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@ M has a presentation G/H, where is a Lie group of isometries of M, and H is
a closed subgroup of G that is that stabilizer of some point in M.

e Since G C Iso(M, g), it acts effectively.
This means the subgroup H contains no non-trivial normal subgroup of G.

@ Since G C Iso(M, g), it preserves the finite Riemannian measure on M.

o Special case: M is compact.
The pseudo-Riemannian metric automatically provides a finite measure.



Motivation

‘What is interesting?
@ Spaces with finite G-invariant measure are “almost classifiable” (Gromov).

o The finite invariant measure puts sufficient constraints on G and H to hope for
reasonable structure theorems.

@ Non-compact Lie groups G that preserve a finite measure have interesting
algebraic and dynamical properties.
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First, we look at the consequences of the fact that G preserves a finite measure on the
homogeneous space M (irrespective of the metric g).

Two ingredients:
@ A good notion of density (‘“Zariski density”).

@ Its relation to subgroups of finite covolume.
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Zariski topology

Example
Consider Z as a subset of C. C

@ Z is a “small” subset of C (zero
measure).

@ But every polynomial function on C

is completely determined by its Z
values on Z.

@ Analogous: Any continuous function
is completely determined by its
values on a dense subset.

How can we capture this form of “polynomial density”?

A subset V' C C" is called Zariski-closed if it is the zero set of a family of
polynomials (Hilbert: Finite set of polynomials is enough).

@ Zariski-closed sets have positive codimension.

@ Zariski-open sets are “large”.
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Examples
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@ O(n, C), zero set of equations AAT = I,.
o GL(n — 1, C), zero set of equations det(A)an, — 1 =0, aj, = ap; = 0 for
embedding A4 (‘3 dm(g)_l ) into GL(n, C).

Fact
For any subgroup H of G, its (real) Zariski closure H’, the smallest Zariski-closed
subset in G (in G) containing H, is a (real) algebraic subgroup of G (of G).

We say X C H is Zariski-dense in H if X' =H'inG (orin G).
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Zariski-dense subgroups

We have seen that Z is Zariski-dense in C.
@ What about Z-points in other groups?

o 72" is alattice in C" (i.e. discrete subgroup of finite covolume).
Are lattices in general groups G Zariski-dense?

Theorem (Malcev, 1951)
Let N be a simply connected nilpotent Lie group.

@ N contains a lattice if and only if its Lie algebra has a basis with rational
structure constants.

® Any lattice in N is Zariski-dense.
@ Any lattice I' in N is uniform (the quotient N/I" is compact).

@ Any lattice contains the Z-points of N as a subgroup of finite index.

However, if G is solvable, then there may exist lattmis that are not Zariski-dense.
For example, Z" is a lattice in G = S! x R”, but 7Zn" = R" #G.
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Zariski-dense subgroups

Borel Density Theorem (1960)
Let G be a connected semisimple algebraic group, and let G = Gy,. Assume that G
has no compact factors. Then every lattice in G is Zariski-dense in G.

Example
SL(n, Z) is a lattice in SL(n, R), hence Zariski-dense.
But SL(n, R)/SL(n, Z) is not compact.

A stronger version:

Mostow Density Theorem (1971)

Let G be a connected Lie group and H a closed subgroup, such that there exists a
G -invariant finite measure on G/H . Let o : G — GL(V') a representation, where
dim V' < oo. Then mz contains a uniform normal subgroup of mz.

(Note: H is not necessarily discrete.)



Furstenberg Lemma

‘We want to understand the Borel-Mostow Density Theorem better.
For its proof we need a fundamental result on the dynamics of Lie group actions:



Furstenberg Lemma

‘We want to understand the Borel-Mostow Density Theorem better.

For its proof we need a fundamental result on the dynamics of Lie group actions:

Furstenberg Lemma (1963)
For a finite measure j on the projective space P!, let PGL(n, R), denote the
group of p-preserving projective maps.



Furstenberg Lemma

‘We want to understand the Borel-Mostow Density Theorem better.
For its proof we need a fundamental result on the dynamics of Lie group actions:

Furstenberg Lemma (1963)
For a finite measure j on the projective space P!, let PGL(n, R), denote the
group of p-preserving projective maps. Then

@ cither supp u is not the union of finitely many proper projective subspaces, and
in this case PGL(n, R),, is compact.

@ orsuppp = Vo UV U...UVy with proper projective subspaces V ;.



Furstenberg Lemma

‘We want to understand the Borel-Mostow Density Theorem better.
For its proof we need a fundamental result on the dynamics of Lie group actions:

Furstenberg Lemma (1963)
For a finite measure j on the projective space P!, let PGL(n, R), denote the
group of p-preserving projective maps. Then

@ cither supp u is not the union of finitely many proper projective subspaces, and
in this case PGL(n, R),, is compact.

@ orsuppp = Vo UV U...UVy with proper projective subspaces V ;.

Proof

@ Letg,; € GL(n,R), j € IN, with projective images g ; € PGL(n,R) ..



Furstenberg Lemma

‘We want to understand the Borel-Mostow Density Theorem better.
For its proof we need a fundamental result on the dynamics of Lie group actions:

Furstenberg Lemma (1963)
For a finite measure j on the projective space P!, let PGL(n, R), denote the
group of p-preserving projective maps. Then

@ cither supp u is not the union of finitely many proper projective subspaces, and
in this case PGL(n, R),, is compact.

@ orsuppp = Vo UV U...UVy with proper projective subspaces V ;.

Proof
@ Letg,; € GL(n,R), j € IN, with projective images g ; € PGL(n,R) ..

@ We may modify the g ; to have all || g ; || bounded from above and below.



Furstenberg Lemma

‘We want to understand the Borel-Mostow Density Theorem better.
For its proof we need a fundamental result on the dynamics of Lie group actions:

Furstenberg Lemma (1963)
For a finite measure j on the projective space P!, let PGL(n, R), denote the
group of p-preserving projective maps. Then

@ cither supp u is not the union of finitely many proper projective subspaces, and
in this case PGL(n, R),, is compact.

@ orsuppp = Vo UV U...UVy with proper projective subspaces V ;.

Proof
@ Letg,; € GL(n,R), j € IN, with projective images g ; € PGL(n,R) ..
@ We may modify the g ; to have all || g ; || bounded from above and below.

@ Assume (g ;) is not relatively compact. Then g ; — oo, but g; — g € Mat(n, R).



Furstenberg Lemma

‘We want to understand the Borel-Mostow Density Theorem better.
For its proof we need a fundamental result on the dynamics of Lie group actions:

Furstenberg Lemma (1963)
For a finite measure j on the projective space P!, let PGL(n, R), denote the
group of p-preserving projective maps. Then

@ cither supp u is not the union of finitely many proper projective subspaces, and
in this case PGL(n, R),, is compact.

@ orsuppp = Vo UV U...UVy with proper projective subspaces V ;.

Proof
@ Letg,; € GL(n,R), j € IN, with projective images g ; € PGL(n,R) ..
We may modify the g ; to have all || g ; || bounded from above and below.
Assume (g ;) ; is not relatively compact. Then g ; — 0o, but g ; — g € Mat(n, R).
Hence det(g) = 0, but g 7 0 by lower bound. So W =img # 0 # V = kerg.



Furstenberg Lemma

‘We want to understand the Borel-Mostow Density Theorem better.
For its proof we need a fundamental result on the dynamics of Lie group actions:

Furstenberg Lemma (1963)
For a finite measure j on the projective space P!, let PGL(n, R), denote the
group of p-preserving projective maps. Then

@ cither supp u is not the union of finitely many proper projective subspaces, and
in this case PGL(n, R),, is compact.

@ orsuppp = Vo UV U...UVy with proper projective subspaces V ;.

Proof
@ Letg,; € GL(n,R), j € IN, with projective images g ; € PGL(n,R) ..
We may modify the g ; to have all || g ; || bounded from above and below.
Assume (g ;) ; is not relatively compact. Then g ; — 0o, but g ; — g € Mat(n, R).
Hence det(g) = 0, but g 7 0 by lower bound. So W =img # 0 # V = kerg.

Split measure 1t = (11 + 4> with supp ;o1  V and supp juo C P\ V.



Furstenberg Lemma

‘We want to understand the Borel-Mostow Density Theorem better.
For its proof we need a fundamental result on the dynamics of Lie group actions:

Furstenberg Lemma (1963)
For a finite measure j on the projective space P!, let PGL(n, R), denote the
group of p-preserving projective maps. Then

@ cither supp u is not the union of finitely many proper projective subspaces, and
in this case PGL(n, R),, is compact.

@ orsuppp = Vo UV U...UVy with proper projective subspaces V ;.

Proof
@ Letg,; € GL(n,R), j € IN, with projective images g ; € PGL(n,R) ..
We may modify the g ; to have all || g ; || bounded from above and below.
Assume (g ;) ; is not relatively compact. Then g ; — 0o, but g ; — g € Mat(n, R).
Hence det(g) = 0, but g 7 0 by lower bound. So W =img # 0 # V = kerg.

Split measure 1t = (11 + 4> with supp ;o1  V and supp juo C P\ V.

Use g ; -invariance of 4 to show that supp jto € w.



Furstenberg Lemma

‘We want to understand the Borel-Mostow Density Theorem better.
For its proof we need a fundamental result on the dynamics of Lie group actions:

Furstenberg Lemma (1963)
For a finite measure j on the projective space P!, let PGL(n, R), denote the
group of p-preserving projective maps. Then

@ cither supp u is not the union of finitely many proper projective subspaces, and
in this case PGL(n, R),, is compact.

@ orsuppp = Vo UV U...UVy with proper projective subspaces V ;.

Proof
@ Letg,; € GL(n,R), j € IN, with projective images g ; € PGL(n,R) ..
We may modify the g ; to have all || g ; || bounded from above and below.
Assume (g ;) ; is not relatively compact. Then g ; — 0o, but g ; — g € Mat(n, R).
Hence det(g) = 0, but g 7 0 by lower bound. So W =img # 0 # V = kerg.

Split measure 1t = (11 + 4> with supp ;o1  V and supp juo C P\ V.

Use g ; -invariance of 4 to show that supp jto € W .Hencesuppiu CVUW. O



Proof of Borel-Mostow Density Theorem

Mostow Density Theorem (1971)

Let G be a connected Lie group and H a closed subgroup, such that there exists a
G -invariant finite measure on G/H . Let o : G — GL(V') a representation, where
dim V' < oo. Then mz contains a uniform normal subgroup of mz.



Proof of Borel-Mostow Density Theorem

Mostow Density Theorem (1971)

Let G be a connected Lie group and H a closed subgroup, such that there exists a
G -invariant finite measure on G/H . Let o : G — GL(V') a representation, where
dim V' < oo. Then mz contains a uniform normal subgroup of mz.

Proof
@ For simplicity, assume G € GL(V), o0 = id. Write G* = G . H*=H"



Proof of Borel-Mostow Density Theorem

Mostow Density Theorem (1971)

Let G be a connected Lie group and H a closed subgroup, such that there exists a
G -invariant finite measure on G/H . Let o : G — GL(V') a representation, where
dim V' < oo. Then mz contains a uniform normal subgroup of mz.

Proof
@ For simplicity, assume G € GL(V), o0 = id. Write G* = G . H*=H"

@ Chevalley Theorem: G * has a faithful algebraic representation ¢ : G* — GL(W),
dim W < oo, such that H* = G}, for some w € W.



Proof of Borel-Mostow Density Theorem

Mostow Density Theorem (1971)

Let G be a connected Lie group and H a closed subgroup, such that there exists a
G -invariant finite measure on G/H . Let o : G — GL(V') a representation, where
dim V' < oo. Then mz contains a uniform normal subgroup of mz.

Proof
@ For simplicity, assume G € GL(V), o0 = id. Write G* = G . H*=H"
@ Chevalley Theorem: G * has a faithful algebraic representation ¢ : G* — GL(W),
dim W < oo, such that H* = G}, for some w € W.
Then H* = G for the induced representation @ : G* — PGL(W) on P(W).



Proof of Borel-Mostow Density Theorem

Mostow Density Theorem (1971)

Let G be a connected Lie group and H a closed subgroup, such that there exists a
G -invariant finite measure on G/H . Let o : G — GL(V') a representation, where
dim V' < oo. Then mz contains a uniform normal subgroup of mz.

Proof
@ For simplicity, assume G € GL(V), o0 = id. Write G* = G . H*=H"

@ Chevalley Theorem: G * has a faithful algebraic representation ¢ : G* — GL(W),
dim W < oo, such that H* = G}, for some w € W.

Then H* = G for the induced representation @ : G* — PGL(W) on P(W).
@ G™/H™* embeds equivariantly into IP(W) via the orbit map at w.



Proof of Borel-Mostow Density Theorem

Mostow Density Theorem (1971)

Let G be a connected Lie group and H a closed subgroup, such that there exists a
G -invariant finite measure on G/H . Let o : G — GL(V') a representation, where
dim V' < oo. Then mz contains a uniform normal subgroup of mz.

Proof
@ For simplicity, assume G € GL(V), o0 = id. Write G* = G . H*=H"

@ Chevalley Theorem: G * has a faithful algebraic representation ¢ : G* — GL(W),
dim W < oo, such that H* = G}, for some w € W.

Then H* = G for the induced representation @ : G* — PGL(W) on P(W).
@ G™/H™* embeds equivariantly into IP(W) via the orbit map at w.
@ Thus w pushes forward to a finite G-invariant measure (45 on P(W).

o o A ~Z o o o
Fact: G;’; is algebraic. Since G~ = G ™, the measure (L« is even G *-invariant.



Proof of Borel-Mostow Density Theorem

Mostow Density Theorem (1971)

Let G be a connected Lie group and H a closed subgroup, such that there exists a
G -invariant finite measure on G/H . Let o : G — GL(V') a representation, where
dim V' < oo. Then mz contains a uniform normal subgroup of mz.

Proof
@ For simplicity, assume G € GL(V), o0 = id. Write G* = G . H*=H"

@ Chevalley Theorem: G * has a faithful algebraic representation ¢ : G* — GL(W),
dim W < oo, such that H* = G}, for some w € W.

Then H* = G for the induced representation @ : G* — PGL(W) on P(W).
@ G™/H™* embeds equivariantly into IP(W) via the orbit map at w.
@ Thus w pushes forward to a finite G-invariant measure (45 on P(W).

Fact: G, is algebraic. Since G’ = G*, the measure jix is even G *-invariant.

o Furstenberg Lemma: PGL(W ), is compact.



Proof of Borel-Mostow Density Theorem

Mostow Density Theorem (1971)

Let G be a connected Lie group and H a closed subgroup, such that there exists a
G -invariant finite measure on G/H . Let o : G — GL(V') a representation, where
dim V' < oo. Then mz contains a uniform normal subgroup of mz.

Proof
@ For simplicity, assume G € GL(V), o0 = id. Write G* = G . H*=H"

@ Chevalley Theorem: G * has a faithful algebraic representation ¢ : G* — GL(W),
dim W < oo, such that H* = G}, for some w € W.

Then H* = G for the induced representation @ : G* — PGL(W) on P(W).
@ G™/H™* embeds equivariantly into IP(W) via the orbit map at w.
@ Thus w pushes forward to a finite G-invariant measure [t+ on P(W).

Fact: G, is algebraic. Since G’ = G*, the measure jix is even G *-invariant.

o Furstenberg Lemma: PGL(W ), is compact.
0(G™) is closed in PGL(W),, hence compact.



Proof of Borel-Mostow Density Theorem

Mostow Density Theorem (1971)

Let G be a connected Lie group and H a closed subgroup, such that there exists a
G -invariant finite measure on G/H . Let o : G — GL(V') a representation, where
dim V' < oo. Then mz contains a uniform normal subgroup of mz.

Proof
@ For simplicity, assume G € GL(V), o0 = id. Write G* = G . H*=H"

@ Chevalley Theorem: G * has a faithful algebraic representation ¢ : G* — GL(W),
dim W < oo, such that H* = G}, for some w € W.

Then H* = G for the induced representation @ : G* — PGL(W) on P(W).
@ G™/H™* embeds equivariantly into IP(W) via the orbit map at w.
@ Thus w pushes forward to a finite G-invariant measure (45 on P(W).

Fact: G, is algebraic. Since G’ = G*, the measure jix is even G *-invariant.

o Furstenberg Lemma: PGL(W ), is compact.
0(G™) is closed in PGL(W),, hence compact.

@ Hence ker(G™ — 0(G*) — 9(G*)) is a uniform normal subgroup.



Proof of Borel-Mostow Density Theorem

Mostow Density Theorem (1971)

Let G be a connected Lie group and H a closed subgroup, such that there exists a
G -invariant finite measure on G/H . Let o : G — GL(V') a representation, where
dim V' < oo. Then mz contains a uniform normal subgroup of mz.

Proof
@ For simplicity, assume G € GL(V), o0 = id. Write G* = G . H*=H"

@ Chevalley Theorem: G * has a faithful algebraic representation ¢ : G* — GL(W),
dim W < oo, such that H* = G}, for some w € W.

Then H* = G for the induced representation @ : G* — PGL(W) on P(W).
@ G™/H™* embeds equivariantly into IP(W) via the orbit map at w.
@ Thus w pushes forward to a finite G-invariant measure (45 on P(W).

Fact: G, is algebraic. Since G’ = G*, the measure jix is even G *-invariant.

o Furstenberg Lemma: PGL(W ), is compact.
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Recall the geometric motivation:
G/H is a pseudo-Riemannian homogeneous space of finite volume, G C Iso(M, g).

Now we focus on the consequences of G being an isometry group on M .

Ingredients:
@ Metric g induces a symmetric bilinear form (-, -) on the Lie algebra ¢ of G.
@ Density properties of the stabilizer H imply the peculiar nil-invariance of (-, -).

@ Understand how nil-invariance and the usual invariance of bilinear forms on Lie
algebras are related.
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Invariant bilinear forms

Let ¢ be a (finite-dimensional real) Lie algebra, (-, -) a symmetric bilinear form on g,
and # a subalgebra of g.

@ The form (., -) is called #-invariant, if forall h € A, x,y € ¢,

(B, x], y) = —(x, [A, y]).

In other words, ad(%) is skew-symmetric for (-, -).
o If (-, ) is g-invariant, we simply call (-, -) invariant.
@ The term “invariant” comes from differentiating the corresponding property for

groups,
(exp(tad(h))x, exp(tad(h))y) = (x,y).

Example
On every Lie algebra, the Killing form « is invariant,

k(x,y) = tr(ad(x)ad(y)).
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Lie algebras with invariant bilinear forms

@ On an abelian Lie algebra, every bilinear form is invariant.

@ Let s be a semisimple Lie algebra. Then the Killing form « is non-degenerate.
Fact: Every invariant bilinear form on simple 4 is a multiple of «.
Fact: s = £ @ p2, where £ is a semisimple subalgebra of compact type (k is
negative definite) and p is a linear subspace on which « is positive definite.

@ Let £3 denote Heisenberg algebra, given by generators x, y, z with relations
[x.y] = z.
The oscillator algebra is the extension 0scq4 = R x 13 of #3 by Ra,
la,x] ==y, la.y]=x.
An invariant Lorentzian scalar product (-, -) on 04c4 is defined by
(a,z) =1, (x,x)=(y,y)=1, ala, z1lz, x,yla,z.

These (and higher-dimensional analogues) are the only non-abelian solvable Lie
algebras with invariant Lorentzian scalar product.
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Double extensions

The structure of Lie algebras admitting an invariant scalar product -, -)
(non-degenerate) was described by Medina and Revoy (1985) as follows.

Let g, & be Lie algebras with invariant scalar products {-,-)g, (-, ") 4.

@ Letd : b — der(g) N s0(g, (-, )g) be arepresentation by skew-symmetric
derivations of (g, (-,-)¢).

@ Let 6™ be the dual space of & and define : ¢ x ¢ — £* by
n(x1, x2)(b) = (8(b)x1, x2),

X1,X2 € ¢,b € b.
oOng=4dg® L, define a Lie product

[ ®1,x1,B1), (b2,x2,62) 13
= ([h].bz]b, [x1,x2]g + 8(b1)x2 — 8(b2)x1, ad™(h2)B1 —ad™ (b1)fa + ;)(,\"1..\’2))

and an invariant bilinear form

((b1,x1,B1), (b2, x2,2) )53 = {x1,x2)g + (b1,b2) s + B1(b2) — P2(b1).
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Double extensions
Example

The oscillator algebra 0sc4 is a double extension of ¢ = R2, (-, g = (- )std> bY
b = Ra, 6t* = Rz, with

sw=(7 7). ==

Theorem (Medina & Revoy, 1985)
@ Every Lie algebra with an invariant scalar product arises from double extensions
and direct sums of simple and abelian Lie algebras.
@ Every solvable Lie algebra with an invariant scalar product arises from double
extensions and direct sums of abelian Lie algebras ¢ by one-dimensional
algebras b.

Classification (Kath & Olbrich, 2003-2006)
@ a general classification scheme for Lie algebras with invariant scalar product
(however, somewhat impractical for concrete application),
@ complete classifications for metric signature (n — 2,2) and (n — 3, 3),
o complete classification for nilpotent Lie algebras with invariant scalar product
in dimension < 10.
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Recall our original geometric motivation:

G/H is a pseudo-Riemannian homogeneous space of finite volume, G < Iso(M, g).

The indefinite metric g on M pulls back to a symmetric bilinear tensor gg on G.

Restricting to T, G yields a symmetric bilinear form (-, -) on the Lie algebra ¢ of G.

@ In general, (-, -) is degenerate.

o ker(-,-) ={x eg|(x,y) =0forall y € ¢} = 4, the Lie algebra of the
stabilizer H .

@ (-,-) is H -invariant (and thus /-invariant),
(Adg(h)x,Adg(h)y) = (x,y), forallhe H
(adg (h)x,y) + (x,adg(h)y) =0 forall k' € 4.
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Nil-invariance

‘We introduce another notion of “invariance”.

Let ¢ be a Lie algebra with a symmetric bilinear form (-, -).

@ We say (-, -) is nil-invariant, if

(Ax,y) = —(x,4y), x,y €y,
for every nilpotent operator A in the Lie algebra of the Zariski closure mL
of Ad(G) in GL(g).

@ In particular, if ad(x) = ad(x)ss + ad(x)y is the (additive) Jordan decomposition
of ad(x), then A = ad(x), is skew-symmetric for (-, -) for all x € g.

o In particular, (-, -) is n-invariant for the nilradical » of ¢ (maximal nilpotent
ideal).

o In general, nil-invariant # invariant.
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M = G/H is a pseudo-Riemannian homogeneous space of finite volume, and
G C Iso(M, g). Let (-, -) denote the bilinear form on ¢ induced by g.

Theorem (Baues, Globke & Zeghib, 2018)
The induced symmetric bilinear form (-, -) on ¢ is nil-invariant.
Proof

@ Since M = G/H is of finite volume, and G is a group of isometries, there is a finite
G-invariant measure on M.

@ Apply Mostow-Borel Density Theorem with representation 0 = Adg:
The group Adg (H )" contains a uniform normal subgroup of Adg G)".

@ Unipotent one-parameter subgroups of Adg (G)Z are unbounded, hence not contained in
any compact subgroup.

It follows that every unipotent element of Adg (G)” is contained in Ady (H).

@ Since (-, -) is invariant by all A € Adg (H), and (-, -) is a polynomial expression in ¢, it
follows that (-, -) is invariant by all A € Ady (H)Z

@ Together, this means every unipotent element in Adg (G)Z is an isometry for (-, -).

This implies that every nilpotent element in the Lie algebra of Adg (G)Z is

skew-symmetric for (-, ). O
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@ Let 7 denote the nilradical of ¢. We already know that (-, -) is 72-invariant.

@ The Cartan subalgebra ¢ (%, 0) is nilpotent (by definition).
Hence (-, -) restricted to ¢ (h, 0) is invariant.

@ Compute: For x € ¢, the restriction of ad(x) to Rx + 7 is skew-symmetric and
x L [x,n].

@ Since ¢ is solvable, ¢(h,0)” C n (in fact, ¢ acts trivially on ¢/[¢, ¢]).
Hence [k, ¢(h,0)’] C [h,n] andso & L ¢(h,0) .
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Proof
@ For x € g, let ¢(x, A) denote the generalized eigenspace of ad(x) for eigenvalue A € C.
Then ¢ = ¢(x,0) @ g(x,0)" with ¢(x,0)’ = P, 20 ¢(x, A).

@ Fact: [¢(x,A), g(x, )] C ¢(x, A + ).
Fact: If A is a regular element, then g (k, 0) is a Cartan subalgebra of ¢.

@ Let 7 denote the nilradical of ¢. We already know that (-, -) is 72-invariant.
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Hence (-, -) restricted to ¢ (h, 0) is invariant.

@ Compute: For x € ¢, the restriction of ad(x) to Rx + 7 is skew-symmetric and
x L [x,n].

@ Since ¢ is solvable, ¢(h,0)” C n (in fact, ¢ acts trivially on ¢/[¢, ¢]).
Hence [k, ¢(h,0)’] C [h,n] andso & L ¢(h,0) .

@ An argument using Zariski openness of the set of regular elements now implies
9(h,0) L g(h,0)".

21



Nil-invariant forms on solvable Lie algebras

Theorem (Baues & Globke, 2015)
Let ¢ be a solvable Lie algebra with a nil-invariant symmetric bilinear form (-, -).
Then (-, -) is invariant.
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For x € ¢, let ¢(x, A) denote the generalized eigenspace of ad(x) for eigenvalue A € C.
Then ¢ = ¢(x,0) @ g(x,0)" with ¢(x,0)’ = P, 20 ¢(x, A).

Fact: [¢(x, 1), ¢(x, )] S ¢(x, A + ).

Fact: If A is a regular element, then g (k, 0) is a Cartan subalgebra of ¢.

Let 7 denote the nilradical of ¢. We already know that (-, -) is 72-invariant.

The Cartan subalgebra ¢ (%, 0) is nilpotent (by definition).

Hence (-, -) restricted to ¢ (h, 0) is invariant.

Compute: For x € g, the restriction of ad(x) to Rx + 7 is skew-symmetric and
x L [x,n].

Since ¢ is solvable, ¢(h,0)’ € n (in fact, ¢ acts trivially on ¢/[¢, ¢]).

Hence [k, ¢(h,0)’] C [h,n] andso & L ¢(h,0) .

An argument using Zariski openness of the set of regular elements now implies
¢(h,0) L ¢(h,0).

Together, any x € ¢(h, 0) preserves (-, ) on ¢(h,0)’, and since ¢ = ¢(h,0) + n, it
follows that (-, -) is invariant on ¢. O
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Nil-invariant forms on arbitrary Lie algebras

Let ¢ be a Lie algebra with a nil-invariant symmetric bilinear form (-, -), and consider
a Levi decomposition
g = (kX 3) X7,
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@ s is a semisimple subalgebra without ideals of compact type.
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@ (-,-) is invariant by the adjoint action of s X *.
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Let ¢ be a Lie algebra with a nil-invariant symmetric bilinear form (-, -), and consider

a Levi decomposition
g = (R x38)Xnr,
where
@ 7 is the solvable radical of ¢,
@ 4 is a semisimple subalgebra of compact type,

@ s is a semisimple subalgebra without ideals of compact type.

Theorem (Baues, Globke & Zeghib, 2018)
Let g be a Lie algebra with a nil-invariant symmetric bilinear form (-, -). Then:

@ (-, ) restricted to s x 1 is invariant by the adjoint action of all of g.

@ (-,-) is invariant by the adjoint action of s X *.

Proof

@ For 7, invariance follows from the previous theorem.

@ For 4-invariance, essentially use the fact that 4 is generated by ad-nilpotent elements.

@ Some more tricky arguments do the rest.
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Metric index < 2

Theorem (Baues, Globke & Zeghib 2018)
Let ¢ be a Lie algebra with a nil-invariant symmetric bilinear form (-, -) of signature
(n—s,s) withs < 2. Then:

Q g=Frxsxr
Q ker(-,-) € & x 3(») and ker(-,-) N » = 0.
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Metric index < 2

Theorem (Baues, Globke & Zeghib 2018)
Let ¢ be a Lie algebra with a nil-invariant symmetric bilinear form (-, -) of signature
(n—s,s) withs < 2. Then:

Q g=Frxsxr

Q ker(-,-) € & x 3(») and ker(-,-) N » = 0.

Application
Classification of Lie algebras with nil-invariant (-, -) in signatures (n — 1, 1) and
n—2,2).

Remark

Counterexamples (non-trivial!) show that the above theorem does not generalize to
(n—3,3).
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