
Information geometry and symmetric spaces

WOLFGANG GLOBKE

Colloquium
Centro de Investigación en Matemáticas, February 2019
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Entropy and information
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Communication model

Information
Source Transmitter Receiver Destination

Noise
Source

+
Message Signal

Received
Signal

Message

Source alphabet A D fa1; : : : ; ang.
Message space A� D fx1x2x3x4 : : : j xi 2 Ag.
Code alphabet C D fc1; : : : ; cbg, code space C�.

Look for good encodings A� ! C� to minimize noise effect and data transfer.
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Shannon’s information

In his 1948 paper “The mathematical theory of communication”,
Claude E. Shannon suggested a by now widely adopted measures of information.

a 2 A appears with probability p.a/.

Information content of a should be logb p.a/
�1:

Intuitively, we measure by linear comparison. . .
but many engineering parameters vary exponentially.
Example:
Increasing a bit-wise (b D 2) representation by one bit
doubles the number of possibilities, but increases the
information by one.

Warning!
Intuitively, we associate some notion of “meaning” with “information”.
But semantic aspects are irrelevant for the engineering problem!
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Shannon’s entropy

If a process produces symbols a 2 A with probabilities p.a/,
can we assign an information to this process?

The entropy of a random variable X with values in A is the expected information,

H.X/ D �
X
a2A

p.a/ logp.a/:
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Optimal codelength

IfH is the entropy of the symbols A, how efficient can an encoding c W A! C� be?

The expected codelength is

L D
X
ai2A

p.ai /length.c.ai //:

Shannon’s Source Coding Theorem
If C� is a prefix code (no codeword prefix of another), then

L � H.X/:
How close can real codes get?
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Optimal codelength

The Huffman code (1952) realizes

H.X/ � L < H.X/C 1:

This allows us to interpret the entropy (base 2) as

H.X/ � expected number of (clever) Yes/No-questions
to determine which ai 2 A was received:

“Proof”

For any conceivable sequence of Yes/No-question,
each question can be interpreted as one bit in an encoding of A.

Huffman code provides a “clever” sequence of questions.
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Divergence

Suppose we have two possible probability distributions p; q for X .

The divergence (a.k.a. Kullback-Leibler distance a.k.a. relative entropy) of X is

D.pkq/ D
X
a2A

p.a/ log
p.a/

q.a/
D Ep.logp � log q/:

It is used as a “distance measure” for probability distributions.

Properties
1 D.pkq/ � 0.
2 D.pkq/ D 0, p D q.
3 D.pkq/ ¤ D.qkp/ in general.
4 D does not satisfy the triangle inequality.
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Divergence

Suppose we are using the wrong distribution q (instead of the correct one p)
in Shannon’s Source Coding Theorem:

H.p/CD.pkq/ � Lp < H.p/CD.pkq/C 1
where Lp is the expected length (under p) of a code constructed under the
assumption of q.

D.pkq/ makes similar appearances in many other identies in information theory.
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Information and statistics
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Parameter estimation problem

Most probability distributions in statistics depend on a finite number of parameters
� D .�1; : : : ; �k/ 2 �.

Examples

The normal distribution N.�; �/ depends on mean �1 D � and variance
�2 D �2.

A distribution on a finite set ˝ D fx1; : : : ; xkg depends on parameters
�1 D p.x1/; : : : ; �k�1 D p.xk�1/.

Standard problem

Assume data is distributed according to a certain type of distribution p.x j �/
on a sample space ˝.

Task: Estimate � 2 � from observed data y1; : : : ;yd 2 ˝.

An estimator O� for � is a function O� W ˝d ! �.
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Example: Maximum likelihood estimator

If y1; : : : ;yd are independent observations, the likelihood of parameter � is

L.� j y1; : : : ;yd / D
dY
iD1

p.yi j �/:

More convenient: the log-likelihood (same maxima as likelihood)

logL.� j y1; : : : ;yd / D
dX
iD1

logp.yi j �/:

The maximum likelihood estimator O� is found by maximizing logL; solve for O� :

grad� logL D 1

L
grad� L D 0:
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Example: Maximum likelihood estimator

Heuristics
The second derivative

Hess� logL D
 
@2 logL
@�i@�j

!
�D O�

determines the curvature of logL at � D O� .
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L
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The larger the curvature, the more precise the estimator is.
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Fisher information

In “On the Mathematical Foundations of Theoretical Stati-
stics” in 1921, Ronald A. Fisher introduced a different con-
cept of information, which is supposed to describe the con-
tribution of a parameter to a model.

For � 2 �, the Fisher information is

g.�/ D �E� Hess� logp.X j �/:

Fact
For i.i.d. random variables X1; : : : ; Xn with joint probability pn.X1; : : : ; Xn j �/,

gn.�/ D ng.�/:

Cramér-Rao inequality (1945)
The variance of any unbiased estimator (i.e. expected error from true valueD 0) has
“lower bound”

Var� . O�/ � g.�/�1

(meaning the Var� . O�/ � g.�/�1 is positive semidefinite).
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Information geometry
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Fisher metric

How exactly does g.�/ D �E� Hess� logp.X j �/ determine the (average)
curvature?

In 1945, C. Radhakrishna Rao observed that the parameter
space � becomes a Riemannian manifold .M; g/ with
Fisher information g.�/ as metric tensor at the point � 2M
(assuming M and g are sufficiently “well-behaved”, which
they usually are).
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Differential geometry dictionary (I)

A differentiable manifold M is a (suitable) topolo-
gical space, covered by a family f.U; '/g (coordi-
nate charts) of open sets U with homeomorphisms
' W U ! Rn.

Coordinate changes '1 ı '�12 are C1-maps.

dimM D n.

Examples

Rn itself.

n-Sphere Sn.

Torus Tn.

Matrix groups GLn.R/, SLn.R/, On.

Well-behaved parameter spaces � in
statistics.

M
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Rn
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

'1
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

U1
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

'2
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

U2
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>
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Differential geometry dictionary (II)

A tangent vector at p 2M is the equivalence class of all C1-curves
c W .�"; "/!M with c.0/ D p and whose first derivatives (in charts) coincide.
The tangent space TpM at p is the space spanned by the tangent vectors at p.

M
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

TpM
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

p
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

A Riemannian manifold .M; g/ is a manifold M with a family g D .gp/p2M of
positive definite scalar products gp in TpM (the Riemannian metric), and gp
depends differentiably on p.
This induces a metric on M by via dist.p; q/ D inf

R b
a k 0.t/k.t/dt .

18



Differential geometry dictionary (II)

A tangent vector at p 2M is the equivalence class of all C1-curves
c W .�"; "/!M with c.0/ D p and whose first derivatives (in charts) coincide.
The tangent space TpM at p is the space spanned by the tangent vectors at p.

M
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

TpM
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

p
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

A Riemannian manifold .M; g/ is a manifold M with a family g D .gp/p2M of
positive definite scalar products gp in TpM (the Riemannian metric), and gp
depends differentiably on p.

This induces a metric on M by via dist.p; q/ D inf
R b
a k 0.t/k.t/dt .

18



Differential geometry dictionary (II)

A tangent vector at p 2M is the equivalence class of all C1-curves
c W .�"; "/!M with c.0/ D p and whose first derivatives (in charts) coincide.
The tangent space TpM at p is the space spanned by the tangent vectors at p.

M
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

TpM
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

p
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

A Riemannian manifold .M; g/ is a manifold M with a family g D .gp/p2M of
positive definite scalar products gp in TpM (the Riemannian metric), and gp
depends differentiably on p.
This induces a metric on M by via dist.p; q/ D inf

R b
a k 0.t/k.t/dt .

18



Differential geometry dictionary (III)

How to compare vectors in different tangent spaces TpM and TqM ?

This is made possible by an affine connection (also covariant derivative) rXY of
vector fields X; Y on M (“directional derivative”).

r defines a parallel transport along curves c W .a; b/!M by rc0.t/X D 0.

“Straight lines” are given by geodesic curves, defind by rc0.t/c
0.t/ D 0.
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Differential geometry dictionary (IV)

Given M with a covariant derivative r, the curvature tensor R of r is defined for
vector fields X; Y;Z on M by

R.X; Y /Z D rXrYZ � rY rXZ � rŒX;Y �Z
where ŒX; Y � is the commutator of vector fields (ŒX; Y � D X ı Y � Y ıX as
differential operators).

We say M (or r) is flat if R D 0 at all p 2M .

A Riemannian manifolds .M; g/ has a canonical Levi-Civita connection rg with

rgg D 0; rg
X
Y � rg

Y
X D ŒX; Y �:

On a Riemannian manifold, the sectional curvature of tangent planes spanned by
Xp ; Yp at p 2M , is

K.Xp ; Yp/ D g.Rg.Xp ; Yp/Xp ; Yp/

area.Xp ; Yp/
:
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Statistical manifolds and relative entropy

A statistical manifold .M; g/ is a manifold M of probability distributions p.� j �/,
with parameters � D .�1; : : : ; �n/ as coordinates, and g is the Fisher metric

g� D �E� Hess� logp.X j �/:

Define an affine connection rI on M by

g� .rI
Xi
Xj ; Xk/ D E�

 
@2

@�i@�j
logp.x j �/ @

@�k
logp.x j �/

!
;

where Xi D @
@�i

are the coordinate vector fields (in general rI ¤ rg).

The relative entropy D.pkq/ as a function of q 2M has an expansion at the point
p 2M

D.pkq/ D 1

2

X
i;j

gp.Xi ; Xj /ıi ıjC
1

6

X
i;j;k

�
@

@�i
gp.Xj ; Xk/C gp.rI

Xj
Xk ; Xi /

�
ıi ıj ık

with ıi D �i .p/ � �i .q/.
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Flat statistical manifolds

If rI is flat, then near each point, M is equivalent to an open subset ofRn.
We may then assume w.l.o.g. that �1; : : : ; �n are the canonical coordinates ofRn.

The dual coordinates �1; : : : ; �n of � are defined by

g.Xi ; Yj / D ıji .Kronecker symbol/;

where Xi and Yj are coordinate vector fields for �i and �j . Then

@�j

@�i

ˇ̌̌
p
D gp.Xi ; Xj / D

@2

@�i@�j

ˇ̌̌
qDp

D.pkq/:

The solution  of the differential equation

@ 

@�i
D �i

then satisfies
Hess�  D g:

Such a Riemannian manifold .M; g/ is a Hessian manifold with potential  .
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The space N of normal distributions (I)

Let N denote the manifold of n-variate normal distributions

p.x j �;˙/ D 1p
.2�/n det˙

exp

 
� .x � �/

>˙�1.x � �/
2

!
;

where

� 2 Rn is the mean,

˙ 2 Pos.n;R/ is the covariance matrix.

We choose coordinates � D .�i /, � D .�ij / on N ,

�ij D ˙ij ; �i D .˙�/i ; i; j D 1; : : : ; n:
Define

 .�;�/ D 1

2
.�>�� � log det�/:

Theorem
N becomes a statistical manifold with Fisher metric g D Hess�;�  ,
and N is rI-flat.

23



The space N of normal distributions (I)

Let N denote the manifold of n-variate normal distributions

p.x j �;˙/ D 1p
.2�/n det˙

exp

 
� .x � �/

>˙�1.x � �/
2

!
;

where

� 2 Rn is the mean,

˙ 2 Pos.n;R/ is the covariance matrix.

We choose coordinates � D .�i /, � D .�ij / on N ,

�ij D ˙ij ; �i D .˙�/i ; i; j D 1; : : : ; n:

Define
 .�;�/ D 1

2
.�>�� � log det�/:

Theorem
N becomes a statistical manifold with Fisher metric g D Hess�;�  ,
and N is rI-flat.

23



The space N of normal distributions (I)

Let N denote the manifold of n-variate normal distributions

p.x j �;˙/ D 1p
.2�/n det˙

exp

 
� .x � �/

>˙�1.x � �/
2

!
;

where

� 2 Rn is the mean,

˙ 2 Pos.n;R/ is the covariance matrix.

We choose coordinates � D .�i /, � D .�ij / on N ,

�ij D ˙ij ; �i D .˙�/i ; i; j D 1; : : : ; n:
Define

 .�;�/ D 1

2
.�>�� � log det�/:

Theorem
N becomes a statistical manifold with Fisher metric g D Hess�;�  ,
and N is rI-flat.

23



The space N of normal distributions (I)

Let N denote the manifold of n-variate normal distributions

p.x j �;˙/ D 1p
.2�/n det˙

exp

 
� .x � �/

>˙�1.x � �/
2

!
;

where

� 2 Rn is the mean,

˙ 2 Pos.n;R/ is the covariance matrix.

We choose coordinates � D .�i /, � D .�ij / on N ,

�ij D ˙ij ; �i D .˙�/i ; i; j D 1; : : : ; n:
Define

 .�;�/ D 1

2
.�>�� � log det�/:

Theorem
N becomes a statistical manifold with Fisher metric g D Hess�;�  ,
and N is rI-flat.

23



The space N of normal distributions (II)

The geometry of N :

With the flat connection rI, we identify N with the open convex cone

Rn � Pos.n;R/ in the vector spaceRn � Sym.n;R/ (Š RnCn.nC1/
2 ).

N splits further into a product of differentiable manifolds

Rn �R �P ;

where P D f˙ 2 Pos.n;R/ j det˙ D 1g and Pos.n;R/ D R �P .

Every ˙ 2 P can be written as ˙ D A>A for A 2 SL.n;R/.
This means the Lie group SL.n;R/ acts transitively on P by A:˙ D A>˙A.

The stabilizer subgroup of this action at ˙ D In is SO.n/.
Hence we identify P with the homogeneous space SL.n;R/=SO.n/.

The Fisher metric gP restricted to P equals

gP
˙ .X; Y / D tr.˙�1X˙�1Y /:

This means .P ; gP / is the Riemannian symmetric space SL.n;R/=SO.n/ with
metric induced by the Killing form of SL.n;R/.
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Interlude: Symmetric spaces

A Riemannian symmetric space is a simply connected Riemannian manifold M such
that rR D 0 (lax: M looks the same everywhere).

This is equivalent to the existence of a point reflection of geodesic curves at
each point p 2M .

Riemannian symmetric spaces were fully classified by Élie Cartan in 1926.
Every (non-Euclidean) Riemannian symmetric space is a Riemannian product
of irreducible Riemannian symmetric spaces, which are either

a simple Lie groupG, or
a quotientG=K of a simple Lie group by a maximal compact subgroupK
(e.g.G D SL.n;R/ andK D SO.n/).

The metric on the symmetric space comes from a bi-invariant metric on G
(meaning left- and right-multiplication on G are isometries).

Now back to N . . .
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Every (non-Euclidean) Riemannian symmetric space is a Riemannian product
of irreducible Riemannian symmetric spaces, which are either

a simple Lie groupG, or
a quotientG=K of a simple Lie group by a maximal compact subgroupK
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The space N of normal distributions (III)
More geometry of N :

P is the symmetric space SL.n;R/=SO.n/.

R andRn with their canonical scalar products are symmetric spaces of
Euclidean type.

Pos.n;R/ with the restricted Fisher metric is also a symmetric space

GL.n;R/=O.n/ D R �P ;

the Riemannian product ofR and P .

However, the restriction of g toRn Š f.�;˙/ j � 2 Rng depends on ˙ .
Hence N is not a Riemannian productRn � Pos.n;R/.

Theorem
N is a trivial vector bundle

Rn �! N �! Pos.n;R/

where fiberRn and base Pos.n;R/ are symmetric spaces.

For n D 1, N with the Fisher metric equals the hyperbolic plane.
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The space N of normal distributions (IV)

p D .˙;�/
<latexit sha1_base64="dOeDPLlfL66XptgdQvihOYSKJ7c="></latexit>

Rn
<latexit sha1_base64="fhTMLXYAK+/3gFB3qeb2vc/QXYY="></latexit>

Pos.n;R/
<latexit sha1_base64="vSRV0yJrA1DnU1TEDCXpaKRKT6o="></latexit>

<̇latexit sha1_base64="7VUJOR2IHuUeKgyRt4reUv0SzHQ="></latexit>

�
<latexit sha1_base64="HGNqnHCiTh7OJypmFJGvtM6A0eE=">AAACbnicbVHbSiNBEO2M1413hX0RcTAIeZAwE4XdR8EHfXRZo4IZpKanJjbpy9BdI4Qhn7Cv67f5F36CPTEPJlrQ1OHUretUWkjhKIpeG8HC4tLyyuqP5tr6xubW9s7urTOl5djjRhp7n4JDKTT2SJDE+8IiqFTiXTq8qON3z2idMPqGRgUmCgZa5IIDeepvX5WP262oE00s/AriKWixqV0/7jR6/czwUqEmLsG5hzgqKKnAkuASx81+6bAAPoQBPnioQaFLqslfx+GxZ7IwN9Y/TeGE/VxRkfDps02cBE2YXVrE4YmiIrcw8RxkUnlvTXfcPP7cBJRzI5X6cQroyTXnYjX5bczIbIBWze1A+e+kErooCTX/WCEvZUgmrCUNM2GRkxx5ANwKr0LIn8ACJy/8TPt6oHX57HpV5mopxv4Q8bzsX8FttxOfdqI/Z63z9vQkq2yfHbE2i9kvds6u2DXrMc4G7B/7z14ab8HP4CA4/EgNGtOaPTZjQfsdy/HADg==</latexit>
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Outlook

Many other classes of statistical manifolds (exponential families, distributions
on finite sets,. . . ) have similar properties (flatness, actions by Lie groups,. . . ).

Hessian manifolds are a real analogue of Kähler manifolds.
Quantum information theory uses Kähler metrics.

There is a well-developed theory of Hessian manifolds.
Converse question: Which Hessian manifolds are statistical manifolds?

“Pseudo-statistics”: Homogeneous space with indefinite Hessian metrics.
Does a non-positive definite Fisher metric make any sense from a statistical
point of view?
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