Crystallographic Groups I The Classical Theory

Wolfgang Globke

School of Mathematical Sciences Differential Geometry Seminar

Notation

Notation: Group Actions

• Group element γ acting on $x \in X$:

 $x \mapsto \gamma.x$

• Orbit of Γ through $x \in X$:

$$
\Gamma.x = \{\gamma.x \mid \gamma \in \Gamma\}
$$

• Stabiliser (isotropy subgroup) of a point $x \in X$:

$$
\Gamma_x = \{ \gamma \in \Gamma \mid \gamma . x = x \}
$$

Notation: Groups

Affine group:

$$
\mathsf{Aff}(\mathbb{R}^n) = \mathsf{GL}_n(\mathbb{R}) \ltimes \mathbb{R}^n
$$

• Euclidean group:

 $\mathsf{Iso}(\mathbb{R}^n) = \mathsf{O}_n \ltimes \mathbb{R}^n$

Notation: Affine Maps

An affine map

$$
\gamma: \mathbb{R}^n \to \mathbb{R}^n, \quad x \mapsto A \cdot x + v
$$

with linear part

$$
L(\gamma) = A \in GL_n(\mathbb{R})
$$

and translation part

$$
T(\gamma)=v\in\mathbb{R}^n
$$

is written in tuple notation

$$
\gamma=(\mathsf{A},\mathsf{v}),
$$

or in (augmented) matrix notation

$$
\gamma=\left(\begin{array}{c|c}\nA & v \\
\hline\n0 & 1\n\end{array}\right)\in\mathbf{GL}_{n+1}(\mathbb{R}).
$$

I. Tilings and Crystals

Lattice Patterns

- Start with a single shape in \mathbb{R}^n \rightsquigarrow rotate, reflect and translate it.
- Consider those shapes whose copies fill up space without gaps or overlaps.
- If the shape is a regular polyhedron, its vertices form a lattice in space.

2D: Ornaments

In dimension $n = 2$, we speak of ornaments (or tilings, tessellations, wallpapers . . .)

2D: Ornaments

- Ornamental patterns challenged and inspired artists and mathematicians throughout the centuries.
- Ancient Egyptian and medieval Moorish artists created elaborate ornamentations, thereby realising all of the 17 possible symmetry classes.

2D: Ornaments

The Alhambra in Granada (Spain) contains ornamentations realising "most" of the 17 symmetry classes.

Photographs by John Baez <http://math.ucr.edu/home/baez/alhambra/>

3D: Crystals

In dimension $n = 3$, we speak of crystals.

The primitive cell on the left generates the crystal lattice of graphite on the right.

Classification by Symmetries

To each ornamental or crystallographic pattern X we can assign its symmetry group Γ:

Γ is a subgroup of $\mathsf{Iso}(\mathbb{R}^n) = \mathsf{O}_n \ltimes \mathbb{R}^n$.

$$
\bullet \ \Gamma.X=X.
$$

• If
$$
\gamma.X = X
$$
, then $\gamma \in \Gamma$.

Classify ornaments and crystals by classifying their symmetry groups!

Fundamental Domains

Crystal patterns are generated by transformations of a fundamental domain FΓ:

- F_{Γ} is open in \mathbb{R}^{n} ,
- Γ. $\overline{F}_{\Gamma} = \mathbb{R}^n$,
- **e** each Γ -orbit intersects F_{Γ} at most once.

Note: Often, fundamental domains are much smaller than the generating pattern of an ornament or a crystal.

References I

- **J.J. Burckhardt, Die Bewegungsgruppen der Kristallographie, Birkhäuser,** 1947
- J.H. Conway, H. Burgiel, C. Goodman-Strauss, The Symmetries of Things, A.K. Peters, 2008
- **•** B. Grünbaum, What Symmetry Groups Are Present in the Alhambra?, Notices Amer. Math. Soc. 53, 2006, no. 6
- B. Grünbaum & G.C. Shephard, Tilings and Patterns, W.H. Freeman and Company, 1989
- D. Schattschneider, The Plane Symmetry Groups: Their Recognition and Notation, Amer. Math. Monthly 85, 1978, no. 6
- **•** H. Weyl, **Symmetry**, Princeton University Press, 1952

II. Bieberbach's Theorems and Classifications of Crystallographic Groups

Crystallographic Groups

The symmetry group Γ of a crystal

- is discrete (as a subset of $\textsf{Iso}(\mathbb{R}^n)$),
- \bullet is cocompact, i.e. \mathbb{R}^n/Γ is compact. (equivalent: \overline{F}_Γ is compact.)
- Γ is called a crystallographic group.

If Γ is also torsion-free, i.e. for all $\gamma \in \Gamma$ holds

$$
\left[\gamma^k = \text{id for some } k \ge 1\right] \quad \Rightarrow \quad \gamma = \text{id},
$$

then Γ is called a Bieberbach group.

Classification by Symmetries

When should two crystallographic groups Γ_1 and Γ_2 be considered equivalent?

- Conjugation by $g \in \text{Iso}(\mathbb{R}^n)$ is too restrictive!
- Choose affine equivalence:

 $\Gamma_1 \sim \Gamma_2$:⇔ $\Gamma_1 = g \cdot \Gamma_2 \cdot g^{-1}$ for some $g \in \text{Aff}(\mathbb{R}^n)$

As we will see later, this is a good choice!

Classification for $n = 2$

Theorem (Fedorov, 1891) There exist 17 (classes of) crystallographic groups in dimension 2.

Commonly known as wallpaper groups.

Classification for $n = 3$

Theorem (Fedorov & Schoenfließ, 1891)

There exist 230 (classes of) crystallographic groups in dimension 3.

Wait. . is it 230 or 219?

Answer:

Depends on whether conjugation by g with $det(L(g)) < 0$ is allowed or not.

- Mathematicians: Yes! \Rightarrow 219 groups.
- Chemists/physicists: $\text{No!} \Rightarrow 230$ groups.

Bieberbach Groups for $n = 2$

Among the 17 wallpaper groups, there are only 2 Bieberbach groups: The fundamental groups of the torus and the Klein bottle. The fundamental group of the torus is generated by the two translations

$$
\gamma_1 = \left(\begin{array}{cc|c} 1 & 0 & 1 \\ 0 & 1 & 0 \\ \hline 0 & 0 & 1 \end{array} \right), \quad \gamma_2 = \left(\begin{array}{cc|c} 1 & 0 & 0 \\ 0 & 1 & 1 \\ \hline 0 & 0 & 1 \end{array} \right).
$$

Clearly, this group is torsion-free.

The fundamental group of the Klein bottle is generated by a glide-reflection and a translation,

$$
\gamma_1 = \left(\begin{array}{cc|cc} 1 & 0 & 1/2 \\ 0 & -1 & 1/2 \\ \hline 0 & 0 & 1 \end{array} \right), \quad \gamma_2 = \left(\begin{array}{cc|cc} 1 & 0 & 0 \\ 0 & 1 & 1/2 \\ \hline 0 & 0 & 1 \end{array} \right).
$$

This group is also torsion-free (examine the first row in a group word!).

Example: Non-Bieberbach Crystallographic Group

The symmetry group of the hexagonal pattern on slide [14](#page-13-0) is generated by

$$
\begin{aligned}\n\text{(reflections)} \quad \sigma_1 &= \left(\begin{array}{cc|c} 1 & 0 & 0 \\ 0 & -1 & 0 \\ \hline 0 & 0 & 1 \end{array} \right), \quad \sigma_2 = \left(\begin{array}{cc|c} -1 & 0 & 0 \\ 0 & 1 & 0 \\ \hline 0 & 0 & 1 \end{array} \right), \\
\text{(rotation)} \quad \varrho &= \left(\begin{array}{cc|c} \sqrt{3}/2 & -1/2 & 0 \\ 1/2 & \sqrt{3}/2 & 0 \\ \hline 0 & 0 & 1 \end{array} \right), \\
\text{(translations)} \quad \tau_1 &= \left(\begin{array}{cc|c} 1 & 0 & 0 \\ 0 & 1 & 1 \\ \hline 0 & 0 & 1 \end{array} \right), \quad \tau_2 = \left(\begin{array}{cc|c} 1 & 0 & (\sqrt{6} + \sqrt{2})/4 \\ 0 & 1 & (\sqrt{6} - \sqrt{2})/4 \\ \hline 0 & 0 & 1 \end{array} \right).\n\end{aligned}
$$

The elements σ_1 , σ_2 and ρ are of finite order. So this is not a Bieberbach group.

Bieberbach Groups for $n = 3$

Theorem (Hantzsche & Wendt, 1935) Among the 219 space groups, there are only 10 Bieberbach groups.

"Is there in n-dimensional Euclidean space $[...]$ only a finite number of essentially different kinds of groups of motions with a [compact] fundamental region?"

Bieberbach's First Theorem

```
Theorem (Bieberbach, 1911)
Let \Gamma \subset \text{Iso}(\mathbb{R}^n) be a crystallographic group.
Then:
```
- $L(\Gamma)$ is finite.
- $\Gamma \cap \mathbb{R}^n$ is a lattice which spans \mathbb{R}^n .

With respect to a basis in $\Gamma \cap \mathbb{R}^n$, the linear group $L(\Gamma)$ is faithfully represented by matrices in $GL_n(\mathbb{Z})$.

In modern parlance: $\Gamma \cap \mathbb{R}^n \cong \mathbb{Z}^n$ is of finite index in Γ , that is, Γ is a group extension

$$
0\to \mathbb{Z}^n\to \Gamma\to \Theta\to 1
$$

of \mathbb{Z}^n by some finite group $\Theta \cong L(\Gamma)$.

Bieberbach's Second Theorem

Theorem (Bieberbach, 1912) Let $\Gamma_1, \Gamma_2 \subset \text{Iso}(\mathbb{R}^n)$ be crystallographic groups.

 $\Gamma_1\cong\Gamma_2$ if and only if Γ_1 and Γ_2 are affinely equivalent.

Proof:

- An isomorphism $\psi : \Gamma_1 \to \Gamma_2$ maps $\Gamma_1 \cap \mathbb{R}^n$ to $\Gamma_2 \cap \mathbb{R}^n$.
- **•** Therefore, $T = \psi|_{\Gamma_1 \cap \mathbb{R}^n} \in GL_n(\mathbb{R})$.
- **The induced map** $\psi_L : L(\Gamma_1) \to L(\Gamma_2)$ **on the linear parts is** $\psi_{\text{\tiny L}}(\mathcal{A}) = \mathcal{T} \cdot \mathcal{A} \cdot \mathcal{T}^{-1}.$
- Finite subgroups of $Iso(\mathbb{R}^n)$ have a fixed point ("origin").
- Choose $v \in \mathbb{R}^n$ to compensate for the displacement from origin($L(\Gamma_1)$) to origin($L(\Gamma_2)$); then

$$
\psi=(\mathcal{T},v)\in \textbf{Aff}(\mathbb{R}^n). \quad \Box
$$

Bieberbach's Third Theorem

Theorem (Bieberbach, 1912)

For given dimension n, there exist only finitely many (affine equivalence classes of) crystallographic groups.

Proof:

- By Bieberbach 2: Sufficient to prove that there are only finitely many classes of isomorphic crystallographic groups.
- By Bieberbach 1: Γ is an extension $\mathbf{0} \to \mathbb{Z}^n \to \Gamma \to \Theta \to \mathbf{1}$.
- \bullet By a Theorem of Jordan/Minkowski: Every finite subgroup of $GL_n(\mathbb{Z})$ maps injectively to a subgroup of $GL_n(\mathbb{F}_3)$. So there is only a finite number of non-equivalent finite subgroups.
- Equivalent extensions for a Θ -module (\mathbb{Z}^n, ϱ) are encoded by $H^2(\Theta, \mathbb{Z}^n, \varrho)$, but this is finite for a finite group Θ .
- Also, only finitely many modules (\mathbb{Z}^n, ϱ) exist for a given finite group Θ .
- **•** Equivalence of extensions implies isomorphism of groups. So there are only finitely many isomorphism classes.

П

Zassenhaus gave a constructive proof for the third Bieberbach Theorem.

In doing so, he also proved a converse to the first:

Theorem (Zassenhaus, 1948)

A group Γ which is an extension of \mathbb{Z}^n by a finite $\Theta \subset \mathsf{GL}_n(\mathbb{Z})$ can be embedded in $\text{Iso}(\mathbb{R}^n)$ as a crystallographic group.

Higher Dimensions

 $n = 4$:

- **•** Crystallographic: 4783
- Bieberbach: 74
- $n = 5$
	- Crystallographic: 222018
	- Bieberbach: 1060
- $n = 6$:
	- Crystallographic: 28927915
	- Bieberbach: 38746

The computer algebra system GAP provides tables and algorithms for crystallographic groups.

References II

- \bullet L. Bieberbach, Über die Bewegungsgruppen der Euklidischen Räume, Math. Ann. 70, 1911 & Math. Ann. 72, 1912
- **J.J. Burckhardt, Die Bewegungsgruppen der Kristallographie, Birkhäuser,** 1947
- L.S. Charlap, Bieberbach Groups and Flat Manifolds, Springer, 1986
- J. Milnor, Hilbert's problem 18: On crystallographic groups, fundamental domains, and on sphere packings, in John Milnor: Collected Papers I, Publish or Perish, 1994
- **J.A. Wolf, Spaces of Constant Curvature, 6th ed., AMS Chelsea** Publishing, 2011
- H. Zassenhaus, Über einen Algorithmus zur Bestimmung der Raumgruppen, Comment. Math. Helv. 21, 1948

III. Flat Manifolds

Why Bieberbach Groups?

Theorem (Killing, 1891)

If M is a complete connected flat Riemannian manifold, then $M = \mathbb{R}^n/\Gamma$, where $\Gamma \subset \mathsf{Iso}(\mathbb{R}^n)$ is the fundamental group of M.

The fundamental group Γ. . .

- is discrete.
- is torsion-free. *Proof:* Assume $\gamma \in \Gamma \setminus \{ \text{id} \}$ satisfies $\gamma^k = \text{id}, k > 1$. Then $x = -\frac{1}{k-2} \sum_{j=1}^{k-1} v_j$ (or $x = \frac{1}{2}v_1$ for $k = 2$) is a fixed point for $\langle \gamma \rangle$, where $v_j = \mathrm{T}(\gamma^j)$.

Contradiction to Γ acting simply transitively on the fibre $\pi^{-1}(\pi(x))$. \Box

Corollary

If $M = \mathbb{R}^n/\Gamma$ is a compact complete connected flat Riemannian manifold, then its fundamental group Γ is a Bieberbach group.

Bieberbach's First Theorem (geometric)

Theorem

Let M be a compact complete connected flat Riemannian manifold. Then the flat torus is a finite Riemannian cover of M. The holonomy group Θ of M is finite.

Bieberbach's Second Theorem (geometric)

Theorem

Let M_1 and M_2 be a compact complete connected flat Riemannian manifolds with fundamental groups Γ_1 and Γ_2 . Then $\Gamma_1 \cong \Gamma_2$ if and only if M_1 and M_2 are affinely equivalent.

Bieberbach's Third Theorem (geometric)

Theorem

For a given dimension n, there only finitely many equivalence classes of compact complete connected flat Riemannian manifolds. Assume Γ is the fundamental group of a non-compact complete connected flat Riemannian manifold M.

One can show that Γ is an embedding of a Bieberbach group $\Gamma \subset \operatorname{\mathsf{Iso}}(\mathbb R^k)$ into $\operatorname{\mathsf{Iso}}(\mathbb R^n)$, where $k < n = \dim M$.

In particular:

There exists a real analytic deformation retract of M onto a compact totally geodesic submanifold of dimension k.

References III

- L.S. Charlap, Bieberbach Groups and Flat Manifolds, Springer, 1986
- J.H. Conway, H. Burgiel, C. Goodman-Strauss, The Symmetries of Things, A.K. Peters, 2008
- J. Milnor, Hilbert's problem 18: On crystallographic groups, fundamental domains, and on sphere packings, in John Milnor: Collected Papers I, Publish or Perish, 1994
- A. Szczepański, Problems on Bieberbach groups and flat manifolds, Geometriae Dedicata 120, 2006
- J.A. Wolf, Spaces of Constant Curvature, 6th ed., AMS Chelsea Publishing, 2011

IV. Holonomy

Holonomy Groups of Flat Manifolds

Let $M = \mathbb{R}^n/\Gamma$ be a complete (affinely) flat manifold with fundamental group $\Gamma \subset \mathsf{Aff}(\mathbb{R}^n)$.

Theorem

 $Hol(M) = L(\Gamma).$

Proof:

Example: Disconnected Holonomy

Parallel transport on the Möbius Strip:

Example: Disconnected Holonomy

Parallel transport on the Möbius Strip:

Classification Results

Theorem (Auslander & Kuranishi, 1957)

Let Θ be a finite group. Then there exist a Bieberbach group Γ with $L(\Gamma) = \Theta$ and a compact complete flat Riemannian manifold M with $Hol(M) = \Theta$.

For $\Theta \cong \mathbb{Z}/p\mathbb{Z}$ (p prime) a precise classification of the corresponding Bieberbach groups is known.

- Exploit that the faithful Θ-modules are known.
- Isomorphism classes are determined by a finite number of parameters.

References IV

- L.S. Charlap, Bieberbach Groups and Flat Manifolds, Springer, 1986
- A. Szczepański, Problems on Bieberbach groups and flat manifolds, Geometriae Dedicata 120, 2006
- J.A. Wolf, Spaces of Constant Curvature, 6th ed., AMS Chelsea Publishing, 2011

V. Related Topics

Almost Flat Manifolds

Theorem (Gromov 1978, Ruh 1982)

There exists a number $\varepsilon = \varepsilon(n)$ such that for a compact connected n-dimensional Riemannian manifold M satisfying

 $\text{diam}(M)^2 \cdot |K_M| \leq \varepsilon,$

where K_M denotes the sectional curvature, there exists a nilpotent Lie group N and a discrete subgroup Γ of $\text{Aut}(N) \ltimes N$ such that

- M is diffeomorphic to N/Γ ,
- \bullet $\Gamma \cap N$ has finite index in Γ .
- Γ is an extension of a lattice $Λ ⊂ N$ by a finite group $Θ$.

Such a manifold M is called almost flat.

Quasi-Symmetries

- There exist tilings of the plane constructed from regular polygons that do not arise from group symmetries (Kepler, 1619).
- Bravais proved that no crystal lattice in \mathbb{R}^3 has a 5-fold symmetry.
- Shechtman got the Nobel Prize in Chemistry 2011 for the construction of quasi-crystals with a 5-fold symmetry.
- There exists irregular polyhedra whose copies fill up space even though they are not fundamental domains of groups $(n = 2)$ by Heesch, 1935, and $n = 3$ by Reinhardt, 1928).

Generalisations

What happens if we assume that Γ. . .

- acts by pseudo-Riemannian isometries?
- acts by affine transformations?

Everything falls apart!

(No analogues to the Bieberbach Theorems.)

See part II of this talk!