 1 & 0 & | & 1 \\ 0 & 1 & 0 \\ \hline 0 & 0 & | & 1 \end{pmatrix}, \quad \gamma_2 = \begin{pmatrix} 1 & 0 & | & 0 \\ 0 & 1 & 1 \\ \hline 0 & 0 & | & 1 \end{pmatrix}.$$

Clearly, this group is torsion-free.

The fundamental group of the Klein bottle is generated by a glide-reflection and a translation,

This group is also torsion-free (examine the first row in a group word!).

Example: Non-Bieberbach Crystallographic Group

The symmetry group of the hexagonal pattern on slide 14 is generated by

$$\begin{array}{ll} \text{(reflections)} & \sigma_1 = \begin{pmatrix} 1 & 0 & | & 0 \\ 0 & -1 & | & 0 \\ \hline 0 & 0 & | & 1 \end{pmatrix}, \quad \sigma_2 = \begin{pmatrix} -1 & 0 & | & 0 \\ 0 & 1 & | & 0 \\ \hline 0 & 0 & | & 1 \end{pmatrix}, \\ \text{(rotation)} & \varrho = \begin{pmatrix} \sqrt{3}/2 & -1/2 & | & 0 \\ 1/2 & \sqrt{3}/2 & | & 0 \\ \hline 0 & 0 & | & 1 \end{pmatrix}, \\ \text{(translations)} & \tau_1 = \begin{pmatrix} 1 & 0 & | & 0 \\ 0 & 1 & | & 1 \\ \hline 0 & 0 & | & 1 \end{pmatrix}, \quad \tau_2 = \begin{pmatrix} 1 & 0 & | & (\sqrt{6} + \sqrt{2})/4 \\ 0 & 1 & (\sqrt{6} - \sqrt{2})/4 \\ \hline 0 & 0 & | & 1 \end{pmatrix}. \end{array}$$

The elements σ_1 , σ_2 and ρ are of finite order. So this is not a Bieberbach group. Bieberbach Groups for n = 3

Theorem (Hantzsche & Wendt, 1935) Among the 219 space groups, there are only 10 Bieberbach groups.

"Is there in n-dimensional Euclidean space [...] only a finite number of essentially different kinds of groups of motions with a [compact] fundamental region?"

Bieberbach's First Theorem

```
Theorem (Bieberbach, 1911)
Let \Gamma \subset Iso(\mathbb{R}^n) be a crystallographic group.
Then:
```

- L(Γ) is finite.
- $\Gamma \cap \mathbb{R}^n$ is a lattice which spans \mathbb{R}^n .

With respect to a basis in $\Gamma \cap \mathbb{R}^n$, the linear group $L(\Gamma)$ is faithfully represented by matrices in $\mathbf{GL}_n(\mathbb{Z})$.

In modern parlance: $\Gamma \cap \mathbb{R}^n \cong \mathbb{Z}^n$ is of finite index in Γ , that is, Γ is a group extension

$$\mathbf{0} o \mathbb{Z}^n o \mathsf{\Gamma} o \Theta o \mathbf{1}$$

of \mathbb{Z}^n by some finite group $\Theta \cong L(\Gamma)$.

Bieberbach's Second Theorem

Theorem (Bieberbach, 1912) Let $\Gamma_1, \Gamma_2 \subset \mathbf{Iso}(\mathbb{R}^n)$ be crystallographic groups. $\Gamma_1 \cong \Gamma_2$ if and only if Γ_1 and Γ_2 are affinely equivalent.

Proof:

- An isomorphism $\psi: \Gamma_1 \to \Gamma_2$ maps $\Gamma_1 \cap \mathbb{R}^n$ to $\Gamma_2 \cap \mathbb{R}^n$.
- Therefore, $T = \psi|_{\Gamma_1 \cap \mathbb{R}^n} \in \mathbf{GL}_n(\mathbb{R}).$
- The induced map $\psi_L : L(\Gamma_1) \to L(\Gamma_2)$ on the linear parts is $\psi_L(A) = T \cdot A \cdot T^{-1}$.
- Finite subgroups of $Iso(\mathbb{R}^n)$ have a fixed point ("origin").
- Choose v ∈ ℝⁿ to compensate for the displacement from origin(L(Γ₁)) to origin(L(Γ₂)); then

$$\psi = (T, v) \in \operatorname{Aff}(\mathbb{R}^n).$$

Bieberbach's Third Theorem

Theorem (Bieberbach, 1912)

For given dimension n, there exist only finitely many (affine equivalence classes of) crystallographic groups.

Proof:

- By Bieberbach 2: Sufficient to prove that there are only finitely many classes of isomorphic crystallographic groups.
- By Bieberbach 1: Γ is an extension $\mathbf{0} \to \mathbb{Z}^n \to \Gamma \to \Theta \to \mathbf{1}$.
- By a Theorem of Jordan/Minkowski: Every finite subgroup of GL_n(ℤ) maps injectively to a subgroup of GL_n(𝔽₃). So there is only a finite number of non-equivalent finite subgroups.
- Equivalent extensions for a Θ-module (Zⁿ, ρ) are encoded by H²(Θ, Zⁿ, ρ), but this is finite for a finite group Θ.
- Also, only finitely many modules (Zⁿ, ρ) exist for a given finite group Θ.
- Equivalence of extensions implies isomorphism of groups. So there are only finitely many isomorphism classes.

Zassenhaus gave a constructive proof for the third Bieberbach Theorem.

In doing so, he also proved a converse to the first:

Theorem (Zassenhaus, 1948)

A group Γ which is an extension of \mathbb{Z}^n by a finite $\Theta \subset \mathbf{GL}_n(\mathbb{Z})$ can be embedded in $\mathbf{Iso}(\mathbb{R}^n)$ as a crystallographic group.

Higher Dimensions

n = 4 :

- Crystallographic: 4783
- Bieberbach: 74
- *n* = 5 :
 - Crystallographic: 222018
 - Bieberbach: 1060
- *n* = 6 :
 - Crystallographic: 28927915
 - Bieberbach: 38746

The computer algebra system GAP provides tables and algorithms for crystallographic groups.

References II

- L. Bieberbach, Über die Bewegungsgruppen der Euklidischen Räume, Math. Ann. 70, 1911 & Math. Ann. 72, 1912
- J.J. Burckhardt, Die Bewegungsgruppen der Kristallographie, Birkhäuser, 1947
- L.S. Charlap, Bieberbach Groups and Flat Manifolds, Springer, 1986
- J. Milnor, Hilbert's problem 18: On crystallographic groups, fundamental domains, and on sphere packings, in *John Milnor: Collected Papers I*, Publish or Perish, 1994
- J.A. Wolf, Spaces of Constant Curvature, 6th ed., AMS Chelsea Publishing, 2011
- H. Zassenhaus, Über einen Algorithmus zur Bestimmung der Raumgruppen, Comment. Math. Helv. 21, 1948

III. Flat Manifolds

Why Bieberbach Groups?

Theorem (Killing, 1891)

If M is a complete connected flat Riemannian manifold, then $M = \mathbb{R}^n / \Gamma$, where $\Gamma \subset \mathbf{Iso}(\mathbb{R}^n)$ is the fundamental group of M.

The fundamental group Γ...

- is discrete,
- is torsion-free.

 $\begin{array}{l} \textit{Proof: Assume } \gamma \in \Gamma \backslash \{ \text{id} \} \text{ satisfies } \gamma^k = \text{id}, \ k > 1. \\ \text{Then } x = -\frac{1}{k-2} \sum_{j=1}^{k-1} v_j \ (\text{or } x = \frac{1}{2} v_1 \ \text{for } k = 2) \text{ is a fixed point for } \langle \gamma \rangle, \\ \text{where } v_j = \mathrm{T}(\gamma^j). \end{array}$

Contradiction to Γ acting simply transitively on the fibre $\pi^{-1}(\pi(x))$.

Corollary

If $M = \mathbb{R}^n / \Gamma$ is a compact complete connected flat Riemannian manifold, then its fundamental group Γ is a Bieberbach group.

Bieberbach's First Theorem (geometric)

Theorem

Let M be a compact complete connected flat Riemannian manifold. Then the flat torus is a finite Riemannian cover of M. The holonomy group Θ of M is finite. Bieberbach's Second Theorem (geometric)

Theorem

Let M_1 and M_2 be a compact complete connected flat Riemannian manifolds with fundamental groups Γ_1 and Γ_2 . Then $\Gamma_1 \cong \Gamma_2$ if and only if M_1 and M_2 are affinely equivalent.

Bieberbach's Third Theorem (geometric)

Theorem

For a given dimension n, there only finitely many equivalence classes of compact complete connected flat Riemannian manifolds.

Assume Γ is the fundamental group of a non-compact complete connected flat Riemannian manifold M.

One can show that Γ is an embedding of a Bieberbach group $\Gamma \subset \mathbf{Iso}(\mathbb{R}^k)$ into $\mathbf{Iso}(\mathbb{R}^n)$, where $k < n = \dim M$.

In particular:

There exists a real analytic deformation retract of M onto a compact totally geodesic submanifold of dimension k.

References III

- L.S. Charlap, Bieberbach Groups and Flat Manifolds, Springer, 1986
- J.H. Conway, H. Burgiel, C. Goodman-Strauss, The Symmetries of Things, A.K. Peters, 2008
- J. Milnor, Hilbert's problem 18: On crystallographic groups, fundamental domains, and on sphere packings, in *John Milnor: Collected Papers I*, Publish or Perish, 1994
- A. Szczepański, Problems on Bieberbach groups and flat manifolds, Geometriae Dedicata 120, 2006
- J.A. Wolf, Spaces of Constant Curvature, 6th ed., AMS Chelsea Publishing, 2011

IV. Holonomy

Holonomy Groups of Flat Manifolds

Let $M = \mathbb{R}^n / \Gamma$ be a complete (affinely) flat manifold with fundamental group $\Gamma \subset \mathbf{Aff}(\mathbb{R}^n)$.

Theorem

 $\operatorname{Hol}(M) = L(\Gamma).$

Proof:

Example: Disconnected Holonomy

Parallel transport on the Möbius Strip:

Example: Disconnected Holonomy

Parallel transport on the Möbius Strip:

Classification Results

Theorem (Auslander & Kuranishi, 1957)

Let Θ be a finite group. Then there exist a Bieberbach group Γ with $L(\Gamma) = \Theta$ and a compact complete flat Riemannian manifold M with $Hol(M) = \Theta$.

For $\Theta \cong \mathbb{Z}/p\mathbb{Z}$ (*p* prime) a precise classification of the corresponding Bieberbach groups is known.

- Exploit that the faithful Θ-modules are known.
- Isomorphism classes are determined by a finite number of parameters.

References IV

- L.S. Charlap, Bieberbach Groups and Flat Manifolds, Springer, 1986
- A. Szczepański, Problems on Bieberbach groups and flat manifolds, Geometriae Dedicata 120, 2006
- J.A. Wolf, Spaces of Constant Curvature, 6th ed., AMS Chelsea Publishing, 2011

V. Related Topics

Almost Flat Manifolds

Theorem (Gromov 1978, Ruh 1982)

There exists a number $\varepsilon = \varepsilon(n)$ such that for a compact connected *n*-dimensional Riemannian manifold M satisfying

 $diam(M)^2 \cdot |K_M| \leq \varepsilon,$

where K_M denotes the sectional curvature, there exists a nilpotent Lie group N and a discrete subgroup Γ of $Aut(N) \ltimes N$ such that

- *M* is diffeomorphic to N/Γ ,
- $\Gamma \cap N$ has finite index in Γ ,
- Γ is an extension of a lattice $\Lambda \subset N$ by a finite group Θ .

Such a manifold M is called almost flat.

Quasi-Symmetries

- There exist tilings of the plane constructed from regular polygons that do not arise from group symmetries (Kepler, 1619).
- \bullet Bravais proved that no crystal lattice in \mathbb{R}^3 has a 5-fold symmetry.
- Shechtman got the Nobel Prize in Chemistry 2011 for the construction of quasi-crystals with a 5-fold symmetry.
- There exists irregular polyhedra whose copies fill up space even though they are not fundamental domains of groups (n = 2 by Heesch, 1935, and n = 3 by Reinhardt, 1928).

Generalisations

What happens if we assume that $\Gamma.\,.\,.$

- acts by pseudo-Riemannian isometries?
- acts by affine transformations?

Everything falls apart!

(No analogues to the Bieberbach Theorems.)

See part II of this talk!