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Motivation: Left-symmetric algebras
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Left-symmetric products

A product on a vector space is left-symmetric if it satisfies

x.yz/ � .xy/z D y.xz/ � .yx/z:

This generalizes associative products.

The commutator

Œx; y� D xy � yx

defines a Lie product on V .

Question
Given a Lie algebra g, does its Lie product come from a left-symmetric product on g?

Semisimple g does not admit a left-symmetric product.

Many (not all) solvable/nilpotent g admit left-symmetric products.

Some reductive g admit left-symmetric products.
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Étale representations
Let % W g! aff.V / be a finite-dimensional representation of g.

% or .%; V / is called étale if there exists v0 2 V such that

" W g! V; x 7! %.x/:v0

is a linear isomorphism.

There is a 1:1-correspondence

left-symmetric products = Š  ! étale representations = � :

An étale representation % defines a left-symmetric product on g by

xy D "�1
�

LIN
�
%.x/

�
".y/

�
:

Conversely, a left-symmetric product on g defines an étale representation % with
v0 D 0 2 g via

%.x/ D

�
Lx x

0 0

�
2 aff.g/:
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Prehomogeneous modules and relative invariants
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Prehomogeneous modules

Let G be an algebraic group, V a finite-dimensional C-vector space, and
% W G ! GL.V / a rational representation such that G has a Zariski-open orbit.
Then .G; %; V / is a prehomogeneous module.

For v contained in the open orbit, Gv denotes the generic stabilizer,
and Vsing D V n%.G/v is called the singular set.

Clearly,
dimG � dimV :

If “D ”, then %0 W g! gl.V / is a linear étale representation.
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Castling
Given a prehomogeneous module�

G � GLn; %˝ !1; V m ˝Cn
�

we obtain another prehomogeneous module, its castling transform�
G � GLm�n; %� ˝ !1; V m� ˝Cm�n

�
:

If G is reductive, we can replace %� by %.
If the first module is étale, so is its castling transform.

Any reasonable classification of prehomogeneous modules should be “up to castling
equivalence”.

Example
Identify a prehomogeneous module .G; %; V / with m D dimV � 2 with
.G � SL1; %˝ !1; V /, and obtain a new prehomogeneous module
.G � SLm�1; %˝ !1; V ˝Cm�1/. Repeat to obtain

.G � SLm�1 � SLm2�m�1; %˝ !1 ˝ !1; V ˝C
m�1
˝Cm

2�m�1/;

.G � SLm2�m�1 � SLm3�m2�2mC1; %˝ !1 ˝ !1; V ˝C
m2�m�1

˝Cm
3�m2�2mC1/;

.G � SLm�1 � SLm2�m�1 � SLm4�2m3Cm�1; %˝ !1 ˝ !1 ˝ !1; V ˝C
m�1
˝Cm

2�m�1
˝Cm

4�2m3Cm�1/;

:::
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Relative invariants

A relative invariant for .G; %; V / is a rational function f W V ! C such that
f .gv/ D �.g/v for some character � of G.

Proposition
.G; %; V / is prehomogeneous if and only if any absolute invariant is constant.
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Reductive prehomogeneous modules

Fact
G reductive: Every étale representation % is linear.
So all reductive étale modules are prehomogeneous modules.

Certain classification results for “castling-reduced” reductive prehomogeneous
modules by Sato, Kimura et al. are known:

Sato, Kimura 1977:
Irreducible, G reductive.

Kimura 1983:
Non-irreducible, G D GLk1 � S and S simple.

Kimura et al. 1988:
Non-irreducible, G D GLk1 � S1 � S2 with S1, S2 simple, Type I and Type II.
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Regular (reductive) prehomogeneous modules

Given a relative invariant f , define

'f W V nVsing ! V �; x 7! grad logf .x/:

If the image of 'f is Zariski-dense, then .G; %; V / is called a regular prehomogenous
module.

Theorem (Sato & Kimura 1977)
Let .G; %; V / be a reductive prehomogeneous module. The following are equivalent:

1 .G; %; V / regular.
2 Vsing D fv 2 V j Hess logf .x/ D 0g is a hypersurface.
3 The open orbit V nVsing is an affine variety.
4 Each stabilizer Gv for v 2 V nVsing is reductive.
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Étale modules

Corollary
Let G be a reductive algebraic group.
If .G; %; V / is étale, then it is a regular prehomogeneous module.

Proof:
StabilizerGv is finite, hence reductive.

Now use previous theorem.

Proposition
Let G be an algebraic group with trivial rational character group.
Then G does not admit rational étale representations.

Proof:
Trivial characters means only absolute invariants exist.

Contradiction to existence of a relative invariant of degree dimV (Sato & Kimura).

Corollary
Unipotent and semisimple algebraic groups do not admit rational linear étale
representations.
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One-dimensional center

Theorem
Let k � 2 and .GL1 � S; %1 ˚ : : :˚ %k ; V1 ˚ : : :˚ Vk/ be an étale module, where

S semisimple,

.%i ; Vi / irreducible.

Then each .GL1 � S; %i ; Vi / is a non-regular prehomogeneous module.

Proof:
Let V DW ˚U a non-trivial S -invariant decomposition.

If dimW D dimS , thenW would be an étale module for S , a contradiction.
So dimW < dimS .

W � ��1.f0g/, where � W V ! V �S is the algebraic quotient, V �S Š C and
CŒV �S is generated by an irreducible non-constant polynomial f (Baues 1999).

If h 2 CŒW �S � CŒV �S , then h D af C c with a; c 2 C.

Then h.w/ D c since f .w/ D 0. Hence CŒW �S D C.

So trdegCCŒW �
S D 0, and dimW D maxf%.S/w j w 2W g (Rosenlicht 1963).

This meansW is a prehomogeneous S -module.

CŒW �S D C implies that there are no non-constant relative invariants for GL1 � S .
Therefore,W is non-regular.
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So dimW < dimS .

W � ��1.f0g/, where � W V ! V �S is the algebraic quotient, V �S Š C and
CŒV �S is generated by an irreducible non-constant polynomial f (Baues 1999).

If h 2 CŒW �S � CŒV �S , then h D af C c with a; c 2 C.

Then h.w/ D c since f .w/ D 0. Hence CŒW �S D C.

So trdegCCŒW �
S D 0, and dimW D maxf%.S/w j w 2W g (Rosenlicht 1963).

This meansW is a prehomogeneous S -module.

CŒW �S D C implies that there are no non-constant relative invariants for GL1 � S .
Therefore,W is non-regular.
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Examples

Example 1
The module

.GL1 � SLn; �˝ !˚n1 ; .Cn/˚n/

is étale.

Identify .Cn/˚n D Matn. The determinant is a relative invariant. Matn
decomposes into n irreducible and non-regular summands of type
.GL1 � SLn; �˝ !1;Cn/, the action by matrix-vector multiplication on each
column of the matrices in Matn.

The theorem does not hold if the center of G has dimension � 2:

Example 2
The non-irreducible module

.GL21 � SL4 � SL2; .!2 ˝ !1/˚ .!1 ˝ 1/˚ .1˝ !1/; .
^2

C4 ˝C2/˚C4 ˚C2/

is étale. The first irreducible component, !2 ˝ !1, is a regular irreducible module
(by Sato-Kimura classification).
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Classification results and families of examples
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Étale modules from Sato & Kimura

Sato and Kimura (1977) classified irreducible and castling-reduced reductive
prehomogeneous modules.

By checking for Gv D f1g, we find the following étale modules:

.GL2; 3!1;Sym3C2/.

.SL3 � GL2; 2!1 ˝ !1;Sym2C3 ˝C2/.

.SL5 � GL4; !2 ˝ !1;
V2C5 ˝C4/.
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Étale modules from Kimura

Kimura (1983) classified non-irreducible prehomogeneous modules for reductive
groups with one simple factor.
By checking for Gv D f1g, we find the following étale modules:

.GL1 � SLn; �˝ !˚n1 ; .Cn/˚n/.

.GLnC11 � SLn; !˚nC11 ; .Cn/˚nC1/.

.GLnC11 � SLn; !˚n1 ˚ !�1 ; .C
n/˚n ˚Cn�/.

.GL21 � SL2; 2!1 ˚ !1;Sym2C2 ˝C2/.
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For reductive groups with more than one simple factor, two types are distinguished.

Example
Let % W G ! GL.V m/ be a rational representation n 2 N with dimV D m � n.
Then .G � GLn; %˝ !1; V ˝Cn/ is prehomogeneous.
Identify V m ˝Cn with Matm;n. We see that the action of f1g � GLn is sufficient to
generate an open orbit. Such a module is called a trivial prehomogeneous module.

Let G D GLk1 � S1 � S2 with S1, S2 simple.
If there is at least one non-trivial irreducible component, then .G; %; V / is of Type I.
Otherwise, .G; %; V / is of Type II.
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Étale modules from Kimura et al., Type I

Kimura et al. (1988) classified non-irreducible prehomogeneous modules for
reductive groups with two simple factors, and not all irreducible components a trivial
prehomogeneous modules (Type I).
By checking for Gv D f1g, we find the following étale modules:

.GL21 � SL4 � SL2; .!2 ˝ !1/˚ .!1 ˝ !1/; .
V2C4 ˝C2/˚ .C4 ˝C2//.

.GL21�SL4�SL2; .!2˝!1/˚.!1˝1/˚.1˝!1/; .
V2C4˝C2/˚C4˚C2/.

.GL31 � SL5 � SL2; .!2 ˝ !1/˚ .!�1 ˝ 1/˚ .!
.�/
1 ˝ 1/; .

V2C5 ˝C2/˚
C5� ˚C5.�//.

.GL21 �Sp2 �SL3; .!1˝!1/˚ .!2˝ 1/˚ .1˝!�1 /; .C
4˝C3/˚V 5˚C3/.

.GL31 �Sp2 �SL2; .!2˝!1/˚ .!1˝ 1/˚ .1˝!1/; .V 5˝C2/˚C4˚C2/.

.GL31 �Sp2 �SL4; .!2˝!1/˚ .!1˝ 1/˚ .1˝!�1 /; .V
5˝C4/˚C4˚C4/.
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Observations

Theorem
If .GLk1 � S; %; V / for k � 1 and a simple group S is an étale module,
then S D SLn for some n � 1.

Theorem
There are no étale modules for GL1 � SLn � SLn, with n � 2.

Theorem (Burde)
There are no étale modules for GL1 � SLn � d: : :� SLn, with n � 2 and d � n2C 1.

Conjecture
There are no étale modules for GL1 � SLn � d: : : � SLn, with n � 2 and any d 2 N.
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Étale modules from Kimura et al., Type II

Kimura et al. (1988) classified non-irreducible prehomogeneous modules for
reductive groups with two simple factors, and all irreducible components trivial
prehomogeneous modules (Type II).

Problems:

Classification gives parameter-dependent families of prehomogeneous modules.

Generic stabilizers Gv are not explicitely known, so it is much harder to find
étale modules.

Need to find those with Gv D f1g.

. . . after several technical lemmas . . . and distinguishing several subclasses . . . find
several unwieldy lists of étale representations of Type II.
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Observation

Among all the preceding classifications, there are only three étale modules for groups
with a simple factor other than SLn:

.GL21 �Sp2 �SL3; .!1˝!1/˚ .!2˝ 1/˚ .1˝!�1 /; .C
4˝C3/˚V 5˚C3/.

.GL31 �Sp2 �SL2; .!2˝!1/˚ .!1˝ 1/˚ .1˝!1/; .V 5˝C2/˚C4˚C2/.

.GL31 �Sp2 �SL4; .!2˝!1/˚ .!1˝ 1/˚ .1˝!�1 /; .V
5˝C4/˚C4˚C4/.

Conjecture
Sp2 is the only group other than SLm, m 2 N, that appears as a simple factor in a
reductive group which admits and étale representation.
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