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Motivation: Left-symmetric algebras
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Left-symmetric products

A product on a vector space is left-symmetric if it satisfies
x(yz) — (xy)z = y(xz) — (yx)z.
This generalizes associative products. The commutator
[x, y] = xy — yx
defines a Lie product on V.

Question
Given a Lie algebra g, does its Lie product come from a left-symmetric product on g?

@ Semisimple g does not admit a left-symmetric product.
@ Many (not all) solvable/nilpotent g admit left-symmetric products.

o Some reductive g admit left-symmetric products.



Etale representations
Let o : g — aff(}) be a finite-dimensional representation of g.
o or (0, V) is called étale if there exists vg € V such that
e:g—>V, x+0(x).vo

is a linear isomorphism.
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Etale representations
Let o : g — aff(}) be a finite-dimensional representation of g.
o or (g, V) is called étale if there exists vg € V such that
e:g—>V, x+0(x).vo

is a linear isomorphism.

There is a 1:1-correspondence

left-symmetric products / = <~ étale representations / ~ .

An étale representation o defines a left-symmetric product on g by

xy =gt (LIN(Q(x))s(y)).

Conversely, a left-symmetric product on g defines an étale representation o with
vo =0 € gvia

o= (5 3) i@
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Prehomogeneous modules

Let G be an algebraic group, V' a finite-dimensional C-vector space, and
o0 : G — GL(V) arational representation such that G has a Zariski-open orbit.
Then (G, o, V) is a prehomogeneous module.

For v contained in the open orbit, G, denotes the generic stabilizer,
and Ving = V\0(G)v is called the singular set.

Clearly,
dimG > dim V.

If “ =7, then o’ : g — gl(V) is a linear étale representation.
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Castling
Given a prehomogeneous module

(GxGL,, 0@ w1, V" ®C")
we obtain another prehomogeneous module, its castling transform
(G x GLyy—n, Q* ® w1, ymE ® Cmin)-

If G is reductive, we can replace o™ by o.
If the first module is étale, so is its castling transform.

Any reasonable classification of prehomogeneous modules should be “up to castling
equivalence”.

Example

Identify a prehomogeneous module (G, ¢, V) with m = dim V' > 2 with
(G xSL1,0 ® w1, V), and obtain a new prehomogeneous module

(G xSLy—1,0 ® w1,V ® €™ 1), Repeat to obtain

(GXSLpm_1xSL,>_, .0®w ®w,V ®C" ! @Cm —m=1)
2 B2
(G xSLy2 1 XSLy3 2 nmyr.0 @01 ® 1, V@ C™ M1 g om —m —2mtl)

— 25
(G xSLym—1 % SLy2_py_1 XSLypa 534 m_1.0®@ 01 @01 @1,V @C" @™ "

7



Relative invariants

A relative invariant for (G, g, V) is a rational function f : V' — C such that
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Relative invariants

A relative invariant for (G, g, V) is a rational function f : V' — C such that
f(gv) = x(g)v for some character y of G.

Proposition
(G, 0, V) is prehomogeneous if and only if any absolute invariant is constant.
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Reductive prehomogeneous modules

Fact
G reductive: Every étale representation o is linear.
So all reductive étale modules are prehomogeneous modules.

Certain classification results for “castling-reduced” reductive prehomogeneous
modules by Sato, Kimura et al. are known:

@ Sato, Kimura 1977:
Irreducible, G reductive.
o Kimura 1983:
Non-irreducible, G = GL’Ic x S and S simple.

o Kimura et al. 1988:
Non-irreducible, G = GL’lc x 81 x Sz with S1, S» simple, Type I and Type II.
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Given a relative invariant f', define
@f:V\Ving = V*, x> gradlog f(x).

If the image of ¢ ¢ is Zariski-dense, then (G, o, V) is called a regular prehomogenous
module.



Regular (reductive) prehomogeneous modules

Given a relative invariant f', define
@f:V\Ving = V*, x> gradlog f(x).

If the image of ¢ ¢ is Zariski-dense, then (G, o, V) is called a regular prehomogenous
module.

Theorem (Sato & Kimura 1977)
Let (G, 0, V') be a reductive prehomogeneous module. The following are equivalent:

Q (G,o,V) regular.

Q Viing = {v € V | Hesslog f(x) = 0} is a hypersurface.
© The open orbit V\ Vsing is an affine variety.

@ Each stabilizer Gy forv € V\ Vying is reductive.
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Corollary
Let G be a reductive algebraic group.
If (G, 0, V) is étale, then it is a regular prehomogeneous module.

Proof:
@ Stabilizer Gy, is finite, hence reductive.

@ Now use previous theorem.
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Etale modules

Corollary
Let G be a reductive algebraic group.
If (G, 0, V) is étale, then it is a regular prehomogeneous module.

Proof:
@ Stabilizer Gy, is finite, hence reductive.

@ Now use previous theorem.

Proposition
Let G be an algebraic group with trivial rational character group.
Then G does not admit rational étale representations.

Proof:
@ Trivial characters means only absolute invariants exist.

@ Contradiction to existence of a relative invariant of degree dim V' (Sato & Kimura).

Corollary
Unipotent and semisimple algebraic groups do not admit rational linear étale
representations.

O
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One-dimensional center

Theorem
Letk >2and (GL1 x S,01 ® ... ® 0. V1 @ ... ® Vi) be an étale module, where

S semisimple,

(0i, V;) irreducible.

Then each (GL; x S, 0;, V;) is a non-regular prehomogeneous module.

Proof:

Let V =W @ U anon-trivial S-invariant decomposition.
If dim W = dim S, then W would be an étale module for .S, a contradiction.
SodimW < dim S.

W < 7~ 1({0}), where w : V — V /S is the algebraic quotient, V /.S = C and
C[V]S is generated by an irreducible non-constant polynomial f (Baues 1999).

e Ifh e C[W]S C C[V]®,thenh = af + c witha,c € C.
@ Then h(w) = ¢ since f(w) = 0. Hence C[W]S = C.

So trdeg C[W1S =0, and dim W = max{o(S)w | w € W} (Rosenlicht 1963).
This means W is a prehomogeneous S -module.

Cc[w]s =cC implies that there are no non-constant relative invariants for GL1 X S.
Therefore, W is non-regular. O
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Example 1
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(GL1 x SLn., p® 0", (€")®")

is étale. Identify (C”)GB" = Mat, . The determinant is a relative invariant. Mat,
decomposes into 7 irreducible and non-regular summands of type

(GL; x SLy, 4 ® wy, C™), the action by matrix-vector multiplication on each
column of the matrices in Matj, .
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Examples

Example 1
The module
(GL1 x SLn., p® 0", (€")®")

is étale. Identify (C”)GB" = Mat, . The determinant is a relative invariant. Mat,
decomposes into 7 irreducible and non-regular summands of type

(GL; x SLy, 4 ® wy, C™), the action by matrix-vector multiplication on each
column of the matrices in Matj, .

The theorem does not hold if the center of G has dimension > 2:

Example 2
The non-irreducible module

2
(GL} x SLy x SLa, (@2 ® 01) ® (01 ® 1) & (1 @ w1). (/\ C* ® C*) & C* & C?)

is étale. The first irreducible component, vy ® w1, is a regular irreducible module
(by Sato-Kimura classification).



Classification results and families of examples



Etale modules from Sato & Kimura

Sato and Kimura (1977) classified irreducible and castling-reduced reductive
prehomogeneous modules.



Etale modules from Sato & Kimura

Sato and Kimura (1977) classified irreducible and castling-reduced reductive
prehomogeneous modules.
By checking for G, = {1}, we find the following étale modules:

o (GLj,3w;, Sym3C?).
o (SL3 x GLy, 2w ® w1, Sym?C3 ® C2?).
@ (SL5; x GL4, w2 ® wy, /\2 C°® 04).



Etale modules from Kimura

Kimura (1983) classified non-irreducible prehomogeneous modules for reductive
groups with one simple factor.
By checking for G, = {1}, we find the following étale modules:

o (GL; x SLy, p ® 0", (C")®m),

o (GLYT! x SLy 0" *1, (Ccm)®nth),

o (GL"! xSL,,0®" @ o}, (C"®" @ C).
o (GL? x SL»,2w; @ w1, Sym*C? ® C?).



For reductive groups with more than one simple factor, two types are distinguished.
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Example

Let o : G — GL(V™) be a rational representation n € IN with dim V = m < n.
Then (G x GLy, 0 ® w1,V ® C") is prehomogeneous.

Identify V" ® C" with Mat,, ,,. We see that the action of {1} x GLj, is sufficient to
generate an open orbit. Such a module is called a trivial prehomogeneous module.



For reductive groups with more than one simple factor, two types are distinguished.

Example

Let o : G — GL(V™) be a rational representation n € IN with dim V = m < n.
Then (G x GLy, 0 ® w1,V ® C") is prehomogeneous.

Identify V" ® C" with Mat,, ,,. We see that the action of {1} x GLj, is sufficient to
generate an open orbit. Such a module is called a trivial prehomogeneous module.

Let G = GLK x §7 x S, with S1, S5 simple.
If there is at least one non-trivial irreducible component, then (G, o, V) is of Type L.
Otherwise, (G, o, V) is of Type II.



Etale modules from Kimura et al., Type I

Kimura et al. (1988) classified non-irreducible prehomogeneous modules for
reductive groups with two simple factors, and not all irreducible components a trivial
prehomogeneous modules (Type I).

By checking for G, = {1}, we find the following étale modules:

o (GL? x SL4 x SLa, (02 ® 1) ® (01 ® 1), (A? C* ® C?) & (C* ® C?)).

o (GL? xSL4xSLy, (02801) @ (@1 @)@ (18w1), (\* C*@C?)eC*aC?).

o (GL? x SLs x SLy, (02 ® 01) ® (0} ® 1) ® (wf*) e, (N C°eCH) e
C5* ® CS(*)).

o (GL2 xSp,y xSL3. (01 ® 1) ® (02 ® 1) & (1 ® 0}). (C* ® C*) @ V> @ C3).
o (GL3 x Sp, xSLa, (02 ® w1) ® (01 ® 1) ® (1@ w1), (V> ® C?) & C* & C?).
o (GL3 xSpy x SL4. (02 ® 1) @ (01 ® 1) & (1 ® w}). (V> ® C*) & C* @ C4).



Observations

Theorem
If(GLll‘ x S,0,V) fork > 1 and a simple group S is an étale module,
then S = SL, for somen > 1.
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Observations

Theorem
If(GLll‘ x S,0,V) fork > 1 and a simple group S is an étale module,
then S = SL, for somen > 1.

Theorem
There are no étale modules for GL1 x SL,, x SL,, withn > 2.

Theorem (Burde)
There are no étale modules for GL; x SL;, x 4. x SL,,, withn > 2 andd > n2+1.

Conjecture
There are no étale modules for GL1 x SL, x 4 x SL,, withn > 2 and any d € IN.

20



Etale modules from Kimura et al., Type II

Kimura et al. (1988) classified non-irreducible prehomogeneous modules for
reductive groups with two simple factors, and all irreducible components trivial
prehomogeneous modules (Type II).

21



Etale modules from Kimura et al., Type II

Kimura et al. (1988) classified non-irreducible prehomogeneous modules for
reductive groups with two simple factors, and all irreducible components trivial
prehomogeneous modules (Type II).

Problems:
o Classification gives parameter-dependent families of prehomogeneous modules.

o Generic stabilizers Gy are not explicitely known, so it is much harder to find
étale modules.

@ Need to find those with G, = {1}.
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Etale modules from Kimura et al., Type II

Kimura et al. (1988) classified non-irreducible prehomogeneous modules for
reductive groups with two simple factors, and all irreducible components trivial
prehomogeneous modules (Type II).

Problems:
o Classification gives parameter-dependent families of prehomogeneous modules.

o Generic stabilizers Gy are not explicitely known, so it is much harder to find
étale modules.

@ Need to find those with G, = {1}.

... after several technical lemmas ... and distinguishing several subclasses ... find
several unwieldy lists of étale representations of Type II.

21



Observation

Among all the preceding classifications, there are only three étale modules for groups
with a simple factor other than SL,;:

o (GL3 xSp, xSL3, (w1 ®w1) ® (@2 ® 1) ® (1®0}), (C*@C3) @ V3 & C3).
° (GL%XSpZXSLz,(a)z Qu)® w1 & (1Qw), (V> QC?) @ C* e C?).
o (GL3 x Sp, X SL4, (w2 ®w1) ® (01 ® 1) & (1 ® 0}), (V> ® C*) & C* & C*).
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Observation

Among all the preceding classifications, there are only three étale modules for groups
with a simple factor other than SL,;:

o (GL3 xSp, xSL3, (w1 ®w1) ® (@2 ® 1) ® (1®0}), (C*@C3) @ V3 & C3).
° (GL%XSpZXSLz,(a)z Qu)® w1 & (1Qw), (V> QC?) @ C* e C?).
o (GL3 x Sp, X SL4, (w2 ®w1) ® (01 ® 1) & (1 ® 0}), (V> ® C*) & C* & C*).

Conjecture
Sp, is the only group other than SL,, m € N, that appears as a simple factor in a
reductive group which admits and étale representation.

22
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