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I Basic definitions and facts
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Definition

A flat manifold is a smooth manifold M with a
torsion-free affine connection ∇ of curvature 0,

∇X∇Y Z −∇Y∇XZ −∇[X ,Y ]Z = 0.

Let Rn
s denote Rn with a symmetric non-degenerate bilinear form

represented by

(
In−s 0

0 −Is
) ,

where s is the signature (and n − s ≥ s).
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Flat pseudo-Riemannian manifolds

Let M be a flat pseudo-Riemannian manifold of signature s.

Then:

M =D/Γ

D ⊂ Rn
s open and Γ-invariant

Γ ⊂ Iso(Rn
s ) is the affine holonomy group

lin(Γ) is the linear holonomy group of M

M geodesically complete:

D = Rn
s (Killing-Hopf Theorem)

Γ is the fundamental group
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Linear holonomy
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Classical results

Bieberbach Theorem I – III
Let Γ be a crystallographic group (that is, s = 0 and M compact).

I. Γ ∩Rn is a lattice in Rn and lin(Γ) is finite.

II. Γ1 ≅ Γ2 ⇔ Γ1 and Γ2 affinely equivalent.

III. For given dimension n, there exist only finitely many
(affine equivalence classes of) crystallographic groups.
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Generalise Bieberbach to s ≥ 0?

No!

Reduction to compact case not possible for s > 0.

Γ not virtually abelian (though often virtually polycyclic).

↝ study M with special properties.
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Flat homogeneous pseudo-Riemannian spaces

Let M = Rn
s /Γ. Then:

M homogeneous ⇔ ZIso(Rn
s )
(Γ) acts transitively on Rn

s .

Theorem (Wolf, 1962)
Let Γ be the fundamental group of a flat pseudo-Riemannian
homogeneous manifold M. Then:

Γ is 2-step nilpotent ([Γ, [Γ,Γ]] = 1).

γ = (I +A, v) ∈ Γ with A2 = 0 and Av = 0 (unipotent).

[γ1, γ2] = (I + 2A1A2,2A1v2).

Γ abelian in signatures 0, 1, 2.

8



Flat homogeneous pseudo-Riemannian spaces

Let M = Rn
s /Γ. Then:

M homogeneous ⇔ ZIso(Rn
s )
(Γ) acts transitively on Rn

s .

Theorem (Wolf, 1962)
Let Γ be the fundamental group of a flat pseudo-Riemannian
homogeneous manifold M. Then:

Γ is 2-step nilpotent ([Γ, [Γ,Γ]] = 1).

γ = (I +A, v) ∈ Γ with A2 = 0 and Av = 0 (unipotent).

[γ1, γ2] = (I + 2A1A2,2A1v2).

Γ abelian in signatures 0, 1, 2.

8



Flat homogeneous pseudo-Riemannian spaces

Let M = Rn
s /Γ. Then:

M homogeneous ⇔ ZIso(Rn
s )
(Γ) acts transitively on Rn

s .

Theorem (Wolf, 1962)
Let Γ be the fundamental group of a flat pseudo-Riemannian
homogeneous manifold M. Then:

Γ is 2-step nilpotent ([Γ, [Γ,Γ]] = 1).

γ = (I +A, v) ∈ Γ with A2 = 0 and Av = 0 (unipotent).

[γ1, γ2] = (I + 2A1A2,2A1v2).

Γ abelian in signatures 0, 1, 2.

8



Flat homogeneous pseudo-Riemannian spaces

Let M = Rn
s /Γ. Then:

M homogeneous ⇔ ZIso(Rn
s )
(Γ) acts transitively on Rn

s .

Theorem (Wolf, 1962)
Let Γ be the fundamental group of a flat pseudo-Riemannian
homogeneous manifold M. Then:

Γ is 2-step nilpotent ([Γ, [Γ,Γ]] = 1).

γ = (I +A, v) ∈ Γ with A2 = 0 and Av = 0 (unipotent).

[γ1, γ2] = (I + 2A1A2,2A1v2).

Γ abelian in signatures 0, 1, 2.

8



Flat homogeneous pseudo-Riemannian spaces

Let M = Rn
s /Γ. Then:

M homogeneous ⇔ ZIso(Rn
s )
(Γ) acts transitively on Rn

s .

Theorem (Wolf, 1962)
Let Γ be the fundamental group of a flat pseudo-Riemannian
homogeneous manifold M. Then:

Γ is 2-step nilpotent ([Γ, [Γ,Γ]] = 1).

γ = (I +A, v) ∈ Γ with A2 = 0 and Av = 0 (unipotent).

[γ1, γ2] = (I + 2A1A2,2A1v2).

Γ abelian in signatures 0, 1, 2.

8



Flat homogeneous pseudo-Riemannian spaces

Let M = Rn
s /Γ. Then:

M homogeneous ⇔ ZIso(Rn
s )
(Γ) acts transitively on Rn

s .

Theorem (Wolf, 1962)
Let Γ be the fundamental group of a flat pseudo-Riemannian
homogeneous manifold M. Then:

Γ is 2-step nilpotent ([Γ, [Γ,Γ]] = 1).

γ = (I +A, v) ∈ Γ with A2 = 0 and Av = 0 (unipotent).

[γ1, γ2] = (I + 2A1A2,2A1v2).

Γ abelian in signatures 0, 1, 2.

8



Questions

1 Is Γ always abelian?

2 If not, is lin(Γ) (= Hol(M)) always abelian?

3 Which Γ appear as fundamental groups of flat
pseudo-Riemannian homogeneous spaces?

4 And what about the compact case?

Baues, 2010:

Examples of non-abelian Γ with abelian lin(Γ).

Compact M always has abelian lin(Γ).
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II Non-abelian holonomy groups
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Matrix representation

Let M be a flat pseudo-Riemannian homogeneous manifold.

Theorem
The holonomy group Hol(M) can be represented as

lin(γ) =
⎛
⎜
⎝

Ik −B⊺Ĩ C
0 In−2k B
0 0 Ik

⎞
⎟
⎠
,

where C ∈ sok , and −B⊺ĨB = 0, where Ĩ defines a non-degenerate
bilinear form on a certain subspace of Rn.

Hol(M) is abelian ⇔ B = 0 for all γ ∈ Γ.
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Dimensions bounds I

Theorem
Let M be a flat pseudo-Riemannian homogeneous manifold.
If Hol(M) is not abelian, then

s ≥ 4.

In particular, dim M ≥ 8.

Proof:

lin(Γ) not abelian, so there exist γi = (I +Ai , vi) ∈ Γ (i = 1,2) such that
A1A2 ≠ 0.

Matrix representation implies: Columns of the blocks B1,B2 span
subspace of signature 2.

Columns of block C in [A1,A2] ≠ 0 span totally isotropic subspace of
signature ≥ 2.

Together: Subspace of signature ≥ 2 + 2 = 4 exists.
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Dimensions bounds II

Theorem
Let M be a geodesically complete flat pseudo-Riemannian
homogeneous manifold.
If Hol(M) is not abelian, then

s ≥ 7.

In particular, dim M ≥ 14.

Proof:

Completeness demands Γ acts freely on Rn
s .

Non-existence of fixed points put additional constraints on matrix
representation.

. . .

Columns of A span subspace of signature ≥ 7.
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Examples

Let H3(Z) denote the discrete Heisenberg group.

The first examples of non-abelian holonomy groups:

Γ = H3(Z) = lin(Γ) acting on R14
7 .

Γ = H3(Z) = lin(Γ) acting on

D = R6
× (R2

/{(0,0)}) ⊂ R8
4.

So both dimension bounds are sharp.
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III Fundamental groups of complete flat pseudo-Riemannian
homogeneous spaces

15



Malcev hull

Let Γ be a nilpotent group,

finitely generated

torsion-free

of rank n.

Theorem (Malcev, 1951)
Γ embeds as a Zariski-dense lattice into a unipotent real algebraic
group G of dimension n.

G is called the Malcev hull of Γ.
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Fundamental groups

Theorem
Let Γ be a finitely generated torsion-free 2-step nilpotent of rank n.

Then:
Γ is the fundamental group of a complete flat pseudo-Riemannian
homogeneous manifold M, and dim M = 2n.

Proof:

Let H be the Malcev hull of Γ.

Set G = H ⋉Ad∗ h
∗ and define a flat bi-invariant inner product by

⟨(X , ξ), (Y , η)⟩ = ξ(Y ) + η(X).

The action of γ ∈ Γ on G by γ.(h, ξ) = (γh,Ad∗(γ)ξ) is isometric.

So M = G/Γ is a flat pseudo-Riemannian homogeneous manifold.
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IV Incomplete pseudo-Riemannian homogeneous spaces
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Translational isotropy

Let M =D/Γ and T ⊆ Rn
s the set of translations stabilising D

(that is T +D ⊂D).

D ⊂ Rn
s is called translationally isotropic if

T ⊥ ⊂ T .
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Classification of incomplete manifolds

Theorem (Duncan-Ihrig, 1992)
Every translationally isotropic domain D ⊆ Rn

s is of the form

D = Rk
×Rn−2k

×A,

where A is an affine homogeneous domain of dimension k ≤ s.

Theorem (Duncan-Ihrig, 1993)
Classification of M =D/Γ in signature 2 with translationally
isotropic D.
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Abelian holonomy

Let M =D/Γ be a flat pseudo-Riemannian homogeneous space.

Theorem
If Hol(M) is abelian, then D is translationally isotropic.

Proof:

U = ∑A∈lin(Γ) imA is totally isotropic and U +D = D.

Abelian holonomy ⇔ U⊥ = ⋂A∈lin(Γ) kerA centralises Γ.

D is open orbit of the centraliser of Γ, so U⊥ +D = D.

So if v +D /⊂ D, then v /∈ U⊥. Then v /⊥ U ⊂ T , so T is translationally
isotropic.

21
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D is open orbit of the centraliser of Γ, so U⊥ +D = D.

So if v +D /⊂ D, then v /∈ U⊥. Then v /⊥ U ⊂ T , so T is translationally
isotropic.
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Full classification

Corollary
The Duncan-Ihrig classification is the full classification of flat
homogeneous spaces in signature 2.
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