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I pp-waves and plane waves
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Lorentzian manifolds

A Lorentzian product ⟨⋅, ⋅⟩ on Rn is a symmetric bilinear form equivalent to

⟨x , y⟩ = x1y1 + x2y2 + . . . + xn−1yn−1 − xnyn.

A Lorentzian manifold (M,g) is a smooth manifold M together with a tensor g
that is a Lorentzian product gp at every point p ∈ M.

Tangent vectors v ∈ TpM are. . .

spacelike if gp(v , v) > 0.

lightlike if gp(v , v) = 0 (in particular, v ∈ v⊥).

timelike if gp(v , v) < 0.
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Gravitational waves

A Lorentzian manifold (M,g) provides a spacetime model in general relativity if
g is a solution of the Einstein equations Ric − 1

2
Rscalg = T.

A plane-fronted gravitational wave propagates with light-speed in the
x-direction. Its wave vector (in spacetime) is the parallel light-like vector field
∂t + ∂x .
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pp-waves

An n + 2-dimensional pp-wave spacetime (M,g) is an exact solution to the
Einstein equations modelling the propagation of a plane-fronted gravitational
wave with parallel rays.

Formally, this means there exists a lightlike vector field V on M such that

1 ∇V = 0 (V is parallel)

2 R∣V ⊥∧V ⊥ = 0
(the curvature operator R ∶ Λ2TM → Λ2TM vanishes on V ⊥ ∧V ⊥).

Locally, pp-waves can be defined by the existence of n + 2 coordinates
(x+, x1, . . . , xn, x

−) such that

g = 2dx+dx− + 2H(x+, x)(dx+)2 + dx2,

where H(x+, x) is an abritrary profile function.
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Plane waves

Plane wave spacetimes are a special class of pp-waves.

They are defined by the additional property

∇XR = 0 for all X ⊥ V .

Locally, the profile function H is a quadratic form in x:

H(x+, x) = x⊺ ⋅ S(x+) ⋅ x

where S(x+) is a symmetric n × n-matrix.

History:

Brinkmann, 1925: Einstein manifolds which are conformally equivalent.

Einstein & Rosen, 1937: Gravitational waves.

Today: Supergravity backgrounds with “many” symmetries.
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II Locally homogeneous pp-waves
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Local homogeneity

We want to study locally homogeneous pp-waves.
This means for all points p,q ∈ M there is a local isometry ϕ ∶ Up → Uq

mapping p to q, where Up, Uq are neighbourhoods of p, q.

Moreover, at every point p ∈ M, the Killing fields span the tangent space TpM.

The orthogonal distribution V ⊥ is parallel and defines a foliation of M into
totally geodesic leafs of codimension 1.

M is locally V ⊥-homogeneous if for all points p,q in a leaf L there is a local
isometry ϕ ∶ Up → Uq mapping p to q, where Up, Uq are neighbourhoods in M.

' LUp Uq
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Motivation

Jordan, Ehlers, Kundt (1960):
Let (M,g) be a Ricci-flat (= vacuum) pp-wave of dimension 4.
If (M,g) is locally V ⊥-homogeneous, then (M,g) is a plane wave.

We want to prove that a locally homogeneous pp-wave of dimension n + 2 is a
plane wave.
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Constraints

Counterexample:
Consider M = R3 with the metric

g = 2dx+dx− + 2e2ax(dx+)2 + dx2.

The Killing algebra is generated by

∂−, ∂+, ax+∂+ − ax−∂− − ∂x .

This means (M,g) is a locally homogeneous pp-wave which is not a plane
wave.

The curvature operator in this example has rank 1. We therefore impose the
following constraints:

The curvature operator R has rank > 1 almost everywhere.

(M,g) is strongly indecomposable, meaning there is no neighbourhood of
some p ∈ M on which g is a product metric.
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Locally V ⊥-homogeneous pp-waves

Main Theorem:
Let (M,g) be a pp-wave of dimension n + 2 such that

(M,g) is strongly indecomposable,

rank R > 1 almost everywhere,

(M,g) is locally V ⊥-homogeneous.

Then (M,g) is a plane wave.

Corollary:
A strongly indecomposable, Ricci-flat and locally V ⊥-homogeneous pp-wave is
a plane wave.

Corollary:
An indecomposable locally homogeneous pp-wave is a plane wave if rank R > 1
at some point p ∈ M.

Corollary:
An indecomposable, Ricci-flat and locally homogeneous pp-wave is a plane
wave.
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III Analysing the Killing algebra
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The Killing equation

Killing fields are the solutions of the Killing equation

LXg = 0.

To prove our theorem, we must understand when this equation admits
sufficiently many solutions for (M,g) to be homogeneous.

After a good choice of coordinates and some labour, the Killing equation for a
pp-wave is found to be

Ψ̈⊺x − gradx(H)⊺(Ψ + Fx) − (ax+ + b)Ḣ − 2aH = 0,

where

H is the profile function,

Ψ(x+) ∈ Rn, a,b ∈ R, F ∈ son are to be determined.

A generic solution takes the form

X = (c − ax− − Ψ̇⊺x)∂− + (Ψ + Fx)i∂i + (ax+ + b)∂+.
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V ⊥-homogeneous solutions

If (M,g) is locally V ⊥-homogeneous, then V ⊥∣p is spanned by Killing fields
evaluated at p for every p ∈ M.

Study Killing fields at p ∈ M.

Let X1, . . . ,Xk , ∂− be Killing fields spanning V ⊥∣p.

Pick orthonormal basis of TpM:

E+,E1, . . . ,En,E−
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

V ⊥ ∣p

.

In suitable coordinates and for a suitable choice of X1, . . . ,Xn:

Xk ∣p = Ek ,

∇Ej Xk ∣p ∈ RE−,

∇E+Xk ∣p = akE+ + . . .

for some numbers a1, . . . , an.
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evaluated at p for every p ∈ M.

Study Killing fields at p ∈ M.
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Integrability conditions

A Killing field X defines a skew endomorphism field ∇X on the tangent bundle.

From the Killing equation it follows that for all vector fields Y ,

∇Y∇X = −R(X ,Y ).

This entails the following integrability condition:

∇XR = (∇X)R.
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Proof

Assuming local V ⊥-homogeneity, we prove the plane wave condition ∇W R = 0
for all W ∈ V ⊥:

The only non-vanishing curvature terms:

Rij = R(E+,Ei ,E+,Ej),
∇kRij = (∇Ek R)(E+,Ei ,E+,Ej).

The integrability condition for Xk yields

∇kRij = 2akRij .

Without loss of generality: a1 = . . . = an−1 = 0.

In particular,
2anRki = 0

for i = 1, . . . ,n, k = 1, . . . ,n − 1.

Only possible non-zero term: 2anRnn.
But then if an ≠ 0, then Rnn ≠ 0 is the only non-zero term.
Hence rank R = 1, a contradiction.

Therefore, the plane wave condition is satisfied.
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IV Symmetries of plane waves
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Killing equation of a plane wave

Setting F = 0, a = b = 0 reduces the Killing equation of a plane wave to

Ψ̈ = SΨ.

This equation admits solutions Ψ1, . . . ,Ψn, Φ1, . . . ,Φn with

Ψi(0) = ei , Ψ̇i(0) = 0,

Φi(0) = 0, Φ̇i(0) = ei .

Then the Killing fields

Xi = Ψk
i ∂k − x⊺Ψ̇i∂−, Yi = Φk

i ∂k − x⊺Φ̇i∂−.

satisfy
[Xi ,Yj] = δij∂−.

So they generate a Heisenberg algebra hei2n+1.
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Homogeneous plane waves

Blau and O’Loughlin (2003) determined the locally homogeneous plane waves.

They found two families of metrics:

1 The geodesically complete case:

S(x+) = ex
+F ⋅ S0 ⋅ e−x

+F

for some F ∈ son.

2 The geodesically incomplete case:

S(x+) = 1

(x+)2
elog(x+)F ⋅ S0 ⋅ e− log(x+)F

for some F ∈ son.

Proposition:
Homogeneous plane waves are reductively homogeneous.
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Symmetric plane waves

If (M,g) is homogenous of the first type and the matrix S is constant, then
(M,g) is a Lorentzian symmetric space (also: Cahen-Wallach spaces).

In this case, ∂+ is a Killing field transversal to V ⊥, and

∂+, X1, . . . ,Xn, Y1, . . . ,Yn, ∂−

span a 2n + 2-dimensional oscillator algebra R ⋉ hei2n+1.
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