Density of subgroups and invariance properties of bilinear forms on Lie groups

WOLFGANG GLOBKE

Lie Theory Seminar Centro de Investigación en Matemáticas, February 2019

Let (M, g) be a pseudo-Riemannian homogeneous space of finite volume.

• The metric tensor g is indefinite. Pointwise, it can be represented by $\begin{pmatrix} I_{n-s} & 0\\ 0 & -I_s \end{pmatrix}$. Its signature is (n-s, s), its index is s.

- The metric tensor g is indefinite. Pointwise, it can be represented by $\begin{pmatrix} I_{n-s} & 0\\ 0 & -I_s \end{pmatrix}$. Its signature is (n-s, s), its index is s.
- M has a presentation G/H, where is a Lie group of isometries of M, and H is a closed subgroup of G that is that stabilizer of some point in M.

- The metric tensor g is indefinite. Pointwise, it can be represented by $\begin{pmatrix} I_{n-s} & 0 \\ 0 & -I_s \end{pmatrix}$. Its signature is (n-s, s), its index is s.
- *M* has a presentation G/H, where is a Lie group of isometries of *M*, and *H* is a closed subgroup of *G* that is that stabilizer of some point in *M*.
- Since $G \subseteq Iso(M, g)$, it acts effectively. This means the subgroup *H* contains no non-trivial normal subgroup of *G*.

- The metric tensor g is indefinite. Pointwise, it can be represented by $\begin{pmatrix} I_{n-s} & 0 \\ 0 & -I_s \end{pmatrix}$. Its signature is (n-s, s), its index is s.
- *M* has a presentation G/H, where is a Lie group of isometries of *M*, and *H* is a closed subgroup of *G* that is that stabilizer of some point in *M*.
- Since $G \subseteq Iso(M, g)$, it acts effectively. This means the subgroup H contains no non-trivial normal subgroup of G.
- Since $G \subseteq Iso(M, g)$, it preserves the finite Riemannian measure on M.

Let (M, g) be a pseudo-Riemannian homogeneous space of finite volume.

- The metric tensor g is indefinite. Pointwise, it can be represented by $\begin{pmatrix} I_{n-s} & 0 \\ 0 & -I_s \end{pmatrix}$. Its signature is (n-s, s), its index is s.
- *M* has a presentation G/H, where is a Lie group of isometries of *M*, and *H* is a closed subgroup of *G* that is that stabilizer of some point in *M*.
- Since G ⊆ Iso(M, g), it acts effectively.
 This means the subgroup H contains no non-trivial normal subgroup of G.
- Since $G \subseteq Iso(M, g)$, it preserves the finite Riemannian measure on M.
- Special case: *M* is compact.

The pseudo-Riemannian metric automatically provides a finite measure.

What is interesting?

- Spaces with finite G-invariant measure are "almost classifiable" (Gromov).
- The finite invariant measure puts sufficient constraints on *G* and *H* to hope for reasonable structure theorems.
- Non-compact Lie groups G that preserve a finite measure have interesting algebraic and dynamical properties.

Density of subgroups

Finite G-invariant measure

First, we look at the consequences of the fact that G preserves a finite measure on the homogeneous space M (irrespective of the metric g).

Finite G-invariant measure

First, we look at the consequences of the fact that G preserves a finite measure on the homogeneous space M (irrespective of the metric g).

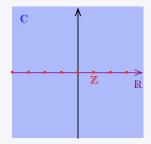
Two ingredients:

- A good notion of density ("Zariski density").
- Its relation to subgroups of finite covolume.

Example

Consider \mathbb{Z} as a subset of \mathbb{C} .

- ℤ is a "small" subset of ℂ (zero measure).
- But every polynomial function on C is completely determined by its values on Z.
- Analogous: Any continuous function is completely determined by its values on a dense subset.

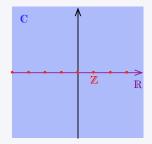


Example

Consider \mathbb{Z} as a subset of \mathbb{C} .

- ℤ is a "small" subset of ℂ (zero measure).
- But every polynomial function on C is completely determined by its values on Z.
- Analogous: Any continuous function is completely determined by its values on a dense subset.

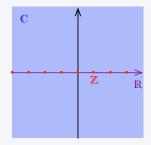
How can we capture this form of "polynomial density"?



Example

Consider \mathbb{Z} as a subset of \mathbb{C} .

- ℤ is a "small" subset of ℂ (zero measure).
- But every polynomial function on C is completely determined by its values on Z.
- Analogous: Any continuous function is completely determined by its values on a dense subset.



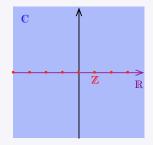
How can we capture this form of "polynomial density"?

A subset $V \subset \mathbb{C}^n$ is called Zariski-closed if it is the zero set of a family of polynomials

Example

Consider \mathbb{Z} as a subset of \mathbb{C} .

- ℤ is a "small" subset of ℂ (zero measure).
- But every polynomial function on C is completely determined by its values on Z.
- Analogous: Any continuous function is completely determined by its values on a dense subset.



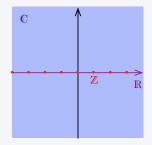
How can we capture this form of "polynomial density"?

A subset $V \subset \mathbb{C}^n$ is called Zariski-closed if it is the zero set of a family of polynomials (Hilbert: Finite set of polynomials is enough).

Example

Consider \mathbb{Z} as a subset of \mathbb{C} .

- Z is a "small" subset of C (zero measure).
- But every polynomial function on C is completely determined by its values on Z.
- Analogous: Any continuous function is completely determined by its values on a dense subset.



How can we capture this form of "polynomial density"?

A subset $V \subset \mathbb{C}^n$ is called Zariski-closed if it is the zero set of a family of polynomials (Hilbert: Finite set of polynomials is enough).

- Zariski-closed sets have positive codimension.
- Zariski-open sets are "large".

A (linear) algebraic group is a Zariski-closed subgroup G of $GL(n, \mathbb{C})$.

A (linear) algebraic group is a Zariski-closed subgroup G of $GL(n, \mathbb{C})$. A real algebraic group G is a group of the form $G = G \cap GL(n, \mathbb{R})$, the real points of a (complex) algebraic group G.

A (linear) algebraic group is a Zariski-closed subgroup G of $GL(n, \mathbb{C})$. A real algebraic group G is a group of the form $G = G \cap GL(n, \mathbb{R})$, the real points of a (complex) algebraic group G.

Complex and real algebraic groups are (very well-behaved) Lie groups.

A (linear) algebraic group is a Zariski-closed subgroup G of $GL(n, \mathbb{C})$. A real algebraic group G is a group of the form $G = G \cap GL(n, \mathbb{R})$, the real points of a (complex) algebraic group G. Complex and real algebraic groups are (very well-behaved) Lie groups.

Examples

- $SL(n, \mathbb{C})$, zero set of equation det(A) 1 = 0.
- $O(n, \mathbb{C})$, zero set of equations $AA^{\top} = I_n$.
- GL $(n-1, \mathbb{C})$, zero set of equations det $(A)a_{nn} 1 = 0, a_{in} = a_{ni} = 0$ for embedding $A \mapsto \begin{pmatrix} A & 0 \\ 0 & \det(A)^{-1} \end{pmatrix}$ into GL (n, \mathbb{C}) .

A (linear) algebraic group is a Zariski-closed subgroup G of $GL(n, \mathbb{C})$. A real algebraic group G is a group of the form $G = G \cap GL(n, \mathbb{R})$, the real points of a (complex) algebraic group G.

Complex and real algebraic groups are (very well-behaved) Lie groups.

Examples

- $SL(n, \mathbb{C})$, zero set of equation det(A) 1 = 0.
- $O(n, \mathbb{C})$, zero set of equations $AA^{\top} = I_n$.
- GL $(n-1, \mathbb{C})$, zero set of equations det $(A)a_{nn} 1 = 0, a_{in} = a_{ni} = 0$ for embedding $A \mapsto \begin{pmatrix} A & 0 \\ 0 & \det(A)^{-1} \end{pmatrix}$ into GL (n, \mathbb{C}) .

Fact

For any subgroup H of G, its (real) Zariski closure $\overline{H}^{\mathbb{Z}}$, the smallest Zariski-closed subset in G (in G) containing H, is a (real) algebraic subgroup of G (of G).

A (linear) algebraic group is a Zariski-closed subgroup G of $GL(n, \mathbb{C})$. A real algebraic group G is a group of the form $G = G \cap GL(n, \mathbb{R})$, the real points of a (complex) algebraic group G.

Complex and real algebraic groups are (very well-behaved) Lie groups.

Examples

- $SL(n, \mathbb{C})$, zero set of equation det(A) 1 = 0.
- $O(n, \mathbb{C})$, zero set of equations $AA^{\top} = I_n$.
- GL $(n-1, \mathbb{C})$, zero set of equations det $(A)a_{nn} 1 = 0, a_{in} = a_{ni} = 0$ for embedding $A \mapsto \begin{pmatrix} A & 0 \\ 0 & \det(A)^{-1} \end{pmatrix}$ into GL (n, \mathbb{C}) .

Fact

For any subgroup H of G, its (real) Zariski closure $\overline{H}^{\mathbb{Z}}$, the smallest Zariski-closed subset in G (in G) containing H, is a (real) algebraic subgroup of G (of G).

We say $X \subseteq H$ is Zariski-dense in H if $\overline{X}^{Z} = \overline{H}^{Z}$ in G (or in G).

We have seen that \mathbb{Z} is Zariski-dense in \mathbb{C} .

We have seen that \mathbb{Z} is Zariski-dense in \mathbb{C} .

- What about Z-points in other groups?
- \mathbb{Z}^{2n} is a lattice in \mathbb{C}^n (i.e. discrete subgroup of finite covolume). Are lattices in general groups *G* Zariski-dense?

We have seen that \mathbb{Z} is Zariski-dense in \mathbb{C} .

- What about Z-points in other groups?
- \mathbb{Z}^{2n} is a lattice in \mathbb{C}^n (i.e. discrete subgroup of finite covolume). Are lattices in general groups *G* Zariski-dense?

Theorem (Malcev, 1951)

Let *N* be a simply connected nilpotent Lie group.

- *N* contains a lattice if and only if its Lie algebra has a basis with rational structure constants.
- Any lattice in N is Zariski-dense.
- Any lattice Γ in N is uniform (the quotient N/Γ is compact).
- Any lattice contains the \mathbb{Z} -points of N as a subgroup of finite index.

We have seen that \mathbb{Z} is Zariski-dense in \mathbb{C} .

- What about Z-points in other groups?
- \mathbb{Z}^{2n} is a lattice in \mathbb{C}^n (i.e. discrete subgroup of finite covolume). Are lattices in general groups *G* Zariski-dense?

Theorem (Malcev, 1951)

Let N be a simply connected nilpotent Lie group.

- *N* contains a lattice if and only if its Lie algebra has a basis with rational structure constants.
- Any lattice in N is Zariski-dense.
- Any lattice Γ in N is uniform (the quotient N/Γ is compact).
- Any lattice contains the \mathbb{Z} -points of N as a subgroup of finite index.

However, if G is solvable, then there may exist lattices that are not Zariski-dense. For example, \mathbb{Z}^n is a lattice in $G = S^1 \ltimes \mathbb{R}^n$, but $\overline{\mathbb{Z}^n}^z = \mathbb{R}^n \neq G$.

Borel Density Theorem (1960)

Let G be a connected semisimple algebraic group, and let $G = G_{\mathbb{R}}^{\circ}$. Assume that G has no compact factors.

Borel Density Theorem (1960)

Let G be a connected semisimple algebraic group, and let $G = G_{\mathbb{R}}^{\circ}$. Assume that G has no compact factors. Then every lattice in G is Zariski-dense in G.

Borel Density Theorem (1960)

Let G be a connected semisimple algebraic group, and let $G = G^{\circ}_{\mathbb{R}}$. Assume that G has no compact factors. Then every lattice in G is Zariski-dense in G.

Example

 $SL(n, \mathbb{Z})$ is a lattice in $SL(n, \mathbb{R})$, hence Zariski-dense. But $SL(n, \mathbb{R})/SL(n, \mathbb{Z})$ is not compact.

Borel Density Theorem (1960)

Let G be a connected semisimple algebraic group, and let $G = G_{\mathbb{R}}^{\circ}$. Assume that G has no compact factors. Then every lattice in G is Zariski-dense in G.

Example

 $SL(n, \mathbb{Z})$ is a lattice in $SL(n, \mathbb{R})$, hence Zariski-dense. But $SL(n, \mathbb{R})/SL(n, \mathbb{Z})$ is not compact.

A stronger version:

Borel Density Theorem (1960)

Let G be a connected semisimple algebraic group, and let $G = G_{\mathbb{R}}^{\circ}$. Assume that G has no compact factors. Then every lattice in G is Zariski-dense in G.

Example

 $SL(n, \mathbb{Z})$ is a lattice in $SL(n, \mathbb{R})$, hence Zariski-dense. But $SL(n, \mathbb{R})/SL(n, \mathbb{Z})$ is not compact.

A stronger version:

Mostow Density Theorem (1971)

Let *G* be a connected Lie group and *H* a closed subgroup, such that there exists a *G*-invariant finite measure on *G*/*H*. Let $\sigma : G \to GL(V)$ a representation, where dim $V < \infty$.

Borel Density Theorem (1960)

Let G be a connected semisimple algebraic group, and let $G = G^{\circ}_{\mathbb{R}}$. Assume that G has no compact factors. Then every lattice in G is Zariski-dense in G.

Example

 $SL(n, \mathbb{Z})$ is a lattice in $SL(n, \mathbb{R})$, hence Zariski-dense. But $SL(n, \mathbb{R})/SL(n, \mathbb{Z})$ is not compact.

A stronger version:

Mostow Density Theorem (1971)

Let *G* be a connected Lie group and *H* a closed subgroup, such that there exists a *G*-invariant finite measure on *G*/*H*. Let $\sigma : G \to GL(V)$ a representation, where dim $V < \infty$. Then $\overline{\sigma(H)}^{z}$ contains a uniform normal subgroup of $\overline{\sigma(G)}^{z}$.

Borel Density Theorem (1960)

Let G be a connected semisimple algebraic group, and let $G = G_{\mathbb{R}}^{\circ}$. Assume that G has no compact factors. Then every lattice in G is Zariski-dense in G.

Example

 $SL(n, \mathbb{Z})$ is a lattice in $SL(n, \mathbb{R})$, hence Zariski-dense. But $SL(n, \mathbb{R})/SL(n, \mathbb{Z})$ is not compact.

A stronger version:

Mostow Density Theorem (1971)

Let *G* be a connected Lie group and *H* a closed subgroup, such that there exists a *G*-invariant finite measure on *G*/*H*. Let $\sigma : G \to GL(V)$ a representation, where dim $V < \infty$. Then $\overline{\sigma(H)}^{z}$ contains a uniform normal subgroup of $\overline{\sigma(G)}^{z}$.

(Note: H is not necessarily discrete.)

Furstenberg Lemma

We want to understand the Borel-Mostow Density Theorem better. For its proof we need a fundamental result on the dynamics of Lie group actions:

Furstenberg Lemma

We want to understand the Borel-Mostow Density Theorem better. For its proof we need a fundamental result on the dynamics of Lie group actions:

Furstenberg Lemma (1963)

For a finite measure μ on the projective space \mathbb{P}^{n-1} , let $PGL(n, \mathbb{R})_{\mu}$ denote the group of μ -preserving projective maps.

Furstenberg Lemma

We want to understand the Borel-Mostow Density Theorem better. For its proof we need a fundamental result on the dynamics of Lie group actions:

Furstenberg Lemma (1963)

For a finite measure μ on the projective space \mathbb{P}^{n-1} , let $PGL(n, \mathbb{R})_{\mu}$ denote the group of μ -preserving projective maps. Then

- either supp μ is not the union of finitely many proper projective subspaces, and in this case PGL $(n, \mathbb{R})_{\mu}$ is compact.
- or supp $\mu = \overline{V}_0 \cup \overline{V}_1 \cup \ldots \cup \overline{V}_k$ with proper projective subspaces \overline{V}_j .

We want to understand the Borel-Mostow Density Theorem better. For its proof we need a fundamental result on the dynamics of Lie group actions:

Furstenberg Lemma (1963)

For a finite measure μ on the projective space \mathbb{P}^{n-1} , let $PGL(n, \mathbb{R})_{\mu}$ denote the group of μ -preserving projective maps. Then

- either supp μ is not the union of finitely many proper projective subspaces, and in this case PGL $(n, \mathbb{R})_{\mu}$ is compact.
- or supp $\mu = \overline{V}_0 \cup \overline{V}_1 \cup \ldots \cup \overline{V}_k$ with proper projective subspaces \overline{V}_j .

Proof

• Let $g_j \in GL(n, \mathbb{R}), j \in \mathbb{N}$, with projective images $\overline{g}_j \in PGL(n, \mathbb{R})_{\mu}$.

We want to understand the Borel-Mostow Density Theorem better. For its proof we need a fundamental result on the dynamics of Lie group actions:

Furstenberg Lemma (1963)

For a finite measure μ on the projective space \mathbb{P}^{n-1} , let $PGL(n, \mathbb{R})_{\mu}$ denote the group of μ -preserving projective maps. Then

- either supp μ is not the union of finitely many proper projective subspaces, and in this case PGL $(n, \mathbb{R})_{\mu}$ is compact.
- or supp $\mu = \overline{V}_0 \cup \overline{V}_1 \cup \ldots \cup \overline{V}_k$ with proper projective subspaces \overline{V}_j .

- Let $g_j \in GL(n, \mathbb{R}), j \in \mathbb{N}$, with projective images $\overline{g}_j \in PGL(n, \mathbb{R})_{\mu}$.
- We may modify the g_j to have all $||g_j||$ bounded from above and below.

We want to understand the Borel-Mostow Density Theorem better. For its proof we need a fundamental result on the dynamics of Lie group actions:

Furstenberg Lemma (1963)

For a finite measure μ on the projective space \mathbb{P}^{n-1} , let $PGL(n, \mathbb{R})_{\mu}$ denote the group of μ -preserving projective maps. Then

- either supp μ is not the union of finitely many proper projective subspaces, and in this case PGL $(n, \mathbb{R})_{\mu}$ is compact.
- or supp $\mu = \overline{V}_0 \cup \overline{V}_1 \cup \ldots \cup \overline{V}_k$ with proper projective subspaces \overline{V}_j .

- Let $g_j \in GL(n, \mathbb{R}), j \in \mathbb{N}$, with projective images $\overline{g}_j \in PGL(n, \mathbb{R})_{\mu}$.
- We may modify the g_j to have all $||g_j||$ bounded from above and below.
- Assume $(\overline{g}_j)_j$ is not relatively compact. Then $\overline{g}_j \to \infty$, but $g_j \to g \in Mat(n, \mathbb{R})$.

We want to understand the Borel-Mostow Density Theorem better. For its proof we need a fundamental result on the dynamics of Lie group actions:

Furstenberg Lemma (1963)

For a finite measure μ on the projective space \mathbb{P}^{n-1} , let $PGL(n, \mathbb{R})_{\mu}$ denote the group of μ -preserving projective maps. Then

- either supp μ is not the union of finitely many proper projective subspaces, and in this case PGL $(n, \mathbb{R})_{\mu}$ is compact.
- or supp $\mu = \overline{V}_0 \cup \overline{V}_1 \cup \ldots \cup \overline{V}_k$ with proper projective subspaces \overline{V}_j .

- Let $g_j \in GL(n, \mathbb{R}), j \in \mathbb{N}$, with projective images $\overline{g}_j \in PGL(n, \mathbb{R})_{\mu}$.
- We may modify the g_j to have all $||g_j||$ bounded from above and below.
- Assume $(\overline{g}_j)_j$ is not relatively compact. Then $\overline{g}_j \to \infty$, but $g_j \to g \in Mat(n, \mathbb{R})$.
- Hence det(g) = 0, but $g \neq 0$ by lower bound. So $W = \operatorname{im} g \neq 0 \neq V = \ker g$.

We want to understand the Borel-Mostow Density Theorem better. For its proof we need a fundamental result on the dynamics of Lie group actions:

Furstenberg Lemma (1963)

For a finite measure μ on the projective space \mathbb{P}^{n-1} , let $PGL(n, \mathbb{R})_{\mu}$ denote the group of μ -preserving projective maps. Then

- either supp μ is not the union of finitely many proper projective subspaces, and in this case PGL $(n, \mathbb{R})_{\mu}$ is compact.
- or supp $\mu = \overline{V}_0 \cup \overline{V}_1 \cup \ldots \cup \overline{V}_k$ with proper projective subspaces \overline{V}_j .

- Let $g_j \in GL(n, \mathbb{R}), j \in \mathbb{N}$, with projective images $\overline{g}_j \in PGL(n, \mathbb{R})_{\mu}$.
- We may modify the g_j to have all $||g_j||$ bounded from above and below.
- Assume $(\overline{g}_j)_j$ is not relatively compact. Then $\overline{g}_j \to \infty$, but $g_j \to g \in Mat(n, \mathbb{R})$.
- Hence det(g) = 0, but $g \neq 0$ by lower bound. So $W = \operatorname{im} g \neq 0 \neq V = \ker g$.
- Split measure $\mu = \mu_1 + \mu_2$ with supp $\mu_1 \subseteq \overline{V}$ and supp $\mu_2 \subseteq \mathbb{P}^n \setminus \overline{V}$.

We want to understand the Borel-Mostow Density Theorem better. For its proof we need a fundamental result on the dynamics of Lie group actions:

Furstenberg Lemma (1963)

For a finite measure μ on the projective space \mathbb{P}^{n-1} , let $PGL(n, \mathbb{R})_{\mu}$ denote the group of μ -preserving projective maps. Then

- either supp μ is not the union of finitely many proper projective subspaces, and in this case PGL $(n, \mathbb{R})_{\mu}$ is compact.
- or supp $\mu = \overline{V}_0 \cup \overline{V}_1 \cup \ldots \cup \overline{V}_k$ with proper projective subspaces \overline{V}_j .

- Let $g_j \in GL(n, \mathbb{R}), j \in \mathbb{N}$, with projective images $\overline{g}_j \in PGL(n, \mathbb{R})_{\mu}$.
- We may modify the g_j to have all $||g_j||$ bounded from above and below.
- Assume $(\overline{g}_j)_j$ is not relatively compact. Then $\overline{g}_j \to \infty$, but $g_j \to g \in Mat(n, \mathbb{R})$.
- Hence det(g) = 0, but $g \neq 0$ by lower bound. So $W = \operatorname{im} g \neq 0 \neq V = \ker g$.
- Split measure $\mu = \mu_1 + \mu_2$ with supp $\mu_1 \subseteq \overline{V}$ and supp $\mu_2 \subseteq \mathbb{P}^n \setminus \overline{V}$.
- Use \overline{g}_j -invariance of μ to show that $\operatorname{supp} \mu_2 \subseteq \overline{W}$.

We want to understand the Borel-Mostow Density Theorem better. For its proof we need a fundamental result on the dynamics of Lie group actions:

Furstenberg Lemma (1963)

For a finite measure μ on the projective space \mathbb{P}^{n-1} , let $PGL(n, \mathbb{R})_{\mu}$ denote the group of μ -preserving projective maps. Then

- either supp μ is not the union of finitely many proper projective subspaces, and in this case PGL $(n, \mathbb{R})_{\mu}$ is compact.
- or supp $\mu = \overline{V}_0 \cup \overline{V}_1 \cup \ldots \cup \overline{V}_k$ with proper projective subspaces \overline{V}_j .

- Let $g_j \in GL(n, \mathbb{R}), j \in \mathbb{N}$, with projective images $\overline{g}_j \in PGL(n, \mathbb{R})_{\mu}$.
- We may modify the g_j to have all $||g_j||$ bounded from above and below.
- Assume $(\overline{g}_j)_j$ is not relatively compact. Then $\overline{g}_j \to \infty$, but $g_j \to g \in Mat(n, \mathbb{R})$.
- Hence det(g) = 0, but $g \neq 0$ by lower bound. So $W = \operatorname{im} g \neq 0 \neq V = \ker g$.
- Split measure $\mu = \mu_1 + \mu_2$ with supp $\mu_1 \subseteq \overline{V}$ and supp $\mu_2 \subseteq \mathbb{P}^n \setminus \overline{V}$.
- Use \overline{g}_j -invariance of μ to show that $\operatorname{supp} \mu_2 \subseteq \overline{W}$. Hence $\operatorname{supp} \mu \subseteq \overline{V} \cup \overline{W}$.

Mostow Density Theorem (1971)

Let *G* be a connected Lie group and *H* a closed subgroup, such that there exists a *G*-invariant finite measure on *G*/*H*. Let $\sigma : G \to GL(V)$ a representation, where dim $V < \infty$. Then $\overline{\sigma(H)}^{z}$ contains a uniform normal subgroup of $\overline{\sigma(G)}^{z}$.

Mostow Density Theorem (1971)

Let *G* be a connected Lie group and *H* a closed subgroup, such that there exists a *G*-invariant finite measure on *G*/*H*. Let $\sigma : G \to GL(V)$ a representation, where dim $V < \infty$. Then $\overline{\sigma(H)}^{z}$ contains a uniform normal subgroup of $\overline{\sigma(G)}^{z}$.

Proof

• For simplicity, assume $G \subseteq GL(V)$, $\sigma = id$. Write $G^* = \overline{G}^z$, $H^* = \overline{H}^z$.

Mostow Density Theorem (1971)

Let *G* be a connected Lie group and *H* a closed subgroup, such that there exists a *G*-invariant finite measure on *G*/*H*. Let $\sigma : G \to GL(V)$ a representation, where dim $V < \infty$. Then $\overline{\sigma(H)}^{z}$ contains a uniform normal subgroup of $\overline{\sigma(G)}^{z}$.

- For simplicity, assume $G \subseteq GL(V)$, $\sigma = id$. Write $G^* = \overline{G}^z$, $H^* = \overline{H}^z$.
- Chevalley Theorem: G* has a faithful algebraic representation *ρ* : G* → GL(W), dim W < ∞, such that H* = G^{*}_{BW} for some w ∈ W.

Mostow Density Theorem (1971)

Let *G* be a connected Lie group and *H* a closed subgroup, such that there exists a *G*-invariant finite measure on *G*/*H*. Let $\sigma : G \to GL(V)$ a representation, where dim $V < \infty$. Then $\overline{\sigma(H)}^{z}$ contains a uniform normal subgroup of $\overline{\sigma(G)}^{z}$.

Proof

- For simplicity, assume $G \subseteq GL(V)$, $\sigma = id$. Write $G^* = \overline{G}^z$, $H^* = \overline{H}^z$.
- Chevalley Theorem: G^* has a faithful algebraic representation $\varrho: G^* \to GL(W)$, dim $W < \infty$, such that $H^* = G^*_{\mathbb{R}W}$ for some $w \in W$.

Then $H^* = G^*_{\overline{w}}$ for the induced representation $\overline{\varrho} : G^* \to PGL(W)$ on $\mathbb{P}(W)$.

Mostow Density Theorem (1971)

Let *G* be a connected Lie group and *H* a closed subgroup, such that there exists a *G*-invariant finite measure on *G*/*H*. Let $\sigma : G \to GL(V)$ a representation, where dim $V < \infty$. Then $\overline{\sigma(H)}^{z}$ contains a uniform normal subgroup of $\overline{\sigma(G)}^{z}$.

- For simplicity, assume $G \subseteq GL(V)$, $\sigma = id$. Write $G^* = \overline{G}^z$, $H^* = \overline{H}^z$.
- Chevalley Theorem: G* has a faithful algebraic representation *ρ*: G* → GL(W), dim W < ∞, such that H* = G^{*}_{RW} for some w ∈ W.
 Then H* = G^{*}_{TU} for the induced representation *ρ̄*: G* → PGL(W) on P(W).
- G^*/H^* embeds equivariantly into $\mathbb{P}(W)$ via the orbit map at \overline{w} .

Mostow Density Theorem (1971)

Let *G* be a connected Lie group and *H* a closed subgroup, such that there exists a *G*-invariant finite measure on *G*/*H*. Let $\sigma : G \to GL(V)$ a representation, where dim $V < \infty$. Then $\overline{\sigma(H)}^{z}$ contains a uniform normal subgroup of $\overline{\sigma(G)}^{z}$.

- For simplicity, assume $G \subseteq GL(V)$, $\sigma = id$. Write $G^* = \overline{G}^z$, $H^* = \overline{H}^z$.
- Chevalley Theorem: G* has a faithful algebraic representation *ρ*: G* → GL(W), dim W < ∞, such that H* = G^{*}_{RW} for some w ∈ W.
 Then H* = G^{*}_W for the induced representation *ρ̄*: G* → PGL(W) on P(W).
- G^*/H^* embeds equivariantly into $\mathbb{P}(W)$ via the orbit map at \overline{w} .
- Thus μ pushes forward to a finite *G*-invariant measure μ_* on $\mathbb{P}(W)$. Fact: G^*_{μ} is algebraic. Since $\overline{G}^z = G^*$, the measure μ_* is even G^* -invariant.

Mostow Density Theorem (1971)

Let *G* be a connected Lie group and *H* a closed subgroup, such that there exists a *G*-invariant finite measure on *G*/*H*. Let $\sigma : G \to GL(V)$ a representation, where dim $V < \infty$. Then $\overline{\sigma(H)}^{z}$ contains a uniform normal subgroup of $\overline{\sigma(G)}^{z}$.

- For simplicity, assume $G \subseteq GL(V)$, $\sigma = id$. Write $G^* = \overline{G}^z$, $H^* = \overline{H}^z$.
- Chevalley Theorem: G* has a faithful algebraic representation *ρ*: G* → GL(W), dim W < ∞, such that H* = G^{*}_{RW} for some w ∈ W.
 Then H* = G^{*}_W for the induced representation *ρ̄*: G* → PGL(W) on P(W).
- G^*/H^* embeds equivariantly into $\mathbb{P}(W)$ via the orbit map at \overline{w} .
- Thus μ pushes forward to a finite *G*-invariant measure μ_* on $\mathbb{P}(W)$. Fact: G^*_{μ} is algebraic. Since $\overline{G}^z = G^*$, the measure μ_* is even G^* -invariant.
- Furstenberg Lemma: $PGL(W)_{\mu}$ is compact.

Mostow Density Theorem (1971)

Let *G* be a connected Lie group and *H* a closed subgroup, such that there exists a *G*-invariant finite measure on *G*/*H*. Let $\sigma : G \to GL(V)$ a representation, where dim $V < \infty$. Then $\overline{\sigma(H)}^{z}$ contains a uniform normal subgroup of $\overline{\sigma(G)}^{z}$.

- For simplicity, assume $G \subseteq GL(V)$, $\sigma = id$. Write $G^* = \overline{G}^z$, $H^* = \overline{H}^z$.
- Chevalley Theorem: G* has a faithful algebraic representation *ρ*: G* → GL(W), dim W < ∞, such that H* = G^{*}_{RW} for some w ∈ W.
 Then H* = G^{*}_W for the induced representation *ρ̄*: G* → PGL(W) on P(W).
- G^*/H^* embeds equivariantly into $\mathbb{P}(W)$ via the orbit map at \overline{w} .
- Thus μ pushes forward to a finite *G*-invariant measure μ_* on $\mathbb{P}(W)$. Fact: G^*_{μ} is algebraic. Since $\overline{G}^z = G^*$, the measure μ_* is even G^* -invariant.
- Furstenberg Lemma: $PGL(W)_{\mu}$ is compact. $\overline{\varrho}(G^*)$ is closed in $PGL(W)_{\mu}$, hence compact.

Mostow Density Theorem (1971)

Let *G* be a connected Lie group and *H* a closed subgroup, such that there exists a *G*-invariant finite measure on *G*/*H*. Let $\sigma : G \to GL(V)$ a representation, where dim $V < \infty$. Then $\overline{\sigma(H)}^{z}$ contains a uniform normal subgroup of $\overline{\sigma(G)}^{z}$.

- For simplicity, assume $G \subseteq GL(V)$, $\sigma = id$. Write $G^* = \overline{G}^z$, $H^* = \overline{H}^z$.
- Chevalley Theorem: G* has a faithful algebraic representation *ρ*: G* → GL(W), dim W < ∞, such that H* = G^{*}_{RW} for some w ∈ W.
 Then H* = G^{*}_W for the induced representation *ρ̄*: G* → PGL(W) on P(W).
- G^*/H^* embeds equivariantly into $\mathbb{P}(W)$ via the orbit map at \overline{w} .
- Thus μ pushes forward to a finite *G*-invariant measure μ_* on $\mathbb{P}(W)$. Fact: G^*_{μ} is algebraic. Since $\overline{G}^z = G^*$, the measure μ_* is even G^* -invariant.
- Furstenberg Lemma: $PGL(W)_{\mu}$ is compact. $\overline{\varrho}(G^*)$ is closed in $PGL(W)_{\mu}$, hence compact.
- Hence $\ker(G^* \to \varrho(G^*) \to \overline{\varrho}(G^*))$ is a uniform normal subgroup.

Mostow Density Theorem (1971)

Let *G* be a connected Lie group and *H* a closed subgroup, such that there exists a *G*-invariant finite measure on *G*/*H*. Let $\sigma : G \to GL(V)$ a representation, where dim $V < \infty$. Then $\overline{\sigma(H)}^{z}$ contains a uniform normal subgroup of $\overline{\sigma(G)}^{z}$.

- For simplicity, assume $G \subseteq GL(V)$, $\sigma = id$. Write $G^* = \overline{G}^z$, $H^* = \overline{H}^z$.
- Chevalley Theorem: G* has a faithful algebraic representation *ρ*: G* → GL(W), dim W < ∞, such that H* = G^{*}_{RW} for some w ∈ W.
 Then H* = G^{*}_W for the induced representation *ρ̄*: G* → PGL(W) on P(W).
- G^*/H^* embeds equivariantly into $\mathbb{P}(W)$ via the orbit map at \overline{w} .
- Thus μ pushes forward to a finite *G*-invariant measure μ_* on $\mathbb{P}(W)$. Fact: G^*_{μ} is algebraic. Since $\overline{G}^z = G^*$, the measure μ_* is even G^* -invariant.
- Furstenberg Lemma: $PGL(W)_{\mu}$ is compact. $\overline{\varrho}(G^*)$ is closed in $PGL(W)_{\mu}$, hence compact.
- Hence $\ker(G^* \to \varrho(G^*) \to \overline{\varrho}(G^*))$ is a uniform normal subgroup.
- $H^* \supseteq \ker(G^* \to \varrho(G^*) \to \overline{\varrho}(G^*)).$

Invariance properties of symmetric bilinear forms

Induced symmetric bilinear form

Recall the geometric motivation: G/H is a pseudo-Riemannian homogeneous space of finite volume, $G \subseteq Iso(M, g)$.

Now we focus on the consequences of G being an isometry group on M.

Induced symmetric bilinear form

Recall the geometric motivation:

G/H is a pseudo-Riemannian homogeneous space of finite volume, $G \subseteq Iso(M, g)$.

Now we focus on the consequences of G being an isometry group on M.

Ingredients:

- Metric g induces a symmetric bilinear form $\langle \cdot, \cdot \rangle$ on the Lie algebra g of G.
- Density properties of the stabilizer H imply the peculiar nil-invariance of $\langle \cdot, \cdot \rangle$.
- Understand how nil-invariance and the usual invariance of bilinear forms on Lie algebras are related.

Let g be a (finite-dimensional real) Lie algebra, $\langle \cdot, \cdot \rangle$ a symmetric bilinear form on g, and h a subalgebra of g.

Let g be a (finite-dimensional real) Lie algebra, $\langle \cdot, \cdot \rangle$ a symmetric bilinear form on g, and h a subalgebra of g.

• The form $\langle \cdot, \cdot \rangle$ is called *h*-invariant, if for all $h \in h, x, y \in g$,

 $\langle [h, x], y \rangle = -\langle x, [h, y] \rangle.$

Let g be a (finite-dimensional real) Lie algebra, $\langle \cdot, \cdot \rangle$ a symmetric bilinear form on g, and h a subalgebra of g.

• The form $\langle \cdot, \cdot \rangle$ is called *h*-invariant, if for all $h \in h, x, y \in g$,

 $\langle [h, x], y \rangle = -\langle x, [h, y] \rangle.$

In other words, ad(h) is skew-symmetric for $\langle \cdot, \cdot \rangle$.

Let g be a (finite-dimensional real) Lie algebra, $\langle \cdot, \cdot \rangle$ a symmetric bilinear form on g, and h a subalgebra of g.

• The form $\langle \cdot, \cdot \rangle$ is called *h*-invariant, if for all $h \in h, x, y \in g$,

 $\langle [h, x], y \rangle = -\langle x, [h, y] \rangle.$

In other words, ad(h) is skew-symmetric for $\langle \cdot, \cdot \rangle$.

• If $\langle \cdot, \cdot \rangle$ is *g*-invariant, we simply call $\langle \cdot, \cdot \rangle$ invariant.

Let g be a (finite-dimensional real) Lie algebra, $\langle \cdot, \cdot \rangle$ a symmetric bilinear form on g, and h a subalgebra of g.

• The form $\langle \cdot, \cdot \rangle$ is called \hbar -invariant, if for all $h \in \hbar, x, y \in g$,

 $\langle [h, x], y \rangle = -\langle x, [h, y] \rangle.$

In other words, ad(h) is skew-symmetric for $\langle \cdot, \cdot \rangle$.

- If $\langle \cdot, \cdot \rangle$ is *g*-invariant, we simply call $\langle \cdot, \cdot \rangle$ invariant.
- The term "invariant" comes from differentiating the corresponding property for groups,

 $\langle \exp(t \operatorname{ad}(h))x, \exp(t \operatorname{ad}(h))y \rangle = \langle x, y \rangle.$

Let g be a (finite-dimensional real) Lie algebra, $\langle \cdot, \cdot \rangle$ a symmetric bilinear form on g, and h a subalgebra of g.

• The form $\langle \cdot, \cdot \rangle$ is called \hbar -invariant, if for all $h \in \hbar, x, y \in g$,

 $\langle [h, x], y \rangle = - \langle x, [h, y] \rangle.$

In other words, ad(h) is skew-symmetric for $\langle \cdot, \cdot \rangle$.

- If $\langle \cdot, \cdot \rangle$ is *g*-invariant, we simply call $\langle \cdot, \cdot \rangle$ invariant.
- The term "invariant" comes from differentiating the corresponding property for groups,

 $\langle \exp(t \operatorname{ad}(h))x, \exp(t \operatorname{ad}(h))y \rangle = \langle x, y \rangle.$

Example

On every Lie algebra, the Killing form κ is invariant,

 $\kappa(x, y) = \operatorname{tr}(\operatorname{ad}(x)\operatorname{ad}(y)).$

• On an abelian Lie algebra, every bilinear form is invariant.

- On an abelian Lie algebra, every bilinear form is invariant.
- **2** Let *s* be a semisimple Lie algebra. Then the Killing form κ is non-degenerate.

- On an abelian Lie algebra, every bilinear form is invariant.
- **(a)** Let s be a semisimple Lie algebra. Then the Killing form κ is non-degenerate. Fact: Every invariant bilinear form on simple s is a multiple of κ .

- On an abelian Lie algebra, every bilinear form is invariant.
- Let *s* be a semisimple Lie algebra. Then the Killing form κ is non-degenerate.
 Fact: Every invariant bilinear form on simple *s* is a multiple of κ.
 Fact: *s* = *k* ⊕ *p*, where *k* is a semisimple subalgebra of compact type (κ is negative definite) and *p* is a linear subspace on which κ is positive definite.

- On an abelian Lie algebra, every bilinear form is invariant.
- Let *s* be a semisimple Lie algebra. Then the Killing form κ is non-degenerate. Fact: Every invariant bilinear form on simple *s* is a multiple of κ.
 Fact: *s* = *k* ⊕ *p*, where *k* is a semisimple subalgebra of compact type (κ is negative definite) and *p* is a linear subspace on which κ is positive definite.
- Solution Let h_3 denote Heisenberg algebra, given by generators x, y, z with relations

$$[x, y] = z.$$

- On an abelian Lie algebra, every bilinear form is invariant.
- Let *s* be a semisimple Lie algebra. Then the Killing form κ is non-degenerate.
 Fact: Every invariant bilinear form on simple *s* is a multiple of κ.
 Fact: *s* = *k* ⊕ *p*, where *k* is a semisimple subalgebra of compact type (κ is negative definite) and *p* is a linear subspace on which κ is positive definite.
- Solution Let h_3 denote Heisenberg algebra, given by generators x, y, z with relations

$$[x, y] = z.$$

The oscillator algebra is the extension $osc_4 = \mathbb{R} \ltimes h_3$ of h_3 by $\mathbb{R}a$,

$$[a, x] = -y, \quad [a, y] = x.$$

- On an abelian Lie algebra, every bilinear form is invariant.
- Let *s* be a semisimple Lie algebra. Then the Killing form κ is non-degenerate.
 Fact: Every invariant bilinear form on simple *s* is a multiple of κ.
 Fact: *s* = *k* ⊕ *p*, where *k* is a semisimple subalgebra of compact type (κ is negative definite) and *p* is a linear subspace on which κ is positive definite.
- Solution Let h_3 denote Heisenberg algebra, given by generators x, y, z with relations

$$[x, y] = z.$$

The oscillator algebra is the extension $osc_4 = \mathbb{R} \ltimes h_3$ of h_3 by $\mathbb{R}a$,

$$[a, x] = -y, \quad [a, y] = x.$$

An invariant Lorentzian scalar product $\langle \cdot, \cdot \rangle$ on σsc_4 is defined by

$$\langle a, z \rangle = 1, \quad \langle x, x \rangle = \langle y, y \rangle = 1, \quad a \perp a, \quad z \perp z, \quad x, y \perp a, z$$

- On an abelian Lie algebra, every bilinear form is invariant.
- Let *s* be a semisimple Lie algebra. Then the Killing form κ is non-degenerate.
 Fact: Every invariant bilinear form on simple *s* is a multiple of κ.
 Fact: *s* = *k* ⊕ *p*, where *k* is a semisimple subalgebra of compact type (κ is negative definite) and *p* is a linear subspace on which κ is positive definite.
- Solution Let h_3 denote Heisenberg algebra, given by generators x, y, z with relations

$$[x, y] = z.$$

The oscillator algebra is the extension $osc_4 = \mathbb{R} \ltimes h_3$ of h_3 by $\mathbb{R}a$,

$$[a, x] = -y, \quad [a, y] = x.$$

An invariant Lorentzian scalar product $\langle \cdot, \cdot \rangle$ on σsc_4 is defined by

$$\langle a, z \rangle = 1, \quad \langle x, x \rangle = \langle y, y \rangle = 1, \quad a \perp a, \quad z \perp z, \quad x, y \perp a, z.$$

These (and higher-dimensional analogues) are the only non-abelian solvable Lie algebras with invariant Lorentzian scalar product.

Double extensions

The structure of Lie algebras admitting an invariant scalar product $\langle \cdot, \cdot \rangle$ (non-degenerate) was described by Medina and Revoy (1985) as follows.

Double extensions

The structure of Lie algebras admitting an invariant scalar product $\langle \cdot, \cdot \rangle$ (non-degenerate) was described by Medina and Revoy (1985) as follows.

Let g, b be Lie algebras with invariant scalar products $\langle \cdot, \cdot \rangle_g$, $\langle \cdot, \cdot \rangle_b$.

The structure of Lie algebras admitting an invariant scalar product $\langle \cdot, \cdot \rangle$ (non-degenerate) was described by Medina and Revoy (1985) as follows.

Let g, b be Lie algebras with invariant scalar products $\langle \cdot, \cdot \rangle_{g}$, $\langle \cdot, \cdot \rangle_{b}$.

Let δ : b → der(g) ∩ so(g, ⟨·, ·⟩g) be a representation by skew-symmetric derivations of (g, ⟨·, ·⟩g).

The structure of Lie algebras admitting an invariant scalar product $\langle \cdot, \cdot \rangle$ (non-degenerate) was described by Medina and Revoy (1985) as follows.

Let g, b be Lie algebras with invariant scalar products $\langle \cdot, \cdot \rangle_g$, $\langle \cdot, \cdot \rangle_b$.

- Let δ : b → der(g) ∩ so(g, ⟨·, ·⟩_g) be a representation by skew-symmetric derivations of (g, ⟨·, ·⟩_g).
- Let b^* be the dual space of b and define $\eta : g \times g \to b^*$ by

 $\eta(x_1, x_2)(b) = \langle \delta(b) x_1, x_2 \rangle,$

 $x_1, x_2 \in g, b \in \mathcal{b}.$

The structure of Lie algebras admitting an invariant scalar product $\langle \cdot, \cdot \rangle$ (non-degenerate) was described by Medina and Revoy (1985) as follows.

Let g, b be Lie algebras with invariant scalar products $\langle \cdot, \cdot \rangle_g$, $\langle \cdot, \cdot \rangle_b$.

- Let δ : b → der(g) ∩ so(g, ⟨·, ·⟩g) be a representation by skew-symmetric derivations of (g, ⟨·, ·⟩g).
- Let b^* be the dual space of b and define $\eta : g \times g \to b^*$ by

$$\eta(x_1, x_2)(b) = \langle \delta(b) x_1, x_2 \rangle,$$

 $x_1, x_2 \in g, b \in \mathcal{b}.$

• On $\hat{g} = b \oplus g \oplus b^*$, define a Lie product

 $[(b_1, x_1, \beta_1), (b_2, x_2, \beta_2)]_{\hat{g}}$ = $([b_1, b_2]_{\delta}, [x_1, x_2]_{g} + \delta(b_1)x_2 - \delta(b_2)x_1, \operatorname{ad}^*(b_2)\beta_1 - \operatorname{ad}^*(b_1)\beta_2 + \eta(x_1, x_2))$

The structure of Lie algebras admitting an invariant scalar product $\langle \cdot, \cdot \rangle$ (non-degenerate) was described by Medina and Revoy (1985) as follows.

Let g, b be Lie algebras with invariant scalar products $\langle \cdot, \cdot \rangle_g$, $\langle \cdot, \cdot \rangle_b$.

- Let δ : b → der(g) ∩ so(g, ⟨·, ·⟩g) be a representation by skew-symmetric derivations of (g, ⟨·, ·⟩g).
- Let b^* be the dual space of b and define $\eta : g \times g \to b^*$ by

$$\eta(x_1, x_2)(b) = \langle \delta(b) x_1, x_2 \rangle$$

 $x_1, x_2 \in \mathcal{G}, b \in \mathcal{b}.$

• On $\hat{g} = b \oplus g \oplus b^*$, define a Lie product

 $[(b_1, x_1, \beta_1), (b_2, x_2, \beta_2)]_{\hat{g}}$ = $([b_1, b_2]_{\delta}, [x_1, x_2]_{g} + \delta(b_1)x_2 - \delta(b_2)x_1, \operatorname{ad}^*(b_2)\beta_1 - \operatorname{ad}^*(b_1)\beta_2 + \eta(x_1, x_2))$

and an invariant bilinear form

 $\langle (b_1, x_1, \boldsymbol{\beta}_1), (b_2, x_2, \boldsymbol{\beta}_2) \rangle_{\hat{g}} = \langle x_1, x_2 \rangle_{\mathcal{g}} + \langle b_1, b_2 \rangle_{\mathcal{b}} + \boldsymbol{\beta}_1(b_2) - \boldsymbol{\beta}_2(b_1).$

Example

The oscillator algebra σ_{3c4} is a double extension of $g = \mathbb{R}^2$, $\langle \cdot, \cdot \rangle_g = \langle \cdot, \cdot \rangle_{std}$, by $b = \mathbb{R}a$, $b^* = \mathbb{R}z$, with

$$\delta(a) = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, \quad \eta(x, y) = z.$$

Example

The oscillator algebra σ_{3c4} is a double extension of $g = \mathbb{R}^2$, $\langle \cdot, \cdot \rangle_g = \langle \cdot, \cdot \rangle_{std}$, by $b = \mathbb{R}a$, $b^* = \mathbb{R}z$, with

$$\delta(a) = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, \quad \eta(x, y) = z.$$

Theorem (Medina & Revoy, 1985)

 Every Lie algebra with an invariant scalar product arises from double extensions and direct sums of simple and abelian Lie algebras.

Example

The oscillator algebra $c_{3}c_{4}$ is a double extension of $g = \mathbb{R}^{2}$, $\langle \cdot, \cdot \rangle_{g} = \langle \cdot, \cdot \rangle_{std}$, by $b = \mathbb{R}a, b^{*} = \mathbb{R}z$, with

$$\delta(a) = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, \quad \eta(x, y) = z.$$

Theorem (Medina & Revoy, 1985)

- Every Lie algebra with an invariant scalar product arises from double extensions and direct sums of simple and abelian Lie algebras.
- Every solvable Lie algebra with an invariant scalar product arises from double extensions and direct sums of abelian Lie algebras g by one-dimensional algebras b.

Example

The oscillator algebra σ_{sc4} is a double extension of $g = \mathbb{R}^2$, $\langle \cdot, \cdot \rangle_g = \langle \cdot, \cdot \rangle_{std}$, by $b = \mathbb{R}a$, $b^* = \mathbb{R}z$, with

$$\delta(a) = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, \quad \eta(x, y) = z.$$

Theorem (Medina & Revoy, 1985)

- Every Lie algebra with an invariant scalar product arises from double extensions and direct sums of simple and abelian Lie algebras.
- Every solvable Lie algebra with an invariant scalar product arises from double extensions and direct sums of abelian Lie algebras g by one-dimensional algebras b.

Classification (Kath & Olbrich, 2003-2006)

- a general classification scheme for Lie algebras with invariant scalar product (however, somewhat impractical for concrete application),
- complete classifications for metric signature (n 2, 2) and (n 3, 3),
- complete classification for nilpotent Lie algebras with invariant scalar product in dimension ≤ 10 .

Recall our original geometric motivation: G/H is a pseudo-Riemannian homogeneous space of finite volume, $G \subseteq Iso(M, g)$.

The indefinite metric g on M pulls back to a symmetric bilinear tensor g_G on G.

Recall our original geometric motivation: G/H is a pseudo-Riemannian homogeneous space of finite volume, $G \subseteq Iso(M, g)$.

The indefinite metric g on M pulls back to a symmetric bilinear tensor g_G on G. Restricting to $T_e G$ yields a symmetric bilinear form $\langle \cdot, \cdot \rangle$ on the Lie algebra g of G.

Recall our original geometric motivation: G/H is a pseudo-Riemannian homogeneous space of finite volume, $G \subseteq Iso(M, g)$.

The indefinite metric g on M pulls back to a symmetric bilinear tensor g_G on G. Restricting to $T_e G$ yields a symmetric bilinear form $\langle \cdot, \cdot \rangle$ on the Lie algebra g of G.

• In general, $\langle \cdot, \cdot \rangle$ is degenerate.

Recall our original geometric motivation:

G/H is a pseudo-Riemannian homogeneous space of finite volume, $G \subseteq Iso(M, g)$.

The indefinite metric g on M pulls back to a symmetric bilinear tensor g_G on G. Restricting to $T_e G$ yields a symmetric bilinear form $\langle \cdot, \cdot \rangle$ on the Lie algebra g of G.

- In general, $\langle \cdot, \cdot \rangle$ is degenerate.
- ker $\langle \cdot, \cdot \rangle = \{x \in g \mid \langle x, y \rangle = 0 \text{ for all } y \in g\} = \hbar$, the Lie algebra of the stabilizer *H*.

Recall our original geometric motivation:

G/H is a pseudo-Riemannian homogeneous space of finite volume, $G \subseteq Iso(M, g)$.

The indefinite metric g on M pulls back to a symmetric bilinear tensor g_G on G. Restricting to $T_e G$ yields a symmetric bilinear form $\langle \cdot, \cdot \rangle$ on the Lie algebra g of G.

- In general, $\langle \cdot, \cdot \rangle$ is degenerate.
- ker $\langle \cdot, \cdot \rangle = \{x \in g \mid \langle x, y \rangle = 0 \text{ for all } y \in g\} = \hbar$, the Lie algebra of the stabilizer *H*.
- $\langle \cdot, \cdot \rangle$ is *H*-invariant (and thus *h*-invariant),

 $\langle \operatorname{Ad}_{\mathcal{G}}(h)x, \operatorname{Ad}_{\mathcal{G}}(h)y \rangle = \langle x, y \rangle, \quad \text{for all } h \in H$ $\langle \operatorname{ad}_{\mathcal{G}}(h')x, y \rangle + \langle x, \operatorname{ad}_{\mathcal{G}}(h')y \rangle = 0 \quad \text{for all } h' \in h.$

We introduce another notion of "invariance".

Let *g* be a Lie algebra with a symmetric bilinear form $\langle \cdot, \cdot \rangle$.

We introduce another notion of "invariance".

Let *g* be a Lie algebra with a symmetric bilinear form $\langle \cdot, \cdot \rangle$.

• We say $\langle \cdot, \cdot \rangle$ is nil-invariant, if

$$\langle Ax, y \rangle = -\langle x, Ay \rangle, \quad x, y \in g,$$

for every nilpotent operator A in the Lie algebra of the Zariski closure $\overline{\operatorname{Ad}(G)}^{\mathbb{Z}}$ of $\operatorname{Ad}(G)$ in $\operatorname{GL}(g)$.

We introduce another notion of "invariance".

Let *g* be a Lie algebra with a symmetric bilinear form $\langle \cdot, \cdot \rangle$.

• We say $\langle \cdot, \cdot \rangle$ is nil-invariant, if

$$\langle Ax, y \rangle = -\langle x, Ay \rangle, \quad x, y \in g,$$

for every nilpotent operator A in the Lie algebra of the Zariski closure $\overline{\operatorname{Ad}(G)}^{\mathbb{Z}}$ of $\operatorname{Ad}(G)$ in $\operatorname{GL}(g)$.

In particular, if ad(x) = ad(x)_{ss} + ad(x)_n is the (additive) Jordan decomposition of ad(x), then A = ad(x)_n is skew-symmetric for ⟨·, ·⟩ for all x ∈ g.

We introduce another notion of "invariance".

Let *g* be a Lie algebra with a symmetric bilinear form $\langle \cdot, \cdot \rangle$.

• We say $\langle \cdot, \cdot \rangle$ is nil-invariant, if

$$\langle Ax, y \rangle = -\langle x, Ay \rangle, \quad x, y \in g,$$

for every nilpotent operator A in the Lie algebra of the Zariski closure $\overline{\operatorname{Ad}(G)}^{Z}$ of $\operatorname{Ad}(G)$ in $\operatorname{GL}(g)$.

- In particular, if ad(x) = ad(x)_{ss} + ad(x)_n is the (additive) Jordan decomposition of ad(x), then A = ad(x)_n is skew-symmetric for ⟨·, ·⟩ for all x ∈ g.
- In particular, $\langle \cdot, \cdot \rangle$ is *n*-invariant for the nilradical *n* of *g* (maximal nilpotent ideal).

We introduce another notion of "invariance".

Let *g* be a Lie algebra with a symmetric bilinear form $\langle \cdot, \cdot \rangle$.

• We say $\langle \cdot, \cdot \rangle$ is nil-invariant, if

$$\langle Ax, y \rangle = -\langle x, Ay \rangle, \quad x, y \in g,$$

for every nilpotent operator A in the Lie algebra of the Zariski closure $\overline{\operatorname{Ad}(G)}^{Z}$ of $\operatorname{Ad}(G)$ in $\operatorname{GL}(g)$.

- In particular, if ad(x) = ad(x)_{ss} + ad(x)_n is the (additive) Jordan decomposition of ad(x), then A = ad(x)_n is skew-symmetric for ⟨·, ·⟩ for all x ∈ g.
- In particular, ⟨·, ·⟩ is *n*-invariant for the nilradical *n* of *g* (maximal nilpotent ideal).
- In general, nil-invariant \neq invariant.

M = G/H is a pseudo-Riemannian homogeneous space of finite volume, and $G \subseteq \text{Iso}(M, g)$. Let $\langle \cdot, \cdot \rangle$ denote the bilinear form on g induced by g.

M = G/H is a pseudo-Riemannian homogeneous space of finite volume, and $G \subseteq \text{Iso}(M, g)$. Let $\langle \cdot, \cdot \rangle$ denote the bilinear form on g induced by g.

Theorem (Baues, Globke & Zeghib, 2018)

The induced symmetric bilinear form $\langle \cdot, \cdot \rangle$ on g is nil-invariant.

M = G/H is a pseudo-Riemannian homogeneous space of finite volume, and $G \subseteq \text{Iso}(M, g)$. Let $\langle \cdot, \cdot \rangle$ denote the bilinear form on g induced by g.

Theorem (Baues, Globke & Zeghib, 2018)

The induced symmetric bilinear form $\langle \cdot, \cdot \rangle$ on g is nil-invariant.

Proof

• Since M = G/H is of finite volume, and G is a group of isometries, there is a finite G-invariant measure on M.

M = G/H is a pseudo-Riemannian homogeneous space of finite volume, and $G \subseteq \text{Iso}(M, g)$. Let $\langle \cdot, \cdot \rangle$ denote the bilinear form on g induced by g.

Theorem (Baues, Globke & Zeghib, 2018)

The induced symmetric bilinear form $\langle \cdot, \cdot \rangle$ on g is nil-invariant.

- Since M = G/H is of finite volume, and G is a group of isometries, there is a finite G-invariant measure on M.
- Apply Mostow-Borel Density Theorem with representation $\rho = Ad_g$:

M = G/H is a pseudo-Riemannian homogeneous space of finite volume, and $G \subseteq \text{Iso}(M, g)$. Let $\langle \cdot, \cdot \rangle$ denote the bilinear form on g induced by g.

Theorem (Baues, Globke & Zeghib, 2018)

The induced symmetric bilinear form $\langle \cdot, \cdot \rangle$ on g is nil-invariant.

Proof

- Since M = G/H is of finite volume, and G is a group of isometries, there is a finite G-invariant measure on M.
- Apply Mostow-Borel Density Theorem with representation $\rho = Ad_g$:

The group $\overline{\mathrm{Ad}_{\mathscr{G}}(H)}^{z}$ contains a uniform normal subgroup of $\overline{\mathrm{Ad}_{\mathscr{G}}(G)}^{z}$.

M = G/H is a pseudo-Riemannian homogeneous space of finite volume, and $G \subseteq \text{Iso}(M, g)$. Let $\langle \cdot, \cdot \rangle$ denote the bilinear form on g induced by g.

Theorem (Baues, Globke & Zeghib, 2018)

The induced symmetric bilinear form $\langle \cdot, \cdot \rangle$ on g is nil-invariant.

Proof

- Since M = G/H is of finite volume, and G is a group of isometries, there is a finite G-invariant measure on M.
- Apply Mostow-Borel Density Theorem with representation $\rho = Ad_g$:

The group $\overline{\mathrm{Ad}_{g}(H)}^{\mathrm{z}}$ contains a uniform normal subgroup of $\overline{\mathrm{Ad}_{g}(G)}^{\mathrm{z}}$.

• Unipotent one-parameter subgroups of $\overline{\operatorname{Ad}_{\mathscr{G}}(G)}^{z}$ are unbounded, hence not contained in any compact subgroup.

It follows that every unipotent element of $\overline{\mathrm{Ad}_g(G)}^z$ is contained in $\overline{\mathrm{Ad}_g(H)}^z$.

M = G/H is a pseudo-Riemannian homogeneous space of finite volume, and $G \subseteq \text{Iso}(M, g)$. Let $\langle \cdot, \cdot \rangle$ denote the bilinear form on g induced by g.

Theorem (Baues, Globke & Zeghib, 2018)

The induced symmetric bilinear form $\langle \cdot, \cdot \rangle$ on g is nil-invariant.

Proof

- Since M = G/H is of finite volume, and G is a group of isometries, there is a finite G-invariant measure on M.
- Apply Mostow-Borel Density Theorem with representation $\rho = \operatorname{Ad}_{g}$:

The group $\overline{\mathrm{Ad}_{\mathscr{G}}(H)}^{z}$ contains a uniform normal subgroup of $\overline{\mathrm{Ad}_{\mathscr{G}}(G)}^{z}$.

• Unipotent one-parameter subgroups of $\overline{\mathrm{Ad}_{\mathscr{G}}(G)}^{\mathbb{Z}}$ are unbounded, hence not contained in any compact subgroup.

It follows that every unipotent element of $\overline{\mathrm{Ad}_g(G)}^z$ is contained in $\overline{\mathrm{Ad}_g(H)}^z$.

• Since $\langle \cdot, \cdot \rangle$ is invariant by all $A \in \operatorname{Ad}_{\mathcal{G}}(H)$, and $\langle \cdot, \cdot \rangle$ is a polynomial expression in \mathcal{G} , it follows that $\langle \cdot, \cdot \rangle$ is invariant by all $A \in \overline{\operatorname{Ad}_{\mathcal{G}}(H)}^{\mathbb{Z}}$.

M = G/H is a pseudo-Riemannian homogeneous space of finite volume, and $G \subseteq \text{Iso}(M, g)$. Let $\langle \cdot, \cdot \rangle$ denote the bilinear form on g induced by g.

Theorem (Baues, Globke & Zeghib, 2018)

The induced symmetric bilinear form $\langle \cdot, \cdot \rangle$ on g is nil-invariant.

Proof

- Since M = G/H is of finite volume, and G is a group of isometries, there is a finite G-invariant measure on M.
- Apply Mostow-Borel Density Theorem with representation $\rho = Ad_{\mathcal{G}}$:

The group $\overline{\mathrm{Ad}_{\mathscr{G}}(H)}^{z}$ contains a uniform normal subgroup of $\overline{\mathrm{Ad}_{\mathscr{G}}(G)}^{z}$.

• Unipotent one-parameter subgroups of $\overline{\mathrm{Ad}_{\mathscr{G}}(G)}^{z}$ are unbounded, hence not contained in any compact subgroup.

It follows that every unipotent element of $\overline{\mathrm{Ad}_g(G)}^z$ is contained in $\overline{\mathrm{Ad}_g(H)}^z$.

- Since $\langle \cdot, \cdot \rangle$ is invariant by all $A \in \operatorname{Ad}_{\mathcal{G}}(H)$, and $\langle \cdot, \cdot \rangle$ is a polynomial expression in \mathcal{G} , it follows that $\langle \cdot, \cdot \rangle$ is invariant by all $A \in \overline{\operatorname{Ad}_{\mathcal{G}}(H)}^{\mathbb{Z}}$.
- Together, this means every unipotent element in $\overline{\operatorname{Ad}_{\mathscr{G}}(G)}^{\mathbb{Z}}$ is an isometry for $\langle \cdot, \cdot \rangle$.

M = G/H is a pseudo-Riemannian homogeneous space of finite volume, and $G \subseteq \text{Iso}(M, g)$. Let $\langle \cdot, \cdot \rangle$ denote the bilinear form on g induced by g.

Theorem (Baues, Globke & Zeghib, 2018)

The induced symmetric bilinear form $\langle \cdot, \cdot \rangle$ on g is nil-invariant.

Proof

- Since M = G/H is of finite volume, and G is a group of isometries, there is a finite G-invariant measure on M.
- Apply Mostow-Borel Density Theorem with representation $\rho = \operatorname{Ad}_{g}$:

The group $\overline{\mathrm{Ad}_{\mathscr{G}}(H)}^{z}$ contains a uniform normal subgroup of $\overline{\mathrm{Ad}_{\mathscr{G}}(G)}^{z}$.

• Unipotent one-parameter subgroups of $\overline{\mathrm{Ad}_{\mathscr{G}}(G)}^{z}$ are unbounded, hence not contained in any compact subgroup.

It follows that every unipotent element of $\overline{\mathrm{Ad}_{g}(G)}^{\mathbb{Z}}$ is contained in $\overline{\mathrm{Ad}_{g}(H)}^{\mathbb{Z}}$.

• Since $\langle \cdot, \cdot \rangle$ is invariant by all $A \in \operatorname{Ad}_{\mathcal{G}}(H)$, and $\langle \cdot, \cdot \rangle$ is a polynomial expression in \mathcal{G} , it follows that $\langle \cdot, \cdot \rangle$ is invariant by all $A \in \operatorname{Ad}_{\mathcal{G}}(H)^{\mathbb{Z}}$.

• Together, this means every unipotent element in $\overline{\operatorname{Ad}_{\mathscr{G}}(G)}^{z}$ is an isometry for $\langle \cdot, \cdot \rangle$. This implies that every nilpotent element in the Lie algebra of $\overline{\operatorname{Ad}_{\mathscr{G}}(G)}^{z}$ is skew-symmetric for $\langle \cdot, \cdot \rangle$.

Theorem (Baues & Globke, 2015)

Let g be a solvable Lie algebra with a nil-invariant symmetric bilinear form $\langle \cdot, \cdot \rangle$. Then $\langle \cdot, \cdot \rangle$ is invariant.

Theorem (Baues & Globke, 2015)

Let *g* be a solvable Lie algebra with a nil-invariant symmetric bilinear form $\langle \cdot, \cdot \rangle$. Then $\langle \cdot, \cdot \rangle$ is invariant.

Proof

• For $x \in g$, let $g(x, \lambda)$ denote the generalized eigenspace of ad(x) for eigenvalue $\lambda \in \mathbb{C}$.

Theorem (Baues & Globke, 2015)

Let *g* be a solvable Lie algebra with a nil-invariant symmetric bilinear form $\langle \cdot, \cdot \rangle$. Then $\langle \cdot, \cdot \rangle$ is invariant.

Proof

 For x ∈ g, let g(x, λ) denote the generalized eigenspace of ad(x) for eigenvalue λ ∈ C. Then g = g(x, 0) ⊕ g(x, 0)' with g(x, 0)' = ⊕_{λ≠0} g(x, λ).

Theorem (Baues & Globke, 2015)

Let g be a solvable Lie algebra with a nil-invariant symmetric bilinear form $\langle \cdot, \cdot \rangle$. Then $\langle \cdot, \cdot \rangle$ is invariant.

Proof

- For x ∈ g, let g(x, λ) denote the generalized eigenspace of ad(x) for eigenvalue λ ∈ C. Then g = g(x, 0) ⊕ g(x, 0)' with g(x, 0)' = ⊕_{λ≠0} g(x, λ).
- Fact: $[g(x,\lambda), g(x,\mu)] \subseteq g(x,\lambda+\mu)$.

Fact: If *h* is a regular element, then g(h, 0) is a Cartan subalgebra of g.

Theorem (Baues & Globke, 2015)

Let g be a solvable Lie algebra with a nil-invariant symmetric bilinear form $\langle \cdot, \cdot \rangle$. Then $\langle \cdot, \cdot \rangle$ is invariant.

- For x ∈ g, let g(x, λ) denote the generalized eigenspace of ad(x) for eigenvalue λ ∈ C. Then g = g(x, 0) ⊕ g(x, 0)' with g(x, 0)' = ⊕_{λ≠0} g(x, λ).
- Fact: $[g(x, \lambda), g(x, \mu)] \subseteq g(x, \lambda + \mu)$. Fact: If *h* is a regular element, then g(h, 0) is a Cartan subalgebra of *g*.
- Let *n* denote the nilradical of *g*. We already know that $\langle \cdot, \cdot \rangle$ is *n*-invariant.

Theorem (Baues & Globke, 2015)

Let g be a solvable Lie algebra with a nil-invariant symmetric bilinear form $\langle \cdot, \cdot \rangle$. Then $\langle \cdot, \cdot \rangle$ is invariant.

- For x ∈ g, let g(x, λ) denote the generalized eigenspace of ad(x) for eigenvalue λ ∈ C. Then g = g(x, 0) ⊕ g(x, 0)' with g(x, 0)' = ⊕_{λ≠0} g(x, λ).
- Fact: $[g(x, \lambda), g(x, \mu)] \subseteq g(x, \lambda + \mu)$. Fact: If *h* is a regular element, then g(h, 0) is a Cartan subalgebra of *g*.
- Let *n* denote the nilradical of *g*. We already know that $\langle \cdot, \cdot \rangle$ is *n*-invariant.
- The Cartan subalgebra g(h, 0) is nilpotent (by definition).
 Hence (·, ·) restricted to g(h, 0) is invariant.

Theorem (Baues & Globke, 2015)

Let g be a solvable Lie algebra with a nil-invariant symmetric bilinear form $\langle \cdot, \cdot \rangle$. Then $\langle \cdot, \cdot \rangle$ is invariant.

- For x ∈ g, let g(x, λ) denote the generalized eigenspace of ad(x) for eigenvalue λ ∈ C. Then g = g(x, 0) ⊕ g(x, 0)' with g(x, 0)' = ⊕_{λ≠0} g(x, λ).
- Fact: $[g(x, \lambda), g(x, \mu)] \subseteq g(x, \lambda + \mu)$. Fact: If *h* is a regular element, then g(h, 0) is a Cartan subalgebra of *g*.
- Let *n* denote the nilradical of *g*. We already know that $\langle \cdot, \cdot \rangle$ is *n*-invariant.
- The Cartan subalgebra g(h, 0) is nilpotent (by definition).
 Hence ⟨·, ·⟩ restricted to g(h, 0) is invariant.
- Compute: For $x \in g$, the restriction of ad(x) to $\mathbb{R}x + n$ is skew-symmetric and $x \perp [x, n]$.

Theorem (Baues & Globke, 2015)

Let g be a solvable Lie algebra with a nil-invariant symmetric bilinear form $\langle \cdot, \cdot \rangle$. Then $\langle \cdot, \cdot \rangle$ is invariant.

- For x ∈ g, let g(x, λ) denote the generalized eigenspace of ad(x) for eigenvalue λ ∈ C. Then g = g(x, 0) ⊕ g(x, 0)' with g(x, 0)' = ⊕_{λ≠0} g(x, λ).
- Fact: $[g(x, \lambda), g(x, \mu)] \subseteq g(x, \lambda + \mu)$. Fact: If *h* is a regular element, then g(h, 0) is a Cartan subalgebra of *g*.
- Let *n* denote the nilradical of *g*. We already know that $\langle \cdot, \cdot \rangle$ is *n*-invariant.
- The Cartan subalgebra g(h, 0) is nilpotent (by definition).
 Hence ⟨·, ·⟩ restricted to g(h, 0) is invariant.
- Compute: For $x \in g$, the restriction of ad(x) to $\mathbb{R}x + n$ is skew-symmetric and $x \perp [x, n]$.
- Since g is solvable, $g(h, 0)' \subseteq n$ (in fact, g acts trivially on g/[g, g]). Hence $[h, g(h, 0)'] \subseteq [h, n]$ and so $h \perp g(h, 0)'$.

Theorem (Baues & Globke, 2015)

Let g be a solvable Lie algebra with a nil-invariant symmetric bilinear form $\langle \cdot, \cdot \rangle$. Then $\langle \cdot, \cdot \rangle$ is invariant.

- For x ∈ g, let g(x, λ) denote the generalized eigenspace of ad(x) for eigenvalue λ ∈ C. Then g = g(x, 0) ⊕ g(x, 0)' with g(x, 0)' = ⊕_{λ≠0} g(x, λ).
- Fact: $[g(x, \lambda), g(x, \mu)] \subseteq g(x, \lambda + \mu)$. Fact: If *h* is a regular element, then g(h, 0) is a Cartan subalgebra of *g*.
- Let *n* denote the nilradical of *g*. We already know that $\langle \cdot, \cdot \rangle$ is *n*-invariant.
- The Cartan subalgebra g(h, 0) is nilpotent (by definition).
 Hence ⟨·, ·⟩ restricted to g(h, 0) is invariant.
- Compute: For $x \in g$, the restriction of ad(x) to $\mathbb{R}x + n$ is skew-symmetric and $x \perp [x, n]$.
- Since g is solvable, $g(h, 0)' \subseteq n$ (in fact, g acts trivially on g/[g, g]). Hence $[h, g(h, 0)'] \subseteq [h, n]$ and so $h \perp g(h, 0)'$.
- An argument using Zariski openness of the set of regular elements now implies g(h, 0) ⊥ g(h, 0)'.

Theorem (Baues & Globke, 2015)

Let g be a solvable Lie algebra with a nil-invariant symmetric bilinear form $\langle \cdot, \cdot \rangle$. Then $\langle \cdot, \cdot \rangle$ is invariant.

- For x ∈ g, let g(x, λ) denote the generalized eigenspace of ad(x) for eigenvalue λ ∈ C. Then g = g(x, 0) ⊕ g(x, 0)' with g(x, 0)' = ⊕_{λ≠0} g(x, λ).
- Fact: $[g(x, \lambda), g(x, \mu)] \subseteq g(x, \lambda + \mu)$. Fact: If *h* is a regular element, then g(h, 0) is a Cartan subalgebra of *g*.
- Let *n* denote the nilradical of *g*. We already know that $\langle \cdot, \cdot \rangle$ is *n*-invariant.
- The Cartan subalgebra g(h, 0) is nilpotent (by definition).
 Hence ⟨·, ·⟩ restricted to g(h, 0) is invariant.
- Compute: For $x \in g$, the restriction of ad(x) to $\mathbb{R}x + n$ is skew-symmetric and $x \perp [x, n]$.
- Since g is solvable, $g(h, 0)' \subseteq n$ (in fact, g acts trivially on g/[g, g]). Hence $[h, g(h, 0)'] \subseteq [h, n]$ and so $h \perp g(h, 0)'$.
- An argument using Zariski openness of the set of regular elements now implies g(h, 0) ⊥ g(h, 0)'.
- Together, any x ∈ g(h, 0) preserves ⟨·, ·⟩ on g(h, 0)', and since g = g(h, 0) + n, it follows that ⟨·, ·⟩ is invariant on g.

Let *g* be a Lie algebra with a nil-invariant symmetric bilinear form $\langle \cdot, \cdot \rangle$, and consider a Levi decomposition

 $g = (k \times s) \ltimes r,$

Let g be a Lie algebra with a nil-invariant symmetric bilinear form $\langle \cdot, \cdot \rangle$, and consider a Levi decomposition

$$g = (k \times s) \ltimes r,$$

where

- *r* is the solvable radical of *g*,
- k is a semisimple subalgebra of compact type,
- s is a semisimple subalgebra without ideals of compact type.

Let g be a Lie algebra with a nil-invariant symmetric bilinear form $\langle \cdot, \cdot \rangle$, and consider a Levi decomposition

$$g = (k \times s) \ltimes r,$$

where

- *r* is the solvable radical of *g*,
- k is a semisimple subalgebra of compact type,
- s is a semisimple subalgebra without ideals of compact type.

Theorem (Baues, Globke & Zeghib, 2018)

Let *g* be a Lie algebra with a nil-invariant symmetric bilinear form $\langle \cdot, \cdot \rangle$. Then:

- $\langle \cdot, \cdot \rangle$ restricted to $s \ltimes r$ is invariant by the adjoint action of all of g.
- **2** $\langle \cdot, \cdot \rangle$ is invariant by the adjoint action of $s \ltimes r$.

Let g be a Lie algebra with a nil-invariant symmetric bilinear form $\langle \cdot, \cdot \rangle$, and consider a Levi decomposition

$$g = (k \times s) \ltimes r,$$

where

- *r* is the solvable radical of *g*,
- k is a semisimple subalgebra of compact type,
- s is a semisimple subalgebra without ideals of compact type.

Theorem (Baues, Globke & Zeghib, 2018)

Let *g* be a Lie algebra with a nil-invariant symmetric bilinear form $\langle \cdot, \cdot \rangle$. Then:

- $\langle \cdot, \cdot \rangle$ restricted to $s \ltimes r$ is invariant by the adjoint action of all of g.
- **2** $\langle \cdot, \cdot \rangle$ is invariant by the adjoint action of $s \ltimes r$.

Proof

• For $\boldsymbol{\mathcal{P}}$, invariance follows from the previous theorem.

Let g be a Lie algebra with a nil-invariant symmetric bilinear form $\langle \cdot, \cdot \rangle$, and consider a Levi decomposition

$$g = (k \times s) \ltimes r,$$

where

- *r* is the solvable radical of *g*,
- k is a semisimple subalgebra of compact type,
- s is a semisimple subalgebra without ideals of compact type.

Theorem (Baues, Globke & Zeghib, 2018)

Let *g* be a Lie algebra with a nil-invariant symmetric bilinear form $\langle \cdot, \cdot \rangle$. Then:

- $\langle \cdot, \cdot \rangle$ restricted to $s \ltimes r$ is invariant by the adjoint action of all of g.
- **2** $\langle \cdot, \cdot \rangle$ is invariant by the adjoint action of $s \ltimes r$.

- For r, invariance follows from the previous theorem.
- For s-invariance, essentially use the fact that s is generated by ad-nilpotent elements.

Let g be a Lie algebra with a nil-invariant symmetric bilinear form $\langle \cdot, \cdot \rangle$, and consider a Levi decomposition

$$g = (k \times s) \ltimes r,$$

where

- *r* is the solvable radical of *g*,
- k is a semisimple subalgebra of compact type,
- s is a semisimple subalgebra without ideals of compact type.

Theorem (Baues, Globke & Zeghib, 2018)

Let *g* be a Lie algebra with a nil-invariant symmetric bilinear form $\langle \cdot, \cdot \rangle$. Then:

- $\langle \cdot, \cdot \rangle$ restricted to $s \ltimes r$ is invariant by the adjoint action of all of g.
- **2** $\langle \cdot, \cdot \rangle$ is invariant by the adjoint action of $s \ltimes r$.

- For r, invariance follows from the previous theorem.
- For s-invariance, essentially use the fact that s is generated by ad-nilpotent elements.
- Some more tricky arguments do the rest.

Metric index ≤ 2

Theorem (Baues, Globke & Zeghib 2018)

Let *g* be a Lie algebra with a nil-invariant symmetric bilinear form $\langle \cdot, \cdot \rangle$ of signature (n - s, s) with $s \le 2$. Then:

- $e ker \langle \cdot, \cdot \rangle \subseteq k \times z(r) \text{ and } ker \langle \cdot, \cdot \rangle \cap r = 0.$

Metric index ≤ 2

Theorem (Baues, Globke & Zeghib 2018)

Let *g* be a Lie algebra with a nil-invariant symmetric bilinear form $\langle \cdot, \cdot \rangle$ of signature (n - s, s) with $s \le 2$. Then:

g = k × s × r.
 ker⟨·, ·⟩ ⊂ k × z(r) and ker⟨·, ·⟩ ∩ r = 0.

Application

Classification of Lie algebras with nil-invariant $\langle \cdot, \cdot \rangle$ in signatures (n - 1, 1) and (n - 2, 2).

Metric index ≤ 2

Theorem (Baues, Globke & Zeghib 2018)

Let *g* be a Lie algebra with a nil-invariant symmetric bilinear form $\langle \cdot, \cdot \rangle$ of signature (n - s, s) with $s \le 2$. Then:

• $g = k \times s \times r$. • $\ker\langle \cdot, \cdot \rangle \subseteq k \times \overline{s}(r)$ and $\ker\langle \cdot, \cdot \rangle \cap r = \mathbf{0}$.

Application

Classification of Lie algebras with nil-invariant $\langle \cdot, \cdot \rangle$ in signatures (n - 1, 1) and (n - 2, 2).

Remark

Counterexamples (non-trivial!) show that the above theorem does not generalize to (n - 3, 3).