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Motivation

Let .M; g/ be a pseudo-Riemannian homogeneous space of finite volume.

The metric tensor g is indefinite. Pointwise, it can be represented by�
In�s 0
0 �Is

�
. Its signature is .n � s; s/, its index is s.

M has a presentation G=H , where is a Lie group of isometries of M , and H is
a closed subgroup of G that is that stabilizer of some point in M .

Since G � Iso.M; g/, it acts effectively.
This means the subgroup H contains no non-trivial normal subgroup of G.

Since G � Iso.M; g/, it preserves the finite Riemannian measure on M .

Special case: M is compact.
The pseudo-Riemannian metric automatically provides a finite measure.
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Motivation

What is interesting?

Spaces with finite G-invariant measure are “almost classifiable” (Gromov).

The finite invariant measure puts sufficient constraints on G and H to hope for
reasonable structure theorems.

Non-compact Lie groups G that preserve a finite measure have interesting
algebraic and dynamical properties.
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Density of subgroups
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Finite G-invariant measure

First, we look at the consequences of the fact that G preserves a finite measure on the
homogeneous space M (irrespective of the metric g).

Two ingredients:

A good notion of density (“Zariski density”).

Its relation to subgroups of finite covolume.
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Zariski topology

Example
Consider Z as a subset of C.

Z is a “small” subset of C (zero
measure).

But every polynomial function on C
is completely determined by its
values on Z.

Analogous: Any continuous function
is completely determined by its
values on a dense subset.

R
<latexit sha1_base64="3SC3dkPjSmPLF8YTE0trdEYEPow="></latexit>

C
<latexit sha1_base64="elXkhItHFTXShDUGrJTJobLLZ6g="></latexit>

Z
<latexit sha1_base64="jURdv6Xn1kTc6zFkHSv7Dqp3TH8="></latexit>

How can we capture this form of “polynomial density”?

A subset V � Cn is called Zariski-closed if it is the zero set of a family of
polynomials (Hilbert: Finite set of polynomials is enough).

Zariski-closed sets have positive codimension.

Zariski-open sets are “large”.

6



Zariski topology

Example
Consider Z as a subset of C.

Z is a “small” subset of C (zero
measure).

But every polynomial function on C
is completely determined by its
values on Z.

Analogous: Any continuous function
is completely determined by its
values on a dense subset.

R
<latexit sha1_base64="3SC3dkPjSmPLF8YTE0trdEYEPow="></latexit>

C
<latexit sha1_base64="elXkhItHFTXShDUGrJTJobLLZ6g="></latexit>

Z
<latexit sha1_base64="jURdv6Xn1kTc6zFkHSv7Dqp3TH8="></latexit>

How can we capture this form of “polynomial density”?

A subset V � Cn is called Zariski-closed if it is the zero set of a family of
polynomials (Hilbert: Finite set of polynomials is enough).

Zariski-closed sets have positive codimension.

Zariski-open sets are “large”.

6



Zariski topology

Example
Consider Z as a subset of C.

Z is a “small” subset of C (zero
measure).

But every polynomial function on C
is completely determined by its
values on Z.

Analogous: Any continuous function
is completely determined by its
values on a dense subset.

R
<latexit sha1_base64="3SC3dkPjSmPLF8YTE0trdEYEPow="></latexit>

C
<latexit sha1_base64="elXkhItHFTXShDUGrJTJobLLZ6g="></latexit>

Z
<latexit sha1_base64="jURdv6Xn1kTc6zFkHSv7Dqp3TH8="></latexit>

How can we capture this form of “polynomial density”?

A subset V � Cn is called Zariski-closed if it is the zero set of a family of
polynomials

(Hilbert: Finite set of polynomials is enough).

Zariski-closed sets have positive codimension.

Zariski-open sets are “large”.

6



Zariski topology

Example
Consider Z as a subset of C.

Z is a “small” subset of C (zero
measure).

But every polynomial function on C
is completely determined by its
values on Z.

Analogous: Any continuous function
is completely determined by its
values on a dense subset.

R
<latexit sha1_base64="3SC3dkPjSmPLF8YTE0trdEYEPow="></latexit>

C
<latexit sha1_base64="elXkhItHFTXShDUGrJTJobLLZ6g="></latexit>

Z
<latexit sha1_base64="jURdv6Xn1kTc6zFkHSv7Dqp3TH8="></latexit>

How can we capture this form of “polynomial density”?

A subset V � Cn is called Zariski-closed if it is the zero set of a family of
polynomials (Hilbert: Finite set of polynomials is enough).

Zariski-closed sets have positive codimension.

Zariski-open sets are “large”.

6



Zariski topology

Example
Consider Z as a subset of C.

Z is a “small” subset of C (zero
measure).

But every polynomial function on C
is completely determined by its
values on Z.

Analogous: Any continuous function
is completely determined by its
values on a dense subset.

R
<latexit sha1_base64="3SC3dkPjSmPLF8YTE0trdEYEPow="></latexit>

C
<latexit sha1_base64="elXkhItHFTXShDUGrJTJobLLZ6g="></latexit>

Z
<latexit sha1_base64="jURdv6Xn1kTc6zFkHSv7Dqp3TH8="></latexit>

How can we capture this form of “polynomial density”?

A subset V � Cn is called Zariski-closed if it is the zero set of a family of
polynomials (Hilbert: Finite set of polynomials is enough).

Zariski-closed sets have positive codimension.

Zariski-open sets are “large”.

6



Algebraic groups

A (linear) algebraic group is a Zariski-closed subgroup G of GL.n;C/.

A real algebraic group G is a group of the form G D G \ GL.n;R/, the real points
of a (complex) algebraic group G.
Complex and real algebraic groups are (very well-behaved) Lie groups.

Examples

SL.n;C/, zero set of equation det.A/ � 1 D 0.

O.n;C/, zero set of equations AA> D In.

GL.n � 1;C/, zero set of equations det.A/ann � 1 D 0, ain D ani D 0 for
embedding A 7!

�
A 0
0 det.A/�1

�
into GL.n;C/.

Fact
For any subgroup H of G, its (real) Zariski closure H

z
, the smallest Zariski-closed

subset in G (in G) containing H , is a (real) algebraic subgroup of G (of G).

We say X � H is Zariski-dense in H if X
z
D H

z
in G (or in G).
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Zariski-dense subgroups

We have seen that Z is Zariski-dense in C.

What about Z-points in other groups?

Z2n is a lattice in Cn (i.e. discrete subgroup of finite covolume).
Are lattices in general groups G Zariski-dense?

Theorem (Malcev, 1951)
Let N be a simply connected nilpotent Lie group.

N contains a lattice if and only if its Lie algebra has a basis with rational
structure constants.

Any lattice in N is Zariski-dense.

Any lattice � in N is uniform (the quotient N=� is compact).

Any lattice contains the Z-points of N as a subgroup of finite index.

However, if G is solvable, then there may exist lattices that are not Zariski-dense.
For example, Zn is a lattice in G D S1 ËRn, but Zn

z
D Rn ¤ G.

8
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Zariski-dense subgroups

Borel Density Theorem (1960)
Let G be a connected semisimple algebraic group, and let G D GıR. Assume that G
has no compact factors.

Then every lattice in G is Zariski-dense in G.

Example
SL.n;Z/ is a lattice in SL.n;R/, hence Zariski-dense.
But SL.n;R/=SL.n;Z/ is not compact.

A stronger version:

Mostow Density Theorem (1971)
Let G be a connected Lie group and H a closed subgroup, such that there exists a
G-invariant finite measure on G=H . Let � W G ! GL.V / a representation, where
dimV <1. Then �.H/

z
contains a uniform normal subgroup of �.G/

z
.

(Note: H is not necessarily discrete.)
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Furstenberg Lemma

We want to understand the Borel-Mostow Density Theorem better.
For its proof we need a fundamental result on the dynamics of Lie group actions:

Furstenberg Lemma (1963)
For a finite measure � on the projective space Pn�1, let PGL.n;R/� denote the
group of �-preserving projective maps. Then

1 either supp� is not the union of finitely many proper projective subspaces, and
in this case PGL.n;R/� is compact.

2 or supp� D V 0 [ V 1 [ : : : [ V k with proper projective subspaces V j .

Proof
Let gj 2 GL.n;R/, j 2 N, with projective images gj 2 PGL.n;R/�.

We may modify the gj to have all kgj k bounded from above and below.

Assume .gj /j is not relatively compact. Then gj !1, but gj ! g 2 Mat.n;R/.

Hence det.g/ D 0, but g ¤ 0 by lower bound. SoW D img ¤ 0 ¤ V D kerg .

Split measure � D �1 C�2 with supp�1 � V and supp�2 � PnnV .

Use gj -invariance of � to show that supp�2 �W . Hence supp� � V [W .
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Proof of Borel-Mostow Density Theorem

Mostow Density Theorem (1971)
Let G be a connected Lie group and H a closed subgroup, such that there exists a
G-invariant finite measure on G=H . Let � W G ! GL.V / a representation, where
dimV <1. Then �.H/

z
contains a uniform normal subgroup of �.G/

z
.

Proof
For simplicity, assumeG � GL.V /, � D id. WriteG� D G

z
,H� DH

z
.

Chevalley Theorem:G� has a faithful algebraic representation % W G�! GL.W /,
dimW <1, such thatH� D G�Rw for some w 2W .
ThenH� D G�

w
for the induced representation % W G�! PGL.W / on P.W /.

G�=H� embeds equivariantly into P.W / via the orbit map at w .

Thus � pushes forward to a finiteG-invariant measure �� on P.W /.

Fact:G�� is algebraic. SinceG
z
D G�, the measure �� is evenG�-invariant.

Furstenberg Lemma: PGL.W /� is compact.
%.G�/ is closed in PGL.W /�, hence compact.

Hence ker.G�! %.G�/! %.G�// is a uniform normal subgroup.

H� � ker.G�! %.G�/! %.G�//.
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Invariance properties of symmetric bilinear forms

12



Induced symmetric bilinear form

Recall the geometric motivation:
G=H is a pseudo-Riemannian homogeneous space of finite volume, G � Iso.M; g/.

Now we focus on the consequences of G being an isometry group on M .

Ingredients:

Metric g induces a symmetric bilinear form h�; �i on the Lie algebra g of G.

Density properties of the stabilizer H imply the peculiar nil-invariance of h�; �i.

Understand how nil-invariance and the usual invariance of bilinear forms on Lie
algebras are related.
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Invariant bilinear forms

Let g be a (finite-dimensional real) Lie algebra, h�; �i a symmetric bilinear form on g,
and h a subalgebra of g.

The form h�; �i is called h-invariant, if for all h 2 h, x; y 2 g,

hŒh; x�; yi D �hx; Œh; y�i:

In other words, ad.h/ is skew-symmetric for h�; �i.

If h�; �i is g-invariant, we simply call h�; �i invariant.

The term “invariant” comes from differentiating the corresponding property for
groups,

hexp.tad.h//x; exp.tad.h//yi D hx; yi:

Example
On every Lie algebra, the Killing form � is invariant,

�.x; y/ D tr.ad.x/ad.y//:
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Lie algebras with invariant bilinear forms

1 On an abelian Lie algebra, every bilinear form is invariant.

2 Let s be a semisimple Lie algebra. Then the Killing form � is non-degenerate.
Fact: Every invariant bilinear form on simple s is a multiple of �.
Fact: s D k˚ p, where k is a semisimple subalgebra of compact type (� is
negative definite) and p is a linear subspace on which � is positive definite.

3 Let h3 denote Heisenberg algebra, given by generators x; y; z with relations

Œx; y� D z:

The oscillator algebra is the extension osc4 D R Ë h3 of h3 byRa,

Œa; x� D �y; Œa; y� D x:

An invariant Lorentzian scalar product h�; �i on osc4 is defined by

ha; zi D 1; hx; xi D hy; yi D 1; a ? a; z ? z; x; y ? a; z:

These (and higher-dimensional analogues) are the only non-abelian solvable Lie
algebras with invariant Lorentzian scalar product.
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Double extensions

The structure of Lie algebras admitting an invariant scalar product h�; �i
(non-degenerate) was described by Medina and Revoy (1985) as follows.

Let g, b be Lie algebras with invariant scalar products h�; �ig, h�; �ib .

Let ı W b ! der.g/ \ so.g; h�; �ig/ be a representation by skew-symmetric
derivations of .g; h�; �ig/.

Let b� be the dual space of b and define � W g � g! b� by

�.x1; x2/.b/ D hı.b/x1; x2i;

x1; x2 2 g; b 2 b.

On Og D b ˚ g˚ b�, define a Lie product

Œ .b1; x1; ˇ1/; .b2; x2; ˇ2/ � Og

D
�
Œb1; b2�b ; Œx1; x2�g C ı.b1/x2 � ı.b2/x1; ad�.b2/ˇ1 � ad�.b1/ˇ2 C �.x1; x2/

�
and an invariant bilinear form

h .b1; x1; ˇ1/; .b2; x2; ˇ2/ i Og D hx1; x2ig C hb1; b2ib C ˇ1.b2/ � ˇ2.b1/:
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Double extensions
Example
The oscillator algebra osc4 is a double extension of g D R2, h�; �ig D h�; �istd, by
b D Ra, b� D Rz, with

ı.a/ D

�
0 �1

1 0

�
; �.x; y/ D z:

Theorem (Medina & Revoy, 1985)
1 Every Lie algebra with an invariant scalar product arises from double extensions

and direct sums of simple and abelian Lie algebras.
2 Every solvable Lie algebra with an invariant scalar product arises from double

extensions and direct sums of abelian Lie algebras g by one-dimensional
algebras b.

Classification (Kath & Olbrich, 2003-2006)
a general classification scheme for Lie algebras with invariant scalar product
(however, somewhat impractical for concrete application),
complete classifications for metric signature .n � 2; 2/ and .n � 3; 3/,
complete classification for nilpotent Lie algebras with invariant scalar product
in dimension � 10.
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The induced bilinear form

Recall our original geometric motivation:
G=H is a pseudo-Riemannian homogeneous space of finite volume, G � Iso.M; g/.

The indefinite metric g on M pulls back to a symmetric bilinear tensor gG on G.

Restricting to TeG yields a symmetric bilinear form h�; �i on the Lie algebra g of G.

In general, h�; �i is degenerate.

kerh�; �i D fx 2 g j hx; yi D 0 for all y 2 gg D h, the Lie algebra of the
stabilizer H .

h�; �i is H -invariant (and thus h-invariant),

hAdg.h/x;Adg.h/yi D hx; yi; for all h 2 H

hadg.h
0/x; yi C hx; adg.h

0/yi D 0 for all h0 2 h:

18
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Nil-invariance

We introduce another notion of “invariance”.

Let g be a Lie algebra with a symmetric bilinear form h�; �i.

We say h�; �i is nil-invariant, if

hAx; yi D �hx;Ayi; x; y 2 g;

for every nilpotent operator A in the Lie algebra of the Zariski closure Ad.G/
z

of Ad.G/ in GL.g/.

In particular, if ad.x/ D ad.x/ssC ad.x/n is the (additive) Jordan decomposition
of ad.x/, then A D ad.x/n is skew-symmetric for h�; �i for all x 2 g.

In particular, h�; �i is n-invariant for the nilradical n of g (maximal nilpotent
ideal).

In general, nil-invariant¤ invariant.
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The induced bilinear form is nil-invariant
M D G=H is a pseudo-Riemannian homogeneous space of finite volume, and
G � Iso.M; g/. Let h�; �i denote the bilinear form on g induced by g.

Theorem (Baues, Globke & Zeghib, 2018)
The induced symmetric bilinear form h�; �i on g is nil-invariant.

Proof
SinceM D G=H is of finite volume, andG is a group of isometries, there is a finite
G-invariant measure onM .

Apply Mostow-Borel Density Theorem with representation % D Adg:

The group Adg.H/
z

contains a uniform normal subgroup of Adg.G/
z
.

Unipotent one-parameter subgroups of Adg.G/
z

are unbounded, hence not contained in
any compact subgroup.

It follows that every unipotent element of Adg.G/
z

is contained in Adg.H/
z
.

Since h�; �i is invariant by all A 2 Adg.H/, and h�; �i is a polynomial expression in g, it
follows that h�; �i is invariant by all A 2 Adg.H/

z
.

Together, this means every unipotent element in Adg.G/
z

is an isometry for h�; �i.

This implies that every nilpotent element in the Lie algebra of Adg.G/
z

is
skew-symmetric for h�; �i.
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Nil-invariant forms on solvable Lie algebras
Theorem (Baues & Globke, 2015)
Let g be a solvable Lie algebra with a nil-invariant symmetric bilinear form h�; �i.
Then h�; �i is invariant.

Proof
For x 2 g, let g.x; �/ denote the generalized eigenspace of ad.x/ for eigenvalue � 2 C.
Then g D g.x; 0/˚ g.x; 0/0 with g.x; 0/0 D

L
�¤0 g.x; �/.

Fact: Œg.x; �/;g.x;�/� � g.x; �C�/.
Fact: If h is a regular element, then g.h; 0/ is a Cartan subalgebra of g.

Let n denote the nilradical of g. We already know that h�; �i is n-invariant.

The Cartan subalgebra g.h; 0/ is nilpotent (by definition).
Hence h�; �i restricted to g.h; 0/ is invariant.

Compute: For x 2 g, the restriction of ad.x/ toRxCn is skew-symmetric and
x ? Œx;n�.

Since g is solvable, g.h; 0/0 � n (in fact, g acts trivially on g=Œg;g�).
Hence Œh;g.h; 0/0� � Œh;n� and so h ? g.h; 0/0.

An argument using Zariski openness of the set of regular elements now implies
g.h; 0/ ? g.h; 0/0.

Together, any x 2 g.h; 0/ preserves h�; �i on g.h; 0/0, and since g D g.h; 0/Cn, it
follows that h�; �i is invariant on g.
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Nil-invariant forms on arbitrary Lie algebras

Let g be a Lie algebra with a nil-invariant symmetric bilinear form h�; �i, and consider
a Levi decomposition

g D .k � s/ Ë r;

where

r is the solvable radical of g,

k is a semisimple subalgebra of compact type,

s is a semisimple subalgebra without ideals of compact type.

Theorem (Baues, Globke & Zeghib, 2018)
Let g be a Lie algebra with a nil-invariant symmetric bilinear form h�; �i. Then:

1 h�; �i restricted to s Ë r is invariant by the adjoint action of all of g.
2 h�; �i is invariant by the adjoint action of s Ë r.

Proof
For r, invariance follows from the previous theorem.

For s-invariance, essentially use the fact that s is generated by ad-nilpotent elements.

Some more tricky arguments do the rest.

22



Nil-invariant forms on arbitrary Lie algebras

Let g be a Lie algebra with a nil-invariant symmetric bilinear form h�; �i, and consider
a Levi decomposition

g D .k � s/ Ë r;

where

r is the solvable radical of g,

k is a semisimple subalgebra of compact type,

s is a semisimple subalgebra without ideals of compact type.

Theorem (Baues, Globke & Zeghib, 2018)
Let g be a Lie algebra with a nil-invariant symmetric bilinear form h�; �i. Then:

1 h�; �i restricted to s Ë r is invariant by the adjoint action of all of g.
2 h�; �i is invariant by the adjoint action of s Ë r.

Proof
For r, invariance follows from the previous theorem.

For s-invariance, essentially use the fact that s is generated by ad-nilpotent elements.

Some more tricky arguments do the rest.

22



Nil-invariant forms on arbitrary Lie algebras

Let g be a Lie algebra with a nil-invariant symmetric bilinear form h�; �i, and consider
a Levi decomposition

g D .k � s/ Ë r;

where

r is the solvable radical of g,

k is a semisimple subalgebra of compact type,

s is a semisimple subalgebra without ideals of compact type.

Theorem (Baues, Globke & Zeghib, 2018)
Let g be a Lie algebra with a nil-invariant symmetric bilinear form h�; �i. Then:

1 h�; �i restricted to s Ë r is invariant by the adjoint action of all of g.
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Metric index � 2

Theorem (Baues, Globke & Zeghib 2018)
Let g be a Lie algebra with a nil-invariant symmetric bilinear form h�; �i of signature
.n � s; s/ with s � 2. Then:

1 g D k � s � r.
2 kerh�; �i � k � z.r/ and kerh�; �i \ r D 0.

Application
Classification of Lie algebras with nil-invariant h�; �i in signatures .n � 1; 1/ and
.n � 2; 2/.

Remark
Counterexamples (non-trivial!) show that the above theorem does not generalize to
.n � 3; 3/.
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