Holonomy groups of flat pseudo-Riemannian homogeneous spaces

WOLFGANG GLOBKE

School of Mathematical Sciences

Discrete Groups and Geometric Structures V

I Basic definitions and facts

Definition

A flat manifold is a smooth manifold M with a torsion-free affine connection ∇ of curvature 0,

Definition

A flat manifold is a smooth manifold M with a torsion-free affine connection ∇ of curvature 0,

$$\nabla_X \nabla_Y Z - \nabla_Y \nabla_X Z - \nabla_{[X,Y]} Z = 0.$$

Definition

A flat manifold is a smooth manifold M with a torsion-free affine connection ∇ of curvature 0,

$$\nabla_X \nabla_Y Z - \nabla_Y \nabla_X Z - \nabla_{[X,Y]} Z = 0.$$

Let \mathbb{R}^n_s denote \mathbb{R}^n with a symmetric non-degenerate bilinear form represented by

$$\begin{pmatrix} \mathbf{I}_{n-s} & \mathbf{0} \\ \mathbf{0} & -\mathbf{I}_s \end{pmatrix},$$

where s is the signature (and $n - s \ge s$).

Let M be a flat pseudo-Riemannian manifold of signature s.

Let M be a flat pseudo-Riemannian manifold of signature s. Then:

- $M = \mathfrak{D}/\Gamma$
- $\mathfrak{D} \subset \mathbb{R}^n_s$ open and Γ -invariant

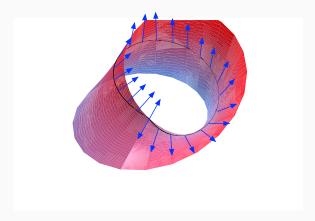
Let M be a flat pseudo-Riemannian manifold of signature s. Then:

- $M = \mathfrak{D}/\Gamma$
- $\mathfrak{D} \subset \mathbb{R}^n_s$ open and Γ -invariant
- $\Gamma \subset \mathbf{Iso}(\mathbb{R}^n_s)$ is the affine holonomy group
- $LIN(\Gamma)$ is the linear holonomy group of M

Let M be a flat pseudo-Riemannian manifold of signature s. Then:

- $M = \mathfrak{D}/\Gamma$
- $\mathfrak{D} \subset \mathbb{R}^n_s$ open and Γ -invariant
- $\Gamma \subset \mathbf{Iso}(\mathbb{R}^n_s)$ is the affine holonomy group
- $LIN(\Gamma)$ is the linear holonomy group of M
- M geodesically complete:
 - $\mathfrak{D} = \mathbb{R}_{s}^{n}$ (Killing-Hopf Theorem)
 - Γ is the fundamental group

Linear holonomy



Bieberbach Theorem I - III

Let Γ be a crystallographic group (that is, s = 0 and M compact).

Bieberbach Theorem I – III

Let Γ be a crystallographic group (that is, s = 0 and M compact).

I. $\Gamma \cap \mathbb{R}^n$ is a lattice in \mathbb{R}^n and $LIN(\Gamma)$ is finite.

Bieberbach Theorem I – III

Let Γ be a crystallographic group (that is, s = 0 and M compact).

I. $\Gamma \cap \mathbb{R}^n$ is a lattice in \mathbb{R}^n and $LIN(\Gamma)$ is finite.

II. $\Gamma_1 \cong \Gamma_2 \iff \Gamma_1 \text{ and } \Gamma_2 \text{ affinely equivalent.}$

Bieberbach Theorem I – III

Let Γ be a crystallographic group (that is, s = 0 and M compact).

I. $\Gamma \cap \mathbb{R}^n$ is a lattice in \mathbb{R}^n and $LIN(\Gamma)$ is finite.

II. $\Gamma_1 \cong \Gamma_2 \iff \Gamma_1 \text{ and } \Gamma_2 \text{ affinely equivalent.}$

III. For given dimension n, there exist only finitely many (affine equivalence classes of) crystallographic groups.

• Reduction to compact case not possible for s > 0.

- Reduction to compact case not possible for s > 0.
- Γ not virtually abelian (though often virtually polycyclic).

- Reduction to compact case not possible for s > 0.
- Γ not virtually abelian (though often virtually polycyclic).
- \rightarrow study *M* with special properties.

Let $M = \mathbb{R}_s^n / \Gamma$. Then: M homogeneous $\Leftrightarrow Z_{lso(\mathbb{R}_s^n)}(\Gamma)$ acts transitively on \mathbb{R}_s^n .

Let $M = \mathbb{R}_s^n / \Gamma$. Then: M homogeneous $\Leftrightarrow Z_{lso(\mathbb{R}_s^n)}(\Gamma)$ acts transitively on \mathbb{R}_s^n .

Theorem (Wolf, 1962)

Let Γ be the fundamental group of a flat pseudo-Riemannian homogeneous manifold M. Then:

Let $M = \mathbb{R}_{s}^{n}/\Gamma$. Then: M homogeneous $\Leftrightarrow \mathbb{Z}_{lso(\mathbb{R}_{s}^{n})}(\Gamma)$ acts transitively on \mathbb{R}_{s}^{n} .

Theorem (Wolf, 1962)

Let Γ be the fundamental group of a flat pseudo-Riemannian homogeneous manifold M. Then:

• Γ is 2-step nilpotent ([Γ , [Γ , Γ]] = 1).

Let $M = \mathbb{R}_{s}^{n}/\Gamma$. Then: M homogeneous $\Leftrightarrow \mathbb{Z}_{lso(\mathbb{R}_{s}^{n})}(\Gamma)$ acts transitively on \mathbb{R}_{s}^{n} .

Theorem (Wolf, 1962)

Let Γ be the fundamental group of a flat pseudo-Riemannian homogeneous manifold M. Then:

- Γ is 2-step nilpotent ([Γ , [Γ , Γ]] = 1).
- $\gamma = (I + A, v) \in \Gamma$ with $A^2 = 0$ and Av = 0 (unipotent).

Let $M = \mathbb{R}_{s}^{n}/\Gamma$. Then: M homogeneous $\Leftrightarrow \mathbb{Z}_{lso(\mathbb{R}_{s}^{n})}(\Gamma)$ acts transitively on \mathbb{R}_{s}^{n} .

Theorem (Wolf, 1962)

Let Γ be the fundamental group of a flat pseudo-Riemannian homogeneous manifold M. Then:

• Γ is 2-step nilpotent ([Γ , [Γ , Γ]] = 1).

•
$$\gamma = (I + A, v) \in \Gamma$$
 with $A^2 = 0$ and $Av = 0$ (unipotent).

• $[\gamma_1, \gamma_2] = (I + 2A_1A_2, 2A_1v_2).$

Let $M = \mathbb{R}_{s}^{n}/\Gamma$. Then: M homogeneous $\Leftrightarrow \mathbb{Z}_{lso(\mathbb{R}_{s}^{n})}(\Gamma)$ acts transitively on \mathbb{R}_{s}^{n} .

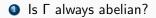
Theorem (Wolf, 1962)

Let Γ be the fundamental group of a flat pseudo-Riemannian homogeneous manifold M. Then:

• Γ is 2-step nilpotent ([Γ , [Γ , Γ]] = 1).

•
$$\gamma = (I + A, v) \in \Gamma$$
 with $A^2 = 0$ and $Av = 0$ (unipotent).

- $[\gamma_1, \gamma_2] = (I + 2A_1A_2, 2A_1v_2).$
- Γ abelian in signatures 0, 1, 2.



- Is Γ always abelian?
- **2** If not, is $LIN(\Gamma)$ (= **Hol**(M)) always abelian?

- Is Γ always abelian?
- **2** If not, is $LIN(\Gamma)$ (= **Hol**(M)) always abelian?
- Which Γ appear as fundamental groups of flat pseudo-Riemannian homogeneous spaces?

- Is Γ always abelian?
- **2** If not, is $LIN(\Gamma)$ (= **Hol**(M)) always abelian?
- Which Γ appear as fundamental groups of flat pseudo-Riemannian homogeneous spaces?
- And what about the compact case?

- Is Γ always abelian?
- **2** If not, is $LIN(\Gamma)$ (= **Hol**(M)) always abelian?
- Which Γ appear as fundamental groups of flat pseudo-Riemannian homogeneous spaces?
- And what about the compact case?

Baues, 2010:

- Examples of non-abelian Γ with abelian $LIN(\Gamma)$.
- Compact *M* always has abelian $LIN(\Gamma)$.

II Non-abelian holonomy groups

Matrix representation

Let M be a flat pseudo-Riemannian homogeneous manifold.

Matrix representation

Let M be a flat pseudo-Riemannian homogeneous manifold.

Theorem

The holonomy group Hol(M) can be represented as

$$\operatorname{LIN}(\gamma) = \begin{pmatrix} I_k & -B^{\mathsf{T}} \tilde{\mathbf{I}} & \mathbf{C} \\ 0 & I_{n-2k} & B \\ 0 & 0 & I_k \end{pmatrix},$$

where $C \in \mathfrak{so}_k$, and $-B^{\top} \tilde{I}B = 0$, where \tilde{I} defines a non-degenerate bilinear form on a certain subspace of \mathbb{R}^n .

Matrix representation

Let M be a flat pseudo-Riemannian homogeneous manifold.

Theorem

The holonomy group Hol(M) can be represented as

$$\operatorname{LIN}(\gamma) = \begin{pmatrix} I_k & -B^{\mathsf{T}} \tilde{\mathbf{I}} & \mathbf{C} \\ 0 & I_{n-2k} & B \\ 0 & 0 & I_k \end{pmatrix},$$

where $C \in \mathfrak{so}_k$, and $-B^{\top} \tilde{I}B = 0$, where \tilde{I} defines a non-degenerate bilinear form on a certain subspace of \mathbb{R}^n .

Hol(M) is abelian \Leftrightarrow B = 0 for all $\gamma \in \Gamma$.

Dimensions bounds I

Theorem

Let M be a flat pseudo-Riemannian homogeneous manifold. If Hol(M) is not abelian, then

s ≥ 4.

In particular, dim $M \ge 8$.

Dimensions bounds I

Theorem

Let M be a flat pseudo-Riemannian homogeneous manifold. If Hol(M) is not abelian, then

s ≥ 4.

In particular, dim $M \ge 8$.

Proof:

• LIN(Γ) not abelian, so there exist $\gamma_i = (I + A_i, v_i) \in \Gamma$ (i = 1, 2) such that $A_1A_2 \neq 0$.

Theorem

Let M be a flat pseudo-Riemannian homogeneous manifold. If Hol(M) is not abelian, then

s ≥ 4.

In particular, dim $M \ge 8$.

- LIN(Γ) not abelian, so there exist $\gamma_i = (I + A_i, v_i) \in \Gamma$ (i = 1, 2) such that $A_1A_2 \neq 0$.
- Matrix representation implies: Columns of the blocks *B*₁, *B*₂ span subspace of signature 2.

Theorem

Let M be a flat pseudo-Riemannian homogeneous manifold. If Hol(M) is not abelian, then

s ≥ 4.

In particular, dim $M \ge 8$.

- LIN(Γ) not abelian, so there exist $\gamma_i = (I + A_i, v_i) \in \Gamma$ (i = 1, 2) such that $A_1A_2 \neq 0$.
- Matrix representation implies: Columns of the blocks *B*₁, *B*₂ span subspace of signature 2.
- Columns of block C in [A₁, A₂] ≠ 0 span totally isotropic subspace of signature ≥ 2.

Theorem

Let M be a flat pseudo-Riemannian homogeneous manifold. If Hol(M) is not abelian, then

s ≥ 4.

In particular, dim $M \ge 8$.

- LIN(Γ) not abelian, so there exist $\gamma_i = (I + A_i, v_i) \in \Gamma$ (i = 1, 2) such that $A_1A_2 \neq 0$.
- Matrix representation implies: Columns of the blocks *B*₁, *B*₂ span subspace of signature 2.
- Columns of block C in [A₁, A₂] ≠ 0 span totally isotropic subspace of signature ≥ 2.
- Together: Subspace of signature $\geq 2 + 2 = 4$ exists.

Theorem

Let M be a geodesically complete flat pseudo-Riemannian homogeneous manifold. If Hol(M) is not abelian, then

$s \ge 7$.

In particular, dim $M \ge 14$.

Theorem

Let M be a geodesically complete flat pseudo-Riemannian homogeneous manifold. If Hol(M) is not abelian, then

$s \ge 7$.

In particular, dim $M \ge 14$.

Proof:

Completeness demands Γ acts freely on Rⁿ_s.

Theorem

Let M be a geodesically complete flat pseudo-Riemannian homogeneous manifold. If Hol(M) is not abelian, then

$s \ge 7$.

In particular, dim $M \ge 14$.

- Completeness demands Γ acts freely on Rⁿ_s.
- Non-existence of fixed points put additional constraints on matrix representation.

Theorem

Let M be a geodesically complete flat pseudo-Riemannian homogeneous manifold. If Hol(M) is not abelian, then

$s \ge 7$.

In particular, dim $M \ge 14$.

Proof:

- Completeness demands Γ acts freely on Rⁿ_s.
- Non-existence of fixed points put additional constraints on matrix representation.

• . . .

Theorem

Let M be a geodesically complete flat pseudo-Riemannian homogeneous manifold. If Hol(M) is not abelian, then

s ≥ 7.

In particular, dim $M \ge 14$.

Proof:

- Completeness demands Γ acts freely on Rⁿ_s.
- Non-existence of fixed points put additional constraints on matrix representation.

...

• Columns of A span subspace of signature ≥ 7 .

Let $H_3(\mathbb{Z})$ denote the discrete Heisenberg group.

The first examples of non-abelian holonomy groups:

Let $H_3(\mathbb{Z})$ denote the discrete Heisenberg group.

The first examples of non-abelian holonomy groups:

• $\Gamma = \mathbf{H}_3(\mathbb{Z}) = \operatorname{LIN}(\Gamma)$ acting on \mathbb{R}^{14}_7 .

Let $H_3(\mathbb{Z})$ denote the discrete Heisenberg group.

The first examples of non-abelian holonomy groups:

- $\Gamma = \mathbf{H}_3(\mathbb{Z}) = \text{LIN}(\Gamma)$ acting on \mathbb{R}^{14}_7 .
- $\Gamma = H_3(\mathbb{Z}) = LIN(\Gamma)$ acting on

$$\mathfrak{D} = \mathbb{R}^6 \times (\mathbb{R}^2 \backslash \{(0,0)\}) \subset \mathbb{R}^8_4$$

Let $H_3(\mathbb{Z})$ denote the discrete Heisenberg group.

The first examples of non-abelian holonomy groups:

•
$$\Gamma = \mathbf{H}_3(\mathbb{Z}) = \text{LIN}(\Gamma)$$
 acting on \mathbb{R}^{14}_7 .

•
$$\Gamma = \mathbf{H}_3(\mathbb{Z}) = LIN(\Gamma)$$
 acting on

$$\mathfrak{D} = \mathbb{R}^6 \times (\mathbb{R}^2 \setminus \{(0,0)\}) \subset \mathbb{R}^8_4.$$

So both dimension bounds are sharp.

III Fundamental groups of complete flat pseudo-Riemannian homogeneous spaces

Malcev hull

Let Γ be a nilpotent group,

- finitely generated
- torsion-free
- of rank *n*.

Malcev hull

Let Γ be a nilpotent group,

- finitely generated
- torsion-free
- of rank *n*.

Theorem (Malcev, 1951)

 Γ embeds as a Zariski-dense lattice into a unipotent real algebraic group G of dimension n.

Malcev hull

Let Γ be a nilpotent group,

- finitely generated
- torsion-free
- of rank *n*.

Theorem (Malcev, 1951)

 Γ embeds as a Zariski-dense lattice into a unipotent real algebraic group G of dimension n.

G is called the Malcev hull of Γ .

Theorem Let Γ be a finitely generated torsion-free 2-step nilpotent of rank n.

Theorem

Let Γ be a finitely generated torsion-free 2-step nilpotent of rank n. Then:

 Γ is the fundamental group of a complete flat pseudo-Riemannian homogeneous manifold M, and dim M = 2n.

Theorem

Let Γ be a finitely generated torsion-free 2-step nilpotent of rank n. Then:

 Γ is the fundamental group of a complete flat pseudo-Riemannian homogeneous manifold M, and dim M = 2n.

Proof:

• Let H be the Malcev hull of Γ .

Theorem

Let Γ be a finitely generated torsion-free 2-step nilpotent of rank n. Then:

 Γ is the fundamental group of a complete flat pseudo-Riemannian homogeneous manifold M, and dim M = 2n.

- Let H be the Malcev hull of Γ .
- Set $G = H \ltimes_{Ad^*} \mathfrak{h}^*$ and define a flat bi-invariant inner product by $\langle (X, \xi), (Y, \eta) \rangle = \xi(Y) + \eta(X)$.

Theorem

Let Γ be a finitely generated torsion-free 2-step nilpotent of rank n. Then:

 Γ is the fundamental group of a complete flat pseudo-Riemannian homogeneous manifold M, and dim M = 2n.

- Let H be the Malcev hull of Γ .
- Set $G = H \ltimes_{Ad^*} \mathfrak{h}^*$ and define a flat bi-invariant inner product by $\langle (X, \xi), (Y, \eta) \rangle = \xi(Y) + \eta(X)$.
- The action of $\gamma \in \Gamma$ on G by $\gamma \cdot (h, \xi) = (\gamma h, \operatorname{Ad}^*(\gamma)\xi)$ is isometric.

Theorem

Let Γ be a finitely generated torsion-free 2-step nilpotent of rank n. Then:

 Γ is the fundamental group of a complete flat pseudo-Riemannian homogeneous manifold M, and dim M = 2n.

- Let H be the Malcev hull of Γ .
- Set $G = H \ltimes_{Ad^*} \mathfrak{h}^*$ and define a flat bi-invariant inner product by $\langle (X, \xi), (Y, \eta) \rangle = \xi(Y) + \eta(X)$.
- The action of $\gamma \in \Gamma$ on G by $\gamma(h,\xi) = (\gamma h, \operatorname{Ad}^*(\gamma)\xi)$ is isometric.
- So $M = G/\Gamma$ is a flat pseudo-Riemannian homogeneous manifold.

IV Incomplete pseudo-Riemannian homogeneous spaces

Translational isotropy

Let $M = \mathfrak{D}/\Gamma$ and $T \subseteq \mathbb{R}^n_s$ the set of translations stabilising \mathfrak{D} (that is $T + \mathfrak{D} \subset \mathfrak{D}$).

Translational isotropy

Let $M = \mathfrak{D}/\Gamma$ and $T \subseteq \mathbb{R}^n_s$ the set of translations stabilising \mathfrak{D} (that is $T + \mathfrak{D} \subset \mathfrak{D}$).

 $\mathfrak{D} \subset \mathbb{R}^n_s$ is called translationally isotropic if

 $T^{\perp} \subset T.$

Classification of incomplete manifolds

Theorem (Duncan-Ihrig, 1992)

Every translationally isotropic domain $\mathfrak{D} \subseteq \mathbb{R}^n_s$ is of the form

$$\mathfrak{D}=\mathbb{R}^k\times\mathbb{R}^{n-2k}\times\mathfrak{A},$$

where \mathfrak{A} is an affine homogeneous domain of dimension $k \leq s$.

Classification of incomplete manifolds

Theorem (Duncan-Ihrig, 1992)

Every translationally isotropic domain $\mathfrak{D} \subseteq \mathbb{R}^n_s$ is of the form

$$\mathfrak{D}=\mathbb{R}^k\times\mathbb{R}^{n-2k}\times\mathfrak{A},$$

where \mathfrak{A} is an affine homogeneous domain of dimension $k \leq s$.

Theorem (Duncan-Ihrig, 1993) Classification of $M = \mathfrak{D}/\Gamma$ in signature 2 with translationally isotropic \mathfrak{D} .

Let $M = \mathfrak{D}/\Gamma$ be a flat pseudo-Riemannian homogeneous space.

Theorem If Hol(M) is abelian, then \mathfrak{D} is translationally isotropic.

Let $M = \mathfrak{D}/\Gamma$ be a flat pseudo-Riemannian homogeneous space.

Theorem

If Hol(M) is abelian, then \mathfrak{D} is translationally isotropic.

Proof:

• $U = \sum_{A \in \text{LIN}(\Gamma)} \text{ im } A \text{ is totally isotropic and } U + \mathfrak{D} = \mathfrak{D}.$

Let $M = \mathfrak{D}/\Gamma$ be a flat pseudo-Riemannian homogeneous space.

Theorem

If Hol(M) is abelian, then \mathfrak{D} is translationally isotropic.

- $U = \sum_{A \in \text{LIN}(\Gamma)} \text{ im } A$ is totally isotropic and $U + \mathfrak{D} = \mathfrak{D}$.
- Abelian holonomy $\Leftrightarrow U^{\perp} = \bigcap_{A \in LIN(\Gamma)} \ker A$ centralises Γ .

Let $M = \mathfrak{D}/\Gamma$ be a flat pseudo-Riemannian homogeneous space.

Theorem

If Hol(M) is abelian, then \mathfrak{D} is translationally isotropic.

- $U = \sum_{A \in \text{LIN}(\Gamma)} \text{ im } A$ is totally isotropic and $U + \mathfrak{D} = \mathfrak{D}$.
- Abelian holonomy $\Leftrightarrow U^{\perp} = \bigcap_{A \in LIN(\Gamma)} \ker A$ centralises Γ .
- \mathfrak{D} is open orbit of the centraliser of Γ , so $U^{\perp} + \mathfrak{D} = \mathfrak{D}$.

Let $M = \mathfrak{D}/\Gamma$ be a flat pseudo-Riemannian homogeneous space.

Theorem

If Hol(M) is abelian, then \mathfrak{D} is translationally isotropic.

- $U = \sum_{A \in \text{LIN}(\Gamma)} \text{ im } A$ is totally isotropic and $U + \mathfrak{D} = \mathfrak{D}$.
- Abelian holonomy $\Leftrightarrow U^{\perp} = \bigcap_{A \in LIN(\Gamma)} \ker A$ centralises Γ .
- \mathfrak{D} is open orbit of the centraliser of Γ , so $U^{\perp} + \mathfrak{D} = \mathfrak{D}$.
- So if v + D ∉ D, then v ∉ U[⊥]. Then v ↓ U ⊂ T, so T is translationally isotropic.

Full classification

Corollary

The Duncan-Ihrig classification is the full classification of flat homogeneous spaces in signature 2.

References

- O. Baues, Prehomogeneous Affine Representations and Flat Pseudo-Riemannian Manifolds, in 'Handbook of Pseudo-Riemannian Geometry', EMS, 2010
- O. Baues, W. Globke, Flat pseudo-Riemannian homogeneous spaces with non-abelian holonomy group, Proc. Amer. Math. Soc. 140, 2012
- D. Duncan, E. Ihrig, Flat pseudo-Riemannian manifolds with a nilpotent transitive group of isometries, Ann. Global Anal. Geom. 10, 1992
- D. Duncan, E. Ihrig, Translationally isotropic flat homogeneous manifolds with metric signature (n, 2), Ann. Global Anal. Geom. 11, 1993
- W. Globke, Holonomy Groups of Complete Flat Pseudo-Riemannian Homogeneous Spaces, Adv. Math. 240, 2013
- W. Globke, A Supplement to the Classification of Flat Homogeneous Spaces of Signature (*m*,2), New York J. Math. 20, 2014
- J.A. Wolf, Spaces of Constant Curvature, 6th ed., AMS Chelsea Publishing, 2011