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Notation: Group Actions

@ Group element + acting on x € X:
X = 7.X
@ Orbit of I through x € X:

Nx={yx|~verl}

e Stabiliser (isotropy subgroup) of a point x € X:

My={yerl|yx=x}
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Notation: Groups

o Affine group:
Aff(R") = GL,(R) x R"

@ Euclidean group:

Iso(R") =0, x R"
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Notation: Affine Maps

An affine map
v:R"R", x—A-x+v

with linear part
L(v) = A € GL,(R)
and translation part
T(y)=veR"
is written in tuple notation

= (Aa V),

or in (augmented) matrix notation

Alv
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|. Tilings and Crystals
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Lattice Patterns

@ Start with a single shape in R"
~ rotate, reflect and translate it.

@ Consider those shapes whose copies fill up space without gaps
or overlaps.

o If the shape is a regular polyhedron, its vertices form a lattice
in space.



2D: Ornaments

In dimension n = 2, we speak of ornaments
(or tilings, tessellations, wallpapers .. .)
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2D: Ornaments

@ Ornamental patterns challenged and inspired artists and
mathematicians throughout the centuries.

@ Ancient Egyptian and medieval Moorish artists created
elaborate ornamentations, thereby realising all of the 17
possible symmetry classes.
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2D: Ornaments

The Alhambra in Granada (Spain) contains ornamentations
realising “most” of the 17 symmetry classes.

http://math.ucr.edu/home/baez/alhambra/
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http://math.ucr.edu/home/baez/alhambra/

3D: Crystals

In dimension n = 3, we speak of crystals.

The primitive cell on the left generates the crystal lattice of
graphite on the right.
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Classification by Symmetries

To each ornamental or crystallographic pattern X we can assign its
symmetry group I:

e [ is a subgroup of Iso(R") = O, x R".

o X =X.

o If v.X =X, then yeT.
Classify ornaments and crystals by classifying their symmetry
groups!

12 /54



Fundamental Domains

Crystal patterns are generated by transformations of a fundamental
domain Fr:

@ fr isopeninR",
(] rfr = ]R",
@ each -orbit intersects Fr at most once.

Note: Often, fundamental domains are much smaller than the
generating pattern of an ornament or a crystal.
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Example: Hexagonal Pattern
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Example: Hexagonal Pattern
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Example: Hexagonal Pattern
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Example: Hexagonal Pattern
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Example: Hexagonal Pattern

AR
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Example: Hexagonal Pattern?

5%
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Il. Bieberbach’'s Theorems
and Classifications of Crystallographic Groups
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Crystallographic Groups

The symmetry group I of a crystal
@ is discrete (as a subset of Iso(R")),

@ is cocompact, i.e. R"/I" is compact.
(equivalent: Fr is compact.)

[ is called a crystallographic group.

If T is also torsion-free, i.e. for all v € ' holds
[7" = id for some k > 1] = y=id,

then I is called a Bieberbach group.
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Classification by Symmetries

When should two crystallographic groups '; and ', be considered
equivalent?

e Conjugation by g € Iso(IR") is too restrictive!

@ Choose affine equivalence:
M~ = Ty=g-Ty-g ! forsome g € Aff(R")

As we will see later, this is a good choice!
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Classification for n = 2

Theorem (Fedorov, 1891)
There exist 17 (classes of) crystallographic groups in dimension 2.

Commonly known as wallpaper groups.

24 /54



Classification for n = 3

Theorem (Fedorov & SchoenflieB, 1891)
There exist 230 (classes of) crystallographic groups in dimension 3.

Wait. . .is it 230 or 2197

Answer:
Depends on whether conjugation by g with det(L(g)) < 0 is
allowed or not.

o Mathematicians: Yes! = 219 groups.
@ Chemists/physicists: No! = 230 groups.
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Bieberbach Groups for n =2

Among the 17 wallpaper groups,
there are only 2 Bieberbach groups:
The fundamental groups of the torus and the Klein bottle.
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Example: Torus Group

The fundamental group of the torus is generated by the two
translations

oo =
o= O
R~ O

1 01
=0 1|0 |, 7=
0 01

Clearly, this group is torsion-free.
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Example: Klein Bottle Group

The fundamental group of the Klein bottle is generated by a
glide-reflection and a translation,

This group is also torsion-free (examine the first row in a group
word!).
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Example: Non-Bieberbach Crystallographic Group

The symmetry group of the hexagonal pattern on slide 14 is
generated by
1 010 -1 010
(reflections) oy=| 0 =1|0 |, op= 0 1|0 |,
0 0|1 0 0]1
V3/2 —1/2]0
(rotation) o= [ 1/2 /3)2 ,
0 0 |1
1 0|0 1 0| (V6++2)/4
(translations) 7= 0 1|1 |, m»=| 0 1|(vV6—-+v2)/4 |.
0 01 0 0] 1
The elements o1, 0> and p are of finite order.
So this is not a Bieberbach group.
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Bieberbach Groups for n =3

Theorem (Hantzsche & Wendt, 1935)
Among the 219 space groups, there are only 10 Bieberbach groups.
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Hilbert's 18t Problem

“Is there in n-dimensional Euclidean space [... ] only a finite
number of essentially different kinds of groups of motions with a
[compact] fundamental region?”
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Bieberbach's First Theorem

Theorem (Bieberbach, 1911)
Let T C Iso(R") be a crystallographic group.
Then:

o L(I) is finite.
o [ NIR" is a lattice which spans R".

With respect to a basis in N IR", the linear group L(I) is
faithfully represented by matrices in GL,(Z).

In modern parlance:
FTNIR"=Z" is of finite index in I, that is,
[ is a group extension

0-Z"=-T—-0->1

of Z" by some finite group © = L(I).
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Bieberbach’'s Second Theorem

Theorem (Bieberbach, 1912)
Let 1,2 C Iso(IR") be crystallographic groups.
1 =T, ifand only if 1 and 'y are affinely equivalent.

Proof:
@ An isomorphism ¢ : 1 — 2 maps 1 NR" to N, NIR".
@ Therefore, T = ¢|r;nr» € GL,(R).

@ The induced map ¢, : L(I1) — L(I2) on the linear parts is
P(A)=T-A- T

@ Finite subgroups of Iso(IR") have a fixed point ( “origin”).

@ Choose v € R" to compensate for the displacement
from origin(L(I1)) to origin(L(2)); then

¢ =(T,v)€AfF(R"). O
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Bieberbach’s Third Theorem

Theorem (Bieberbach, 1912)
For given dimension n, there exist only finitely many
(affine equivalence classes of) crystallographic groups.

Proof:

@ By Bieberbach 2: Sufficient to prove that there are only finitely many
classes of isomorphic crystallographic groups.

@ By Bieberbach 1: T is an extension 0 - Z" - T — © — 1.

@ By a Theorem of Jordan/Minkowski: Every finite subgroup of GL,(Z)
maps injectively to a subgroup of GL,(IF'3). So there is only a finite
number of non-equivalent finite subgroups.

@ Equivalent extensions for a ©-module (Z", o) are encoded by
H?(©,Z", o), but this is finite for a finite group ©.

@ Also, only finitely many modules (Z", o) exist for a given finite group ©.

@ Equivalence of extensions implies isomorphism of groups.
So there are only finitely many isomorphism classes. (I
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Zassenhaus' Algorithm

Zassenhaus gave a constructive proof for the third Bieberbach
Theorem.

In doing so, he also proved a converse to the first:
Theorem (Zassenhaus, 1948)

A group T which is an extension of Z" by a finite © C GL,(Z) can
be embedded in Iso(IR") as a crystallographic group.
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Higher Dimensions

n=4:
@ Crystallographic: 4783
o Bieberbach: 74

n=5:
o Crystallographic: 222018
@ Bieberbach: 1060

n==6:
@ Crystallographic: 28927915
@ Bieberbach: 38746

The computer algebra system GAP provides tables and algorithms
for crystallographic groups.
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[1l. Flat Manifolds
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Why Bieberbach Groups?

Theorem (Killing, 1891)
If M is a complete connected flat Riemannian manifold, then
M = R"/T, where I C Iso(IR") is the fundamental group of M.

The fundamental group I'. ..
@ is discrete,

@ is torsion-free.
Proof: Assume «y € I'\{id} satlsfles v¥ =id, k> 1.
Then x = —ﬁ Jk 11 vj (or x = —v1 for k = 2) is a fixed point for (),
where v; = (/).

Contradiction to I' acting simply transitively on the fibre 77! (n(x)). O

Corollary
If M =TR"/T is a compact complete connected flat Riemannian
manifold, then its fundamental group I is a Bieberbach group.
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Bieberbach's First Theorem (geometric)

Theorem

Let M be a compact complete connected flat Riemannian manifold.
Then the flat torus is a finite Riemannian cover of M.
The holonomy group © of M s finite.
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Bieberbach’s Second Theorem (geometric)

Theorem

Let My and My be a compact complete connected flat Riemannian
manifolds with fundamental groups 'y and I'5.

Then 'y 2T, if and only if My and My are affinely equivalent.
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Bieberbach's Third Theorem (geometric)

Theorem
For a given dimension n, there only finitely many equivalence
classes of compact complete connected flat Riemannian manifolds.
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Non-Compact Manifolds

Assume I is the fundamental group of a non-compact complete
connected flat Riemannian manifold M.

One can show that I is an embedding of a Bieberbach group
I C Iso(R¥) into Iso(IR"), where k < n = dim M.

In particular:

There exists a real analytic deformation retract of M onto a
compact totally geodesic submanifold of dimension k.
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IV. Holonomy
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Holonomy Groups of Flat Manifolds
Let M =R"/T be a complete (affinely) flat manifold with
fundamental group I C Aff(R").

Theorem
Hol(M) = L(I).

z Az
B //'/
0 T=(4,0) *
s ﬂ‘
T

w(0) = 7(v)

Proof:
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Example: Disconnected Holonomy

Parallel transport on the Mabius Strip:

o= O

o
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o |
=
= O
~__
~—
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Example: Disconnected Holonomy

Parallel transport on the Mobius Strip:
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Classification Results

Theorem (Auslander & Kuranishi, 1957)
Let © be a finite group. Then there exist a Bieberbach group T

with L(I') = © and a compact complete flat Riemannian manifold
M with Hol(M) = ©.

For © = 7Z/pZ (p prime) a precise classification of the
corresponding Bieberbach groups is known.

@ Exploit that the faithful ©-modules are known.

@ Isomorphism classes are determined by a finite number of
parameters.
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V. Related Topics
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Almost Flat Manifolds

Theorem (Gromov 1978, Ruh 1982)
There exists a number € = £(n) such that for a compact connected
n-dimensional Riemannian manifold M satisfying

diam(M)? - |Ky| < e,

where Ky, denotes the sectional curvature, there exists a nilpotent
Lie group N and a discrete subgroup I' of Aut(N) x N such that

e M is diffeomorphic to N/T,
@ NN has finite index in T,
o [ is an extension of a lattice N C N by a finite group ©.

Such a manifold M is called almost flat.
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Quasi-Symmetries

@ There exist tilings of the plane constructed from regular
polygons that do not arise from group symmetries (Kepler,
1619).

@ Bravais proved that no crystal lattice in R3 has a 5-fold
symmetry.

@ Shechtman got the Nobel Prize in Chemistry 2011 for the
construction of quasi-crystals with a 5-fold symmetry.

@ There exists irregular polyhedra whose copies fill up space

even though they are not fundamental domains of groups
(n = 2 by Heesch, 1935, and n = 3 by Reinhardt, 1928).
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Generalisations

What happens if we assume that I'. ..
@ acts by pseudo-Riemannian isometries?

@ acts by affine transformations?

Everything falls apart!
(No analogues to the Bieberbach Theorems.)

See part Il of this talk!

54 /54



