Étale representations of reductive algebraic groups

WOLFGANG GLOBKE

School of Mathematical Sciences

University of Vienna, July 5, 2016

Motivation: Left-symmetric algebras

A product on a vector space is left-symmetric if it satisfies

$$x(yz) - (xy)z = y(xz) - (yx)z.$$

This generalizes associative products.

A product on a vector space is left-symmetric if it satisfies

$$x(yz) - (xy)z = y(xz) - (yx)z.$$

This generalizes associative products. The commutator

$$[x, y] = xy - yx$$

defines a Lie product on V.

A product on a vector space is left-symmetric if it satisfies

x(yz) - (xy)z = y(xz) - (yx)z.

This generalizes associative products. The commutator

$$[x, y] = xy - yx$$

defines a Lie product on V.

Question

Given a Lie algebra g, does its Lie product come from a left-symmetric product on g?

A product on a vector space is left-symmetric if it satisfies

x(yz) - (xy)z = y(xz) - (yx)z.

This generalizes associative products. The commutator

$$[x, y] = xy - yx$$

defines a Lie product on V.

Question

Given a Lie algebra g, does its Lie product come from a left-symmetric product on g?

- Semisimple g does not admit a left-symmetric product.
- Many (not all) solvable/nilpotent g admit left-symmetric products.
- Some reductive g admit left-symmetric products.

Let $\rho : \mathfrak{g} \to \mathfrak{aff}(V)$ be a finite-dimensional representation of \mathfrak{g} .

 ϱ or (ϱ, V) is called étale if there exists $v_0 \in V$ such that

$$\varepsilon : \mathfrak{g} \to V, \quad x \mapsto \varrho(x).v_0$$

is a linear isomorphism.

Let $\rho : \mathfrak{g} \to \mathfrak{aff}(V)$ be a finite-dimensional representation of \mathfrak{g} .

 ρ or (ρ, V) is called étale if there exists $v_0 \in V$ such that

$$\varepsilon : \mathfrak{g} \to V, \quad x \mapsto \varrho(x).v_0$$

is a linear isomorphism.

There is a 1:1-correspondence

left-symmetric products / $\cong \quad \longleftrightarrow \quad$ étale representations / \sim .

Let $\rho : \mathfrak{g} \to \mathfrak{aff}(V)$ be a finite-dimensional representation of \mathfrak{g} .

 ρ or (ρ, V) is called étale if there exists $v_0 \in V$ such that

$$\varepsilon : \mathfrak{g} \to V, \quad x \mapsto \varrho(x).v_0$$

is a linear isomorphism.

There is a 1:1-correspondence

left-symmetric products / \cong \longleftrightarrow étale representations / \sim .

An étale representation ρ defines a left-symmetric product on \mathfrak{g} by

 $xy = \varepsilon^{-1} \Big(\operatorname{LIN}(\varrho(x)) \varepsilon(y) \Big).$

Let $\rho : \mathfrak{g} \to \mathfrak{aff}(V)$ be a finite-dimensional representation of \mathfrak{g} .

 ρ or (ρ, V) is called étale if there exists $v_0 \in V$ such that

$$\varepsilon : \mathfrak{g} \to V, \quad x \mapsto \varrho(x).v_0$$

is a linear isomorphism.

There is a 1:1-correspondence

left-symmetric products $/ \cong \longleftrightarrow$ étale representations $/ \sim$.

An étale representation ρ defines a left-symmetric product on \mathfrak{g} by

$$xy = \varepsilon^{-1} \Big(\operatorname{LIN}(\varrho(x)) \varepsilon(y) \Big).$$

Conversely, a left-symmetric product on g defines an étale representation ρ with $v_0 = 0 \in g$ via

$$\varrho(x) = \begin{pmatrix} L_x & x \\ 0 & 0 \end{pmatrix} \in \mathfrak{aff}(\mathfrak{g})$$

Prehomogeneous modules and relative invariants

Prehomogeneous modules

Let G be an algebraic group, V a finite-dimensional \mathbb{C} -vector space, and $\varrho: G \to \operatorname{GL}(V)$ a rational representation such that G has a Zariski-open orbit. Then (G, ϱ, V) is a prehomogeneous module.

Prehomogeneous modules

Let *G* be an algebraic group, *V* a finite-dimensional \mathbb{C} -vector space, and $\varrho: G \to \operatorname{GL}(V)$ a rational representation such that *G* has a Zariski-open orbit. Then (G, ϱ, V) is a prehomogeneous module.

For v contained in the open orbit, G_v denotes the generic stabilizer, and $V_{\text{sing}} = V \setminus \varrho(G) v$ is called the singular set.

Prehomogeneous modules

Let *G* be an algebraic group, *V* a finite-dimensional \mathbb{C} -vector space, and $\varrho: G \to \operatorname{GL}(V)$ a rational representation such that *G* has a Zariski-open orbit. Then (G, ϱ, V) is a prehomogeneous module.

For v contained in the open orbit, G_v denotes the generic stabilizer, and $V_{\text{sing}} = V \setminus \rho(G)v$ is called the singular set.

Clearly,

$\dim G \geq \dim V.$

If " = ", then $\varrho' : \mathfrak{g} \to \mathfrak{gl}(V)$ is a linear étale representation.

Given a prehomogeneous module

 $(G \times \operatorname{GL}_n, \varrho \otimes \omega_1, V^m \otimes \mathbb{C}^n)$

Given a prehomogeneous module

$$(G \times \operatorname{GL}_{n}, \varrho \otimes \omega_{1}, V^{m} \otimes \mathbb{C}^{n})$$

we obtain another prehomogeneous module, its castling transform

$$(G \times \operatorname{GL}_{m-n}, \varrho^* \otimes \omega_1, V^{m*} \otimes \mathbb{C}^{m-n})$$

If G is reductive, we can replace ρ^* by ρ .

Given a prehomogeneous module

 $(G \times \operatorname{GL}_n, \varrho \otimes \omega_1, V^m \otimes \mathbb{C}^n)$

we obtain another prehomogeneous module, its castling transform

$$(G \times \operatorname{GL}_{m-n}, \varrho^* \otimes \omega_1, V^{m*} \otimes \mathbb{C}^{m-n})$$

If *G* is reductive, we can replace ρ^* by ρ . If the first module is étale, so is its castling transform.

Given a prehomogeneous module

 $(G \times \operatorname{GL}_n, \varrho \otimes \omega_1, V^m \otimes \mathbb{C}^n)$

we obtain another prehomogeneous module, its castling transform

$$(G \times \operatorname{GL}_{m-n}, \varrho^* \otimes \omega_1, V^{m*} \otimes \mathbb{C}^{m-n})$$

If *G* is reductive, we can replace ρ^* by ρ . If the first module is étale, so is its castling transform.

Any reasonable classification of prehomogeneous modules should be "up to castling equivalence".

Given a prehomogeneous module

 $(G \times \operatorname{GL}_n, \varrho \otimes \omega_1, V^m \otimes \mathbb{C}^n)$

we obtain another prehomogeneous module, its castling transform

$$(G \times \operatorname{GL}_{m-n}, \varrho^* \otimes \omega_1, V^{m*} \otimes \mathbb{C}^{m-n})$$

If *G* is reductive, we can replace ρ^* by ρ . If the first module is étale, so is its castling transform.

Any reasonable classification of prehomogeneous modules should be "up to castling equivalence".

Example

Identify a prehomogeneous module (G, ϱ, V) with $m = \dim V \ge 2$ with $(G \times \operatorname{SL}_1, \varrho \otimes \omega_1, V)$, and obtain a new prehomogeneous module $(G \times \operatorname{SL}_{m-1}, \varrho \otimes \omega_1, V \otimes \mathbb{C}^{m-1})$. Repeat to obtain

$$(G \times \mathrm{SL}_{m-1} \times \mathrm{SL}_{m^2-m-1}, \varrho \otimes \omega_1 \otimes \omega_1, V \otimes \mathbb{C}^{m-1} \otimes \mathbb{C}^{m^2-m-1}),$$

$$(G \times \mathrm{SL}_{m^2-m-1} \times \mathrm{SL}_{m^3-m^2-2m+1}, \varrho \otimes \omega_1 \otimes \omega_1, V \otimes \mathbb{C}^{m^2-m-1} \otimes \mathbb{C}^{m^3-m^2-2m+1}),$$

$$(G \times \mathrm{SL}_{m-1} \times \mathrm{SL}_{m^2-m-1} \times \mathrm{SL}_{m^4-2m^3+m-1}, \varrho \otimes \omega_1 \otimes \omega_1 \otimes \omega_1, V \otimes \mathbb{C}^{m-1} \otimes \mathbb{C}^{m^2-m})$$

.

Relative invariants

A relative invariant for (G, ϱ, V) is a rational function $f : V \to \mathbb{C}$ such that $f(gv) = \chi(g)v$ for some character χ of *G*.

Relative invariants

A relative invariant for (G, ϱ, V) is a rational function $f : V \to \mathbb{C}$ such that $f(gv) = \chi(g)v$ for some character χ of *G*.

Proposition

 (G, ϱ, V) is prehomogeneous if and only if any absolute invariant is constant.

Reductive prehomogeneous modules

Fact

G reductive: Every étale representation ρ is linear. So all reductive étale modules are prehomogeneous modules.

Reductive prehomogeneous modules

Fact

G reductive: Every étale representation ρ is linear. So all reductive étale modules are prehomogeneous modules.

Certain classification results for "castling-reduced" reductive prehomogeneous modules by Sato, Kimura et al. are known:

- Sato, Kimura 1977: Irreducible, *G* reductive.
- Kimura 1983: Non-irreducible, $G = GL_1^k \times S$ and S simple.
- Kimura et al. 1988:

Non-irreducible, $G = GL_1^k \times S_1 \times S_2$ with S_1, S_2 simple, Type I and Type II.

Regular (reductive) prehomogeneous modules

Given a relative invariant f, define

```
\varphi_f: V \setminus V_{\text{sing}} \to V^*, \quad x \mapsto \operatorname{grad} \log f(x).
```

If the image of φ_f is Zariski-dense, then (G, ϱ, V) is called a regular prehomogenous module.

Regular (reductive) prehomogeneous modules

Given a relative invariant f, define

```
\varphi_f: V \setminus V_{\text{sing}} \to V^*, \quad x \mapsto \operatorname{grad} \log f(x).
```

If the image of φ_f is Zariski-dense, then (G, ϱ, V) is called a regular prehomogenous module.

Theorem (Sato & Kimura 1977)

Let (G, ϱ, V) be a reductive prehomogeneous module. The following are equivalent:

- (G, ϱ, V) regular.
- $V_{\text{sing}} = \{v \in V \mid \text{Hess} \log f(x) = 0\}$ is a hypersurface.
- **(9)** The open orbit $V \setminus V_{\text{sing}}$ is an affine variety.
- Each stabilizer G_v for $v \in V \setminus V_{\text{sing}}$ is reductive.

Étale modules

Corollary

Let *G* be a reductive algebraic group. If (G, ρ, V) is étale, then it is a regular prehomogeneous module.

- Stabilizer G_v is finite, hence reductive.
- Now use previous theorem.

Étale modules

Corollary

Let G be a reductive algebraic group.

If (G, ϱ, V) is étale, then it is a regular prehomogeneous module.

Proof:

- Stabilizer G_v is finite, hence reductive.
- Now use previous theorem.

Proposition

Let G be an algebraic group with trivial rational character group. Then G does not admit rational étale representations.

- Trivial characters means only absolute invariants exist.
- Contradiction to existence of a relative invariant of degree dim V (Sato & Kimura).

Étale modules

Corollary

Let G be a reductive algebraic group.

If (G, ϱ, V) is étale, then it is a regular prehomogeneous module.

Proof:

- Stabilizer G_v is finite, hence reductive.
- Now use previous theorem.

Proposition

Let G be an algebraic group with trivial rational character group. Then G does not admit rational étale representations.

Proof:

- Trivial characters means only absolute invariants exist.
- Contradiction to existence of a relative invariant of degree dim V (Sato & Kimura).

Corollary

Unipotent and semisimple algebraic groups do not admit rational linear étale representations.

Theorem

Let $k \ge 2$ and $(GL_1 \times S, \varrho_1 \oplus \ldots \oplus \varrho_k, V_1 \oplus \ldots \oplus V_k)$ be an étale module, where

- S semisimple,
- (ϱ_i, V_i) irreducible.

Then each $(GL_1 \times S, \varrho_i, V_i)$ is a non-regular prehomogeneous module.

Theorem

Let $k \ge 2$ and $(GL_1 \times S, \varrho_1 \oplus \ldots \oplus \varrho_k, V_1 \oplus \ldots \oplus V_k)$ be an étale module, where

- S semisimple,
- (ϱ_i, V_i) irreducible.

Then each $(GL_1 \times S, \varrho_i, V_i)$ is a non-regular prehomogeneous module.

Proof:

• Let $V = W \oplus U$ a non-trivial S-invariant decomposition.

Theorem

Let $k \ge 2$ and $(GL_1 \times S, \varrho_1 \oplus \ldots \oplus \varrho_k, V_1 \oplus \ldots \oplus V_k)$ be an étale module, where

- S semisimple,
- (ϱ_i, V_i) irreducible.

Then each $(GL_1 \times S, \varrho_i, V_i)$ is a non-regular prehomogeneous module.

- Let $V = W \oplus U$ a non-trivial S-invariant decomposition.
- If dim W = dim S, then W would be an étale module for S, a contradiction.
 So dim W < dim S.

Theorem

Let $k \ge 2$ and $(GL_1 \times S, \varrho_1 \oplus \ldots \oplus \varrho_k, V_1 \oplus \ldots \oplus V_k)$ be an étale module, where

- S semisimple,
- (ϱ_i, V_i) irreducible.

Then each $(GL_1 \times S, \varrho_i, V_i)$ is a non-regular prehomogeneous module.

- Let $V = W \oplus U$ a non-trivial S-invariant decomposition.
- If dim W = dim S, then W would be an étale module for S, a contradiction. So dim W < dim S.
- $W \subseteq \pi^{-1}(\{0\})$, where $\pi : V \to V/\!/S$ is the algebraic quotient, $V/\!/S \cong \mathbb{C}$ and $\mathbb{C}[V]^S$ is generated by an irreducible non-constant polynomial f (Baues 1999).

Theorem

Let $k \ge 2$ and $(GL_1 \times S, \varrho_1 \oplus \ldots \oplus \varrho_k, V_1 \oplus \ldots \oplus V_k)$ be an étale module, where

- S semisimple,
- (ϱ_i, V_i) irreducible.

Then each $(GL_1 \times S, \varrho_i, V_i)$ is a non-regular prehomogeneous module.

- Let $V = W \oplus U$ a non-trivial S-invariant decomposition.
- If dim W = dim S, then W would be an étale module for S, a contradiction.
 So dim W < dim S.
- $W \subseteq \pi^{-1}(\{0\})$, where $\pi : V \to V/\!/S$ is the algebraic quotient, $V/\!/S \cong \mathbb{C}$ and $\mathbb{C}[V]^S$ is generated by an irreducible non-constant polynomial f (Baues 1999).
- If $h \in \mathbb{C}[W]^S \subset \mathbb{C}[V]^S$, then h = af + c with $a, c \in \mathbb{C}$.

Theorem

Let $k \ge 2$ and $(GL_1 \times S, \varrho_1 \oplus \ldots \oplus \varrho_k, V_1 \oplus \ldots \oplus V_k)$ be an étale module, where

- S semisimple,
- (ϱ_i, V_i) irreducible.

Then each $(GL_1 \times S, \varrho_i, V_i)$ is a non-regular prehomogeneous module.

- Let $V = W \oplus U$ a non-trivial S-invariant decomposition.
- If dim W = dim S, then W would be an étale module for S, a contradiction.
 So dim W < dim S.
- $W \subseteq \pi^{-1}(\{0\})$, where $\pi : V \to V/\!/S$ is the algebraic quotient, $V/\!/S \cong \mathbb{C}$ and $\mathbb{C}[V]^S$ is generated by an irreducible non-constant polynomial f (Baues 1999).
- If $h \in \mathbb{C}[W]^S \subset \mathbb{C}[V]^S$, then h = af + c with $a, c \in \mathbb{C}$.
- Then h(w) = c since f(w) = 0. Hence $\mathbb{C}[W]^S = \mathbb{C}$.

Theorem

Let $k \ge 2$ and $(GL_1 \times S, \varrho_1 \oplus \ldots \oplus \varrho_k, V_1 \oplus \ldots \oplus V_k)$ be an étale module, where

- S semisimple,
- (ϱ_i, V_i) irreducible.

Then each $(GL_1 \times S, \varrho_i, V_i)$ is a non-regular prehomogeneous module.

- Let $V = W \oplus U$ a non-trivial S-invariant decomposition.
- If dim W = dim S, then W would be an étale module for S, a contradiction.
 So dim W < dim S.
- $W \subseteq \pi^{-1}(\{0\})$, where $\pi : V \to V/\!/S$ is the algebraic quotient, $V/\!/S \cong \mathbb{C}$ and $\mathbb{C}[V]^S$ is generated by an irreducible non-constant polynomial f (Baues 1999).
- If $h \in \mathbb{C}[W]^S \subset \mathbb{C}[V]^S$, then h = af + c with $a, c \in \mathbb{C}$.
- Then h(w) = c since f(w) = 0. Hence $\mathbb{C}[W]^S = \mathbb{C}$.
- So trdeg_C C[W]^S = 0, and dim W = max{℘(S)w | w ∈ W} (Rosenlicht 1963). This means W is a prehomogeneous S-module.

One-dimensional center

Theorem

Let $k \ge 2$ and $(GL_1 \times S, \varrho_1 \oplus \ldots \oplus \varrho_k, V_1 \oplus \ldots \oplus V_k)$ be an étale module, where

- S semisimple,
- (ϱ_i, V_i) irreducible.

Then each $(GL_1 \times S, \varrho_i, V_i)$ is a non-regular prehomogeneous module.

Proof:

- Let $V = W \oplus U$ a non-trivial S-invariant decomposition.
- If dim W = dim S, then W would be an étale module for S, a contradiction.
 So dim W < dim S.
- $W \subseteq \pi^{-1}(\{0\})$, where $\pi : V \to V/\!/S$ is the algebraic quotient, $V/\!/S \cong \mathbb{C}$ and $\mathbb{C}[V]^S$ is generated by an irreducible non-constant polynomial f (Baues 1999).
- If $h \in \mathbb{C}[W]^S \subset \mathbb{C}[V]^S$, then h = af + c with $a, c \in \mathbb{C}$.
- Then h(w) = c since f(w) = 0. Hence $\mathbb{C}[W]^S = \mathbb{C}$.
- So $\operatorname{trdeg}_{\mathbb{C}} \mathbb{C}[W]^S = 0$, and $\dim W = \max\{\varrho(S)w \mid w \in W\}$ (Rosenlicht 1963). This means W is a prehomogeneous S-module.
- C[W]^S = C implies that there are no non-constant relative invariants for GL₁ × S. Therefore, W is non-regular.

Example 1 The module

 $(\operatorname{GL}_1 \times \operatorname{SL}_n, \ \mu \otimes \omega_1^{\oplus n}, \ (\mathbb{C}^n)^{\oplus n})$

is étale.

Example 1

The module

$(\operatorname{GL}_1 \times \operatorname{SL}_n, \ \mu \otimes \omega_1^{\oplus n}, \ (\mathbb{C}^n)^{\oplus n})$

is étale. Identify $(\mathbb{C}^n)^{\oplus n} = \operatorname{Mat}_n$. The determinant is a relative invariant. Mat_n decomposes into *n* irreducible and non-regular summands of type $(\operatorname{GL}_1 \times \operatorname{SL}_n, \mu \otimes \omega_1, \mathbb{C}^n)$, the action by matrix-vector multiplication on each column of the matrices in Mat_n.

Example 1

The module

$(\operatorname{GL}_1 \times \operatorname{SL}_n, \ \mu \otimes \omega_1^{\oplus n}, \ (\mathbb{C}^n)^{\oplus n})$

is étale. Identify $(\mathbb{C}^n)^{\oplus n} = \operatorname{Mat}_n$. The determinant is a relative invariant. Mat_n decomposes into *n* irreducible and non-regular summands of type $(\operatorname{GL}_1 \times \operatorname{SL}_n, \mu \otimes \omega_1, \mathbb{C}^n)$, the action by matrix-vector multiplication on each column of the matrices in Mat_n.

The theorem does not hold if the center of *G* has dimension ≥ 2 :

Example 1

The module

$(\operatorname{GL}_1 \times \operatorname{SL}_n, \ \mu \otimes \omega_1^{\oplus n}, \ (\mathbb{C}^n)^{\oplus n})$

is étale. Identify $(\mathbb{C}^n)^{\oplus n} = \operatorname{Mat}_n$. The determinant is a relative invariant. Mat_n decomposes into *n* irreducible and non-regular summands of type $(\operatorname{GL}_1 \times \operatorname{SL}_n, \mu \otimes \omega_1, \mathbb{C}^n)$, the action by matrix-vector multiplication on each column of the matrices in Mat_n.

The theorem does not hold if the center of *G* has dimension ≥ 2 :

Example 2

The non-irreducible module

 $(\mathrm{GL}_1^2 \times \mathrm{SL}_4 \times \mathrm{SL}_2, (\omega_2 \otimes \omega_1) \oplus (\omega_1 \otimes 1) \oplus (1 \otimes \omega_1), (\bigwedge^2 \mathbb{C}^4 \otimes \mathbb{C}^2) \oplus \mathbb{C}^4 \oplus \mathbb{C}^2)$

is étale. The first irreducible component, $\omega_2 \otimes \omega_1$, is a regular irreducible module (by Sato-Kimura classification).

Classification results and families of examples

Étale modules from Sato & Kimura

Sato and Kimura (1977) classified irreducible and castling-reduced reductive prehomogeneous modules.

Étale modules from Sato & Kimura

Sato and Kimura (1977) classified irreducible and castling-reduced reductive prehomogeneous modules.

By checking for $G_v = \{1\}$, we find the following étale modules:

- $(GL_2, 3\omega_1, Sym^3 \mathbb{C}^2).$
- $(SL_3 \times GL_2, 2\omega_1 \otimes \omega_1, Sym^2 \mathbb{C}^3 \otimes \mathbb{C}^2).$
- $(SL_5 \times GL_4, \omega_2 \otimes \omega_1, \bigwedge^2 \mathbb{C}^5 \otimes \mathbb{C}^4).$

Étale modules from Kimura

Kimura (1983) classified non-irreducible prehomogeneous modules for reductive groups with one simple factor.

By checking for $G_v = \{1\}$, we find the following étale modules:

- $(\operatorname{GL}_1 \times \operatorname{SL}_n, \mu \otimes \omega_1^{\oplus n}, (\mathbb{C}^n)^{\oplus n}).$
- $(\operatorname{GL}_1^{n+1} \times \operatorname{SL}_n, \omega_1^{\oplus n+1}, (\mathbb{C}^n)^{\oplus n+1}).$
- $(\operatorname{GL}_1^{n+1} \times \operatorname{SL}_n, \omega_1^{\oplus n} \oplus \omega_1^*, (\mathbb{C}^n)^{\oplus n} \oplus \mathbb{C}^{n*}).$
- $(\operatorname{GL}_1^2 \times \operatorname{SL}_2, 2\omega_1 \oplus \omega_1, \operatorname{Sym}^2 \mathbb{C}^2 \otimes \mathbb{C}^2).$

For reductive groups with more than one simple factor, two types are distinguished.

For reductive groups with more than one simple factor, two types are distinguished.

Example

Let $\varrho : G \to \operatorname{GL}(V^m)$ be a rational representation $n \in \mathbb{N}$ with dim $V = m \le n$. Then $(G \times \operatorname{GL}_n, \varrho \otimes \omega_1, V \otimes \mathbb{C}^n)$ is prehomogeneous. Identify $V^m \otimes \mathbb{C}^n$ with $\operatorname{Mat}_{m,n}$. We see that the action of $\{1\} \times \operatorname{GL}_n$ is sufficient to generate an open orbit. Such a module is called a trivial prehomogeneous module. For reductive groups with more than one simple factor, two types are distinguished.

Example

Let $\rho : G \to \operatorname{GL}(V^m)$ be a rational representation $n \in \mathbb{N}$ with dim $V = m \le n$. Then $(G \times \operatorname{GL}_n, \rho \otimes \omega_1, V \otimes \mathbb{C}^n)$ is prehomogeneous. Identify $V^m \otimes \mathbb{C}^n$ with $\operatorname{Mat}_{m,n}$. We see that the action of $\{1\} \times \operatorname{GL}_n$ is sufficient to generate an open orbit. Such a module is called a trivial prehomogeneous module.

Let $G = GL_1^k \times S_1 \times S_2$ with S_1 , S_2 simple. If there is at least one non-trivial irreducible component, then (G, ϱ, V) is of Type I. Otherwise, (G, ϱ, V) is of Type II.

Kimura et al. (1988) classified non-irreducible prehomogeneous modules for reductive groups with two simple factors, and not all irreducible components a trivial prehomogeneous modules (Type I).

By checking for $G_v = \{1\}$, we find the following étale modules:

- $(\operatorname{GL}_1^2 \times \operatorname{SL}_4 \times \operatorname{SL}_2, (\omega_2 \otimes \omega_1) \oplus (\omega_1 \otimes \omega_1), (\bigwedge^2 \mathbb{C}^4 \otimes \mathbb{C}^2) \oplus (\mathbb{C}^4 \otimes \mathbb{C}^2)).$
- $(\operatorname{GL}_1^2 \times \operatorname{SL}_4 \times \operatorname{SL}_2, (\omega_2 \otimes \omega_1) \oplus (\omega_1 \otimes 1) \oplus (1 \otimes \omega_1), (\bigwedge^2 \mathbb{C}^4 \otimes \mathbb{C}^2) \oplus \mathbb{C}^4 \oplus \mathbb{C}^2).$
- $(\operatorname{GL}_1^3 \times \operatorname{SL}_5 \times \operatorname{SL}_2, (\omega_2 \otimes \omega_1) \oplus (\omega_1^* \otimes 1) \oplus (\omega_1^{(*)} \otimes 1), (\bigwedge^2 \mathbb{C}^5 \otimes \mathbb{C}^2) \oplus \mathbb{C}^{5*} \oplus \mathbb{C}^{5(*)}).$
- $(\operatorname{GL}_1^2 \times \operatorname{Sp}_2 \times \operatorname{SL}_3, (\omega_1 \otimes \omega_1) \oplus (\omega_2 \otimes 1) \oplus (1 \otimes \omega_1^*), (\mathbb{C}^4 \otimes \mathbb{C}^3) \oplus V^5 \oplus \mathbb{C}^3).$
- $(\operatorname{GL}_1^3 \times \operatorname{Sp}_2 \times \operatorname{SL}_2, (\omega_2 \otimes \omega_1) \oplus (\omega_1 \otimes 1) \oplus (1 \otimes \omega_1), (V^5 \otimes \mathbb{C}^2) \oplus \mathbb{C}^4 \oplus \mathbb{C}^2).$
- $(\operatorname{GL}_1^3 \times \operatorname{Sp}_2 \times \operatorname{SL}_4, (\omega_2 \otimes \omega_1) \oplus (\omega_1 \otimes 1) \oplus (1 \otimes \omega_1^*), (V^5 \otimes \mathbb{C}^4) \oplus \mathbb{C}^4 \oplus \mathbb{C}^4).$

Observations

Theorem If $(\operatorname{GL}_1^k \times S, \varrho, V)$ for $k \ge 1$ and a simple group S is an étale module, then $S = \operatorname{SL}_n$ for some $n \ge 1$.

Observations

Theorem If $(\operatorname{GL}_1^k \times S, \varrho, V)$ for $k \ge 1$ and a simple group S is an étale module, then $S = \operatorname{SL}_n$ for some $n \ge 1$.

Theorem

There are no étale modules for $GL_1 \times SL_n \times SL_n$, with $n \ge 2$.

Observations

Theorem If $(\operatorname{GL}_1^k \times S, \varrho, V)$ for $k \ge 1$ and a simple group S is an étale module, then $S = \operatorname{SL}_n$ for some $n \ge 1$.

Theorem

There are no étale modules for $GL_1 \times SL_n \times SL_n$, with $n \ge 2$.

Theorem (Burde)

There are no étale modules for $GL_1 \times SL_n \times ... \times SL_n$, with $n \ge 2$ and $d \ge n^2 + 1$.

Conjecture

There are no étale modules for $GL_1 \times SL_n \times ... \times SL_n$, with $n \ge 2$ and any $d \in \mathbb{N}$.

Kimura et al. (1988) classified non-irreducible prehomogeneous modules for reductive groups with two simple factors, and all irreducible components trivial prehomogeneous modules (Type II).

Kimura et al. (1988) classified non-irreducible prehomogeneous modules for reductive groups with two simple factors, and all irreducible components trivial prehomogeneous modules (Type II).

Problems:

- Classification gives parameter-dependent families of prehomogeneous modules.
- Generic stabilizers G_v are not explicitly known, so it is much harder to find étale modules.
- Need to find those with $G_v = \{1\}$.

Kimura et al. (1988) classified non-irreducible prehomogeneous modules for reductive groups with two simple factors, and all irreducible components trivial prehomogeneous modules (Type II).

Problems:

- Classification gives parameter-dependent families of prehomogeneous modules.
- Generic stabilizers G_v are not explicitly known, so it is much harder to find étale modules.
- Need to find those with $G_v = \{1\}$.

... after several technical lemmas

Kimura et al. (1988) classified non-irreducible prehomogeneous modules for reductive groups with two simple factors, and all irreducible components trivial prehomogeneous modules (Type II).

Problems:

- Classification gives parameter-dependent families of prehomogeneous modules.
- Generic stabilizers G_v are not explicitly known, so it is much harder to find étale modules.
- Need to find those with $G_v = \{1\}$.

... after several technical lemmas ... and distinguishing several subclasses

Kimura et al. (1988) classified non-irreducible prehomogeneous modules for reductive groups with two simple factors, and all irreducible components trivial prehomogeneous modules (Type II).

Problems:

- Classification gives parameter-dependent families of prehomogeneous modules.
- Generic stabilizers G_v are not explicitly known, so it is much harder to find étale modules.
- Need to find those with $G_v = \{1\}$.

...after several technical lemmas ...and distinguishing several subclasses ...find several unwieldy lists of étale representations of Type II.

Observation

Among all the preceding classifications, there are only three étale modules for groups with a simple factor other than SL_n :

- $(\operatorname{GL}_1^2 \times \operatorname{Sp}_2 \times \operatorname{SL}_3, (\omega_1 \otimes \omega_1) \oplus (\omega_2 \otimes 1) \oplus (1 \otimes \omega_1^*), (\mathbb{C}^4 \otimes \mathbb{C}^3) \oplus V^5 \oplus \mathbb{C}^3).$
- $(\operatorname{GL}_1^3 \times \operatorname{Sp}_2 \times \operatorname{SL}_2, (\omega_2 \otimes \omega_1) \oplus (\omega_1 \otimes 1) \oplus (1 \otimes \omega_1), (V^5 \otimes \mathbb{C}^2) \oplus \mathbb{C}^4 \oplus \mathbb{C}^2).$
- $(\operatorname{GL}_1^3 \times \operatorname{Sp}_2 \times \operatorname{SL}_4, (\omega_2 \otimes \omega_1) \oplus (\omega_1 \otimes 1) \oplus (1 \otimes \omega_1^*), (V^5 \otimes \mathbb{C}^4) \oplus \mathbb{C}^4 \oplus \mathbb{C}^4).$

Observation

Among all the preceding classifications, there are only three étale modules for groups with a simple factor other than SL_n :

- $(\operatorname{GL}_1^2 \times \operatorname{Sp}_2 \times \operatorname{SL}_3, (\omega_1 \otimes \omega_1) \oplus (\omega_2 \otimes 1) \oplus (1 \otimes \omega_1^*), (\mathbb{C}^4 \otimes \mathbb{C}^3) \oplus V^5 \oplus \mathbb{C}^3).$
- $(\operatorname{GL}_1^3 \times \operatorname{Sp}_2 \times \operatorname{SL}_2, (\omega_2 \otimes \omega_1) \oplus (\omega_1 \otimes 1) \oplus (1 \otimes \omega_1), (V^5 \otimes \mathbb{C}^2) \oplus \mathbb{C}^4 \oplus \mathbb{C}^2).$
- $(\operatorname{GL}_1^3 \times \operatorname{Sp}_2 \times \operatorname{SL}_4, (\omega_2 \otimes \omega_1) \oplus (\omega_1 \otimes 1) \oplus (1 \otimes \omega_1^*), (V^5 \otimes \mathbb{C}^4) \oplus \mathbb{C}^4 \oplus \mathbb{C}^4).$

Conjecture

Sp₂ is the only group other than SL_{*m*}, $m \in \mathbb{N}$, that appears as a simple factor in a reductive group which admits and étale representation.

References

- O. Baues, Left-symmetric Algebras for gl_n, Trans. Amer. Math. Soc. 351, 7, 1999
- D. Burde,

Left-invariant Affine Structures on Reductive Lie Groups, J. Algebra 181, 1996

T. Kimura,

A Classification of Prehomogeneous Vector Spaces of Simple Algebraic Groups with Scalar Multiplications,

- J. Algebra 83, 1983
- T. Kimura, S. Kasai, M. Inuzuka, O. Yasukura, A Classification of 2-Simple Prehomogeneous Vector Spaces of Type I, J. Algebra 114, 1988
- T. Kimura, S. Kasai, M. Taguchi, M. Inuzuka, Some P.V.-Equivalences and a Classification of 2-Simple Prehomogeneous Vector Spaces of Type II, Trans. Amer. Math. Soc. 308, 2, 1988
- T. Kogiso, G. Miyabe, M. Kobayashi, T. Kimura, Nonregular 2-Simple Prehomogeneous Vector Spaces of Type I and Their Relative Invariants, J. Algebra 251, 2002
- M. Rosenlicht, A remark on quotient spaces, An. Acad. Brasil. Ciênc. 35, 1963
- M. Sato, T. Kimura, A Classification of Irreducible Prehomogeneous Vector Spaces and their Relative Invariants, Nagoya Math. J. 65, 1977