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Classical Theory:
Study discrete cocompact (torsion-free) groups Γ of Euclidean
isometries.

Generalisation:

Study discrete groups of affine transformations;
more specifically pseudo-Euclidean or symplectic ones.

Find appropriate topological properties of their actions on Rn.

Consider groups with compact or non-compact quotients.
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I. Discrete Groups and their Actions
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(Proper) Discontinuity

Γ acts on a manifold X by homeomorphisms.
The action is called. . .

free, if
γ.x = x for some x ∈ X implies γ = id.

wandering (or discontinuous), if
every x ∈ X has a neighbourhood Ux such that the set

{γ ∈ Γ | γ.Ux ∩ Ux 6= Ø}

is finite.

properly discontinuous, if
for every compact K ⊂ X the set

{γ ∈ Γ | γ.K ∩ K 6= Ø}

is finite.
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Hierarchy of Properties

properly discontinuous
⇒ wandering
⇒ Γ is discrete (compact open topology)
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Proper Definition of “Proper”?

Warning! Many authors. . .

use the term “properly discontinuous” for what we call
“wandering”.

assume that the action is also free
(replace “is finite” by “= {id}”).

Basic idea:

Γ wandering ↔ Γ fundamental group

Γ properly discontinuous↔ Γ fundamental group of Hausdorff space
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Characterisation of Proper Discontinuity

Theorem
Γ acts freely and properly discontinuously on a manifold X
if and only if X/Γ is a manifold with fundamental group Γ.

Theorem
Γ acts properly discontinuously on a manifold X
if and only if for all x ∈ X

1 Γx is finite,

2 there exists a Γx -invariant neighbourhood Wx of x such that
γ.Wx ∩Wx = Ø for all γ 6∈ Γx ,

3 and for all y ∈ X\(Γ.x) there exist neighbourhoods Ux ,Uy

such that {γ ∈ Γ | γ.Ux ∩ Uy 6= Ø} is finite.
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Example 1: Properly Discontinuous Action
The group

Γ =
〈(1

0

)〉 ∼= Z
acts properly discontinuously by translations on R2.

Ux D Wx

Uy

x
y
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Example 2: Non-Properly Discontinuous Action

Z acts freely on ( x
y ) ∈ R2 \ {( 0

0 )} by boosts:

Z→ R
2 \ {( 0

0 )}, n 7→
(

eλn 0
0 e−λn

)
·
(

x
y

)
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(the following figures use λ = −1
2 )
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Example 2: Non-Properly Discontinuous Action
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Example 2: Non-Properly Discontinuous Action
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Example 2: Non-Properly Discontinuous Action
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Example 3: Properly Discontinuous Action

Restrict the boost action of Z to R2 \ {x-axis}:
The action becomes properly discontinuous!
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Example 3: Properly Discontinuous Action

Only finitely many intersections. . .
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Example 3: Properly Discontinuous Action

. . . pick smaller neighbourhood:
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Example 3: Properly Discontinuous Action

No more intersections.
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Proper Discontinuity on Riemannian Manifolds

Fact
Let M be a Riemannian manifold with isometry group Iso(M).
Every discrete subgroup Γ ⊂ Iso(M) acts properly discontinuous.

Recall Bieberbach groups:

Γ ⊂ Iso(Rn) discrete ⇔ Γ properly discontinuous

Γ torsion-free ⇔ Γ-action free

This does not generalise to pseudo-Riemannian isometry groups!
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II. Flat Affine Manifolds
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Affine Crystallographic Groups

A group Γ ⊂ Aff(Rn) is called an affine crystallographic group if
the action of Γ on Rn is free and properly discontinuous with
compact quotient.

A manifold M with a torsion-free affine connection ∇ is called an
affine manifold.

Affine Killing-Hopf Theorem
Let M be a geodesically complete flat affine manifold.
Then M is affinely equivalent to Rn/Γ, where the Γ is the
fundamental group of M (in particular, Γ acts freely and properly
discontinuously).
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Equivalence

Identify affinely equivalent groups:

Γ1 ∼ Γ2 :⇔ Γ1 = g · Γ2 · g−1 for some g ∈ Aff(Rn)

Do Bieberbach’s theorems generalise to classes of affine
crystallographic groups?
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Bieberbach’s First Theorem?

Bieberbach’s First Theorem does not hold:

Γ ∩Rn does not necessarily span Rn.

l(Γ) is not necessarily finite.
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Example

The group

Γ =

{
1 0 0 a
0 1 0 b
0 a 1 c

0 0 0 1


∣∣∣∣∣ a, b, c ∈ Z

}
⊂ Aff(R3)

is an affine crystallographic group acting on R3.
Clearly,

Γ ∩Rn spans only a 2-dimensional subspace.

l(Γ) =
{ 1 0 0

0 1 0
0 a 1

 ∣∣∣ a ∈ Z
}

is not finite.
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Auslander’s Conjecture

A tentative analogue to Bieberbach’s First Theorem is

Conjecture (Auslander, 1964)
If Γ ⊂ Aff(Rn) is an affine crystallographic group,
then Γ is virtually polycyclic.

Here, a group Γ is called. . .

polycyclic if there exists a sequence of subgroups

Γ = Γ0 ⊃ Γ1 ⊃ . . . ⊃ Γk = 1

such that all Γj/Γj+1 are cyclic groups.

virtually polycyclic if Γ contains a polycyclic subgroup Γ′ of
finite index (also: polycyclic-by-finite).
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Auslander’s Conjecture

Auslander’s Conjecture has been proven in special cases:

Γ ⊂ Aff(R3) (Fried & Goldman, 1983)

Γ ⊂ Iso(Rn
1) (Lorentz metric)

Conjecture holds for complete compact flat Lorentz manifolds
(Goldman & Kamishima, 1984)
Compact flat Lorentz manifolds are complete (Carriere, 1989)
Classification is known (Grunewald & Margulis, 1989)
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Milnor’s Conjecture

Milnor dropped Auslander’s restriction that Γ acts cocompactly.

Theorem (Milnor, 1977)
Let Γ be a torsion-free and virtually polycyclic group.
Then Γ is isomorphic to the fundamental group of some complete
flat affine manifold.

Conjecture (Milnor, 1977)
The fundamental group of a flat affine manifold is virtually
polycyclic.
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Margulis Spacetime

Milnor’s conjecture is wrong!

Discrete subgroups Z ∗ Z ⊂ O2,1 are known.

Augment Z ∗ Z by translation parts so that the action on R3
1

is properly discontinuous (Margulis, 1983).

Note: These Margulis spacetimes are not compact, so
Auslander’s conjecture is still open.
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Bieberbach’s Second Theorem?

Γ1
∼= Γ2 does not necessarily imply Γ1 ∼ Γ2.
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Example

The affine crystallographic group Γ1, Γ2 are both isomorphic to Z3:

Γ1 =
〈

1 0 1 0
0 1 0 0
0 0 1 1
0 0 0 1

 ,


1 0 0 1
0 1 0 0
0 0 1 0
0 0 0 1

 ,


1 0 0 0
0 1 0 1
0 0 1 0
0 0 0 1

〉,

Γ2 =
〈

1 0 0 0
0 1 0 0
0 0 1 1
0 0 0 1

 ,


1 0 0 1
0 1 0 0
0 0 1 0
0 0 0 1

 ,


1 0 0 0
0 1 0 1
0 0 1 0
0 0 0 1

〉.
But Γ2 has trivial holonomy, Γ1 does not.
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Bieberbach’s Third Theorem?

There are infinitely many affine equivalence classes of affine
crystallographic groups.
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Example

For fixed k ∈ Z define an affine crystallographic group

Γk =

{
1 0 0 ka
0 1 0 kb
0 ka 1 kc

0 0 0 1


∣∣∣∣∣ a, b, c ∈ Z

}
⊂ Aff(R3).

Then for m 6= n,
Γm 6∼= Γn.
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III. Homogeneous Flat Affine Manifolds
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Homogeneous Flat Manifolds

A more tractable class of spaces are the homogeneous flat affine
(or pseudo-Riemannian) manifolds; those with a transitive group of
affinities (or isometries).

Theorem
Let M be a flat affine manifold with fundamental group Γ.
Then M is homogeneous if and only the centraliser ZAff(Rn)(Γ) of
Γ in Aff(Rn) acts transitively.

Proof:

Aff(M) = NAff(Rn)(Γ)/Γ (normaliser).

Γ is discrete, so ZAff(Rn)(Γ) ⊇ NAff(Rn)(Γ)◦.

M homogeneous if and only if Aff(M)◦ acts transitively.
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Unipotent Groups

A matrix group G is called unipotent if there exists k ∈ N
such that all g ∈ G satisfy

(In − g)k = 0.

A unipotent group is a nilpotent group.

Example:

g =

1 x z
0 1 y
0 0 1

 .
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Fundamental Groups of Homogeneous Flat Spaces

Theorem
The fundamental group Γ of a complete homogeneous flat affine
manifold M is unipotent (in particular, Γ is nilpotent).

Proof:

As ZAff(Rn)(Γ) acts transitively, G = ZAff(Rn)(ZAff(Rn)(Γ)) acts freely.

G is an algebraic subgroup of Aff(Rn), so it has Chevalley decomposition
G = R · U with R reductive, U unipotent.

But an affine reductive algebraic group R has a fixed point on Rn,
so by the first step: G = U is unipotent.

Clearly, Γ ⊂ G is also unipotent.

Fact (Fried, Goldman & Hirsch, 1981)
If M is complete, compact and Γ is nilpotent, then M is
homogeneous.
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Flat Pseudo-Riemannian Homogeneous Manifolds

Theorem (Wolf, 1962)
Let Γ be the fundamental group of a flat pseudo-Riemannian
homogeneous manifold M. Then:

Γ is 2-step nilpotent (meaning [Γ, [Γ, Γ]] = {id}).

Every γ ∈ Γ is of the form γ = (In + A, v)
with A2 = 0 and Av = 0.

The image of A is totally isotropic and orthogonal to v .
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Example

Wolf assumed all Γ were in fact abelian.

Example (Baues, 2008)
Let G = H3 nAd∗ h∗3 and Γ a lattice in G ,
with bi-invariant inner product of signature (3, 3) defined by

〈(X , ξ), (Y , η)〉 = ξ(Y ) + η(X ),

X ,Y ∈ h3, ξ, η ∈ h∗3.

Then
M = G/Γ

is a compact flat pseudo-Riemannian manifold with transitive
G -action and non-abelian fundamental group.
However, Hol(M) = l(Γ) is abelian.
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Compactness

Theorem (Baues, 2008)
If M is a compact flat pseudo-Riemannian homogeneous manifold,
then Hol(M) is abelian.
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Holonomy

Theorem
With respect to a certain Witt basis of Rn, the holonomy group
l(Γ) of a flat pseudo-Riemannian homogeneous manifold takes the
form

l(γ) =

Ik −B>Ĩ C
0 In−2k B
0 0 Ik

 ,

where C ∈ sok , and −B>ĨB = 0, where Ĩ defines a non-degenerate
bilinear form on a certain subspace of Rn.

l(Γ) is abelian if and only if B = 0 for all γ ∈ Γ.
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Non-Abelian Holonomy

Theorem
Let M be a flat pseudo-Riemannian homogeneous manifold.
If Hol(M) is not abelian, then

dim M ≥ 8.

If in addition M is complete, then

dim M ≥ 14.

Examples show that both bounds are sharp.
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Realisations as Fundamental Groups

Theorem
Let Γ be a finitely generated torsion-free 2-step nilpotent group of
rank n.
Then there exists a complete flat pseudo-Riemannian homogeneous
manifold M with fundamental group Γ, and dim M = 2n.

Proof:

Let H be the Malcev hull of Γ (an algebraic group such that Γ embeds as
a lattice in H, and dimH = n).

Set G = H nAd∗ h∗ and define a flat bi-invariant inner product by
〈(X , ξ), (Y , η)〉 = ξ(Y ) + η(X ).

The action of γ ∈ Γ on G by γ.(h, ξ) = (γh,Ad∗(γ)ξ) is isometric.

So M = G/Γ is a flat pseudo-Riemannian homogeneous manifold.
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